
 1 

Suppressive recurrent and feedback computations for adaptive processing in the human 

brain 

Zamboni E1, Kemper VG2,3, Goncalves NR1, Jia K1, Bell SJ1, Karlaftis VM1, Giorgio JJ1, 

Rideaux R1, Goebel R2,3, Kourtzi Z1.  

  

1Department of Psychology, University of Cambridge, Cambridge UK 

2Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht 

University, Maastricht, Netherlands 

3Department of Cognitive Neuroscience, Maastricht Brain Imaging Center, Maastricht 

University, Maastricht, Netherlands 

  

  

  

 Running title: 

Ultra-high field imaging reveals fine-scale adaptive human brain circuits  

 

  

Correspondence: 
Zoe Kourtzi 

Department of Psychology 

University of Cambridge 

Cambridge, UK 

Email: zk240@cam.ac.uk 

  

  

 

Acknowledgements: 

We would like to thank Christopher Wiggins and Esther Steijvers (Scannexus) for technical 

support, Peter Kok (University College London), Denis Schluppeck (University of 

Nottingham), Federico De Martino (University of Maastricht), Laurentius Huber (University 

of Maastricht), and Cheryl Olman (University of Minnesota) for the expert and insightful 

comments to the manuscript. We would also like to thank Adrian Ng, Valentyna Chernova, 

and Cher Zhou for help with the analysis. This work was supported by grants to Z.K. from the 

Biotechnology and Biological Sciences Research Council (H012508 and BB/P021255/1) and 

the Wellcome Trust (205067/Z/16/Z).   

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.947895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.947895
http://creativecommons.org/licenses/by-nd/4.0/


 2 

Abstract 

Humans and animals are known to adapt to the statistics of the environment by reducing brain 

responses to repetitive sensory information. Despite the importance of this rapid form of brain 

plasticity for efficient information processing, the fine-scale circuits that support this adaptive 

processing in the human brain remain largely unknown. Here, we capitalize on the sub-

millimetre resolution afforded by ultra-high field (UHF) imaging to examine BOLD-fMRI 

signals across cortical depth and discern competing hypotheses about the brain mechanisms 

(feedforward vs. feedback) that mediate visual adaptation. Combining UHF imaging with a 

visual adaptation paradigm comprising repeated presentation of gratings at the same 

orientation, we provide evidence for the fine-scale human brain circuits that mediate adaptive 

visual processing. We demonstrate that visual adaptation is implemented by suppressive local 

recurrent processing within visual cortex, as indicated by stronger BOLD decrease in 

superficial than middle and deeper layers. Further, functional connectivity analysis shows 

dissociable connectivity mechanisms for adaptive processing: feedforward connectivity within 

the visual cortex, while feedback connectivity from posterior parietal to visual cortex, 

reflecting top-down influences (i.e. expectation for repeated stimuli) on visual processing. 

Thus, our findings provide evidence for a circuit of local recurrent and feedback interactions 

that mediate rapid brain plasticity for adaptive information processing.  
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Introduction 

In interacting with cluttered and complex environments, we are bombarded with multiple 

sources of information to choose from and attend to. To cope with this challenge, human and 

animal brains are known to adapt to repeatedly or continuously presented sensory inputs. This 

type of sensory adaptation is a rapid form of plasticity that is critical for efficient processing 

and has been shown to involve changes in perceptual sensitivity (for review: Clifford, 2002)  

and neural selectivity (for review: Kohn, 2007).  

Sensory adaptation is vividly demonstrated by perceptual aftereffects. For example, 

consider the tilt-aftereffect, a well-studied case of visual adaptation: following prolonged 

presentation of a tilted bar (adaptor) observers perceive a vertical bar as tilted away from the 

orientation of the adaptor (Clifford, 2002). Numerous neurophysiological studies (Kohn, 2007) 

have shown sensory adaptation to be associated with reduction in neuronal responses that are 

specific to the features of the adaptor. Functional brain imaging studies in humans have shown 

fMRI adaptation for low-level visual features (e.g., contrast, orientation, motion; for review 

Larsson, Solomon, & Kohn, 2016) as indicated by decreased BOLD responses in visual cortex 

due to stimulus repetition. Similar BOLD decrease has been reported in higher visual areas for 

repeated presentation of more complex visual stimuli (e.g. faces, objects), an effect known as 

repetition suppression (Grill-Spector, Henson, & Martin, 2006; Krekelberg, Boynton, & van 

Wezel, 2006).  

Despite the plethora of studies investigating the perceptual and neural signatures of 

adaptation, the fine-scale brain computations that underlie adaptive processing remain highly 

debated. In particular, neurophysiological studies focussing on primary visual cortex provide 

evidence of rapid adaptation at early stages of sensory processing (Gutnisky & Dragoi, 2008; 

Whitmire & Stanley, 2016; Xiang & Brown, 1998). In contrast, fMRI studies showing 

decreased BOLD for stimulus repetition have suggested top-down influences on sensory 
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processing via feedback mechanisms (e.g., Ewbank et al., 2011; Summerfield, Trittschuh, 

Monti, Mesulam, & Egner, 2008). Yet, the neural circuit implementation of these feedforward 

vs. feedback mechanisms for adaptive processing in the human brain remains largely unknown.  

Here, we capitalize on recent advances in brain imaging technology, to discern these 

competing hypotheses about brain mechanisms (feedforward vs. feedback) for adaptive 

processing. UHF imaging affords the sub-millimetre resolution necessary to examine fMRI 

signals across cortical layers in a non-invasive manner, providing a unique approach to 

interrogate human brain circuits at a finer mesoscopic scale (for review: Lawrence, Formisano, 

Muckli, & de Lange, 2019) than that possible by standard fMRI techniques (for review: 

Goense, Bohraus, & Logothetis, 2016). Further, UHF laminar imaging allows us to test the 

functional connectivity that mediates adaptive processing based on known anatomical laminar 

circuits. In particular, sensory inputs are known to enter the cortex from the thalamus at the 

level of the middle, granular layer (layer 4), while output information is fed forward from the 

superficial, supragranular layer (layer 2/3), and feedback information is exchanged primarily 

between deep, infragranular layers (layer 5/6) as well as superficial layers (for review: Self, 

van Kerkoerle, Goebel, & Roelfsema, 2019). 

 Combining UHF laminar imaging with an orientation adaptation paradigm (i.e. 

observers are presented with gratings at the same or different orientations), we test whether 

orientation-specific adaptation involves feedforward processing of visual input in middle V1 

layers, or feedback processing in superficial and deeper V1 layers. Our findings provide 

evidence for a circuit of local recurrent processing across layers within visual cortex and 

feedback interactions that mediate adaptive processing at mesoscopic scale in the human brain. 

In particular, we demonstrate that adaptation alters orientation-specific signals across layers 

within primary visual cortex with stronger fMRI-adaptation (i.e. BOLD decrease for repeated 

stimuli) in superficial layers These signals are read-out by higher visual areas, as indicated by 
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increased connectivity between V1 superficial and V4 middle layers. Further, we test the role 

of the posterior parietal cortex in adaptive processing, as it is known to be involved in stimulus 

expectation and novelty detection (de Lange, Heilbron, & Kok, 2018; Garrido, Kilner, Stephan, 

& Friston, 2009; Li, Gratton, Yao, & Knight, 2010; Summerfield & De Lange, 2014). Our 

results provide evidence for increased feedback connectivity from posterior parietal cortex to 

V1 deeper layers, suggesting top-down influences on visual processing via feedback 

mechanisms. This circuit of local recurrent and feedback influences is critical for rapid brain 

plasticity that supports efficient sensory processing by suppressing familiar and expected 

information to facilitate resource allocation to new incoming input. 
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Material and Methods 

Observers 

Eighteen healthy observers (11 female, 7 male) participated in the study. Seventeen observers 

participated in the main experiment and were scanned with a Gradient Echo-Echo Planar 

Imaging (GE-EPI) sequence. Five volunteers (four volunteers who participated in the main 

experiment and an additional volunteer) participated in a control experiment and were scanned 

with a 3D GRASE EPI sequence. Data from two participants were excluded from further 

analysis due to excessive head movement (higher than 1.5mm) and technical problems during 

acquisition, resulting in fifteen participants for the main experiment (mean age: 24.44 years 

and SD: 3.83 years).  All participants had normal or corrected-to-normal vision, were naïve to 

the aim of the study, gave written informed consent and received payment for their 

participation. The study was approved by the local Ethical Committee of the Faculty of 

Psychology and Neuroscience at Maastricht University.  

Stimuli 

Stimuli comprised sinewave gratings (1 cycle/degree) of varying orientations (Figure 1). 

Stimuli were presented centrally, within an annulus aperture (inner radius: 0.21 degrees; outer 

radius: 6 degrees). The outer edge of the aperture was smoothed using a sinusoidal function 

(standard deviation: 0.6 degrees). Experiments were controlled using MATLAB and the 

Psychophysics toolbox 3.0 (Brainard, 1997; Pelli, 1997). For the main fMRI experiment, 

stimuli were presented using a projector and a mirror setup (1920 × 1080 pixels resolution, 60 

Hz frame rate) at a viewing distance of 99 cm. The viewing distance was reduced to 70 cm for 

the control experiment, as a different coil was used. Behavioural data were collected on a subset 

(N=7) of participants outside the scanner. Stimuli were presented on a MacBook Pro, 13.3-inch 

monitor (1280 x 800 pixel, 60 Hz frame rate) at a viewing distance of 50 cm. For both the fMRI 
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and behavioural tests, the viewing distance was adjusted so that angular stimulus size was the 

same for the behavioural and scanning sessions. 

Experimental Design 

fMRI session 

Both the main and control fMRI experiments comprised a maximum of 8 runs (13 participants 

completed 8 runs for each experiment; 2 participants in the main experiment and 1 participant 

in the control completed 6 runs). Each run lasted 5 min 6 s, and started with a 14s fixation 

block, followed by 6 stimulus blocks, three blocks per condition (adaptation, non-adaptation) 

(Figure 1). The order of the blocks was counterbalanced within and across runs. Each block 

comprised 16 stimuli followed by 2s for response and 14s of fixation before the start of the 

next block. Each run ended with a 14s fixation block. The adaptation condition comprised 16 

gratings presented at the same orientation. The same orientation was presented across 

adaptation blocks per participant and was selected randomly from a uniform distribution within 

±85º from vertical. The non-adaptation condition comprised 16 gratings presented at different 

orientations drawn randomly from uniform distributions, ranging from -85º to -5º, and +5º to 

+85º in steps of 7.27º, excluding vertical (i.e., 0º). Each stimulus was displayed for 1900ms 

with a 100ms inter-stimulus interval for both the adaptation and non-adaptation conditions to 

ensure similar stimulus presentation parameters (e.g. stimulus transients) between conditions. 

During scanning participants engaged in a Rapid Serial Visual Presentation (RSVP) task to 

ensure that they maintained attention similarly across conditions.  A stream of letters was 

presented in rapid serial order (presentation frequency: 150ms, asynchronous with the timings 

of grating presentation) within an annulus at the centre of the screen (0.5 degrees of visual 

angle). Participants were asked to fixate at the annulus and report the number of targets (1- 4 

per block) by a key press when prompted at the end of each block. No feedback was provided 

to the participants.  
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In the same scanning session, anatomical data and fMRI data for retinotopic mapping were 

collected following standard procedures (e.g., Engel, Glover, & Wandell, 1997).  

 

 

Behavioural testing 

We employed an established orientation adaptation paradigm that is known to evoke an 

orientation repulsion aftereffect (e.g., Clifford, 2002; Larsson, Landy, & Heeger, 2006). We 

used a two-alternative forced-choice task and the method of constant stimuli. Participants were 

tested on two conditions: a) adaptation: sinewave gratings were presented repeatedly at the 

same orientation (-15º or +15º from vertical); b) non-adaptation: the orientation of the gratings 

varied based on uniform distributions ranging from -85º to 5º and +5º to +85º in steps of 7.27º, 

excluding vertical (i.e., 0º). Participants completed a minimum of two runs (2 participants) and 
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maximum of 4 runs (5 participants), each comprising 14 adaptation (7 blocks per orientation) 

and 14 non-adaptation blocks. Adaptation and non-adaptation blocks were presented in 

alternating order. 

For each block participants were exposed to 21 sample stimuli that were presented sequentially 

and were followed by a test stimulus (orientation randomly selected between ±5.3º from 

vertical). Each sample stimulus was displayed for 1300ms with an inter-stimulus interval of 

154ms. Each test stimulus was presented for 200ms. Participants were asked to report (by key 

press) whether the probe was oriented clockwise or anticlockwise with respect to vertical. 

During the presentation of the sample stimuli, participants performed the same RSVP task as 

during scanning. 

MRI acquisition 

Imaging data were acquired on a 7T Magnetom scanner (Siemens Medical System, Erlangen, 

Germany) at the Scannexus Imaging Centre, Maastricht, The Netherlands. Anatomical data 

were acquired using an MP2RAGE sequence (TR = 5s, TE = 2.51ms, FOV = 208 x 208mm, 

240 sagittal slices, 0.65 mm isotropic voxel resolution). 

For the main experiment (n=17), we used a 32-channel phased-array head coil (NOVA 

Medical, Wilmington, MA, USA) and a 2D Gradient Echo, Echo Planar Imaging (GE-EPI) 

sequence (TE = 25ms, TR = 2s, voxel size = 0.8 mm isotropic, FOV = 148 x 148 mm, number 

of slices = 56, partial Fourier = 6/8, GRAPPA factor = 3, Multi-Band factor = 2, bandwidth = 

1168 Hz/Pixel, echo spacing = 1ms, flip angle = 70º). The field of view covered occipito-

temporal and posterior parietal areas; manual shimming was performed prior to the acquisition 

of the functional data. 

For the control experiment (n=5), participants were scanned with a 3D inner-volume gradient 

and spin echo (GRASE) sequence with variable flip angles (Feinberg & Oshio, 1991; Kemper, 

De Martino, Yacoub, & Goebel, 2016). This sequence is largely based on a spin echo sequence 
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for which the measured T2-weighted BOLD signal has higher spatial specificity and is less 

confounded by large draining veins near the pial surface (e.g., Duong et al., 2003; Goense, 

Zappe, & Logothetis, 2007; Kemper et al., 2015; Uludaǧ, Müller-Bierl, & Uǧurbil, 2009). We 

used a custom-built surface-array coil (Sengupta et al., 2016) for enhanced SNR of high-

resolution imaging of visual cortex (TR = 2 s, TE = 35.41 ms, FOV = 128 x 24mm, number of 

slices = 12, echo-spacing = 1.01ms, total readout train time = 363.6, voxel size = 0.8 mm 

isotropic, 90º nominal excitation flip angle and variable refocussing flip angles ranging 

between 47º and 95º). The latter was used to exploit the slower decay of the stimulated echo 

pathway and hence to keep T2-decay-induced blurring in partition-encoding direction at a 

small, acceptable level, that is, comparable to the T2*-induced blurring in typical EPI 

acquisition protocols for functional imaging (Kemper et al., 2016).  

Behavioural Data Analysis 

The adaptation effect was measured by computing psychometric functions based on the 

participants’ responses to the test stimulus. The proportion of correct responses was plotted as 

a function of test orientation. Psignifit (MATLAB, Toolbox for Bayesian psychometric 

function estimation) was used to estimate the two best parameters (mean and standard 

deviation) defining the sigmoid fitting function. The mean parameter is a measure of the 

perceptual bias due to adaptation. For the RSVP task, we calculated the number of accurately 

detected targets across runs for the adaptation and non-adaptation conditions. 

MRI data analysis 

Segmentation and cortical depth sampling 

T1-weighted anatomical data was used for coregistration and 3D cortex reconstruction. Grey 

and white matter segmentation was performed on the MP2RAGE images using FreeSurfer 
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(http://surfer.nmr.mgh.harvard.edu/) and manually improved for the regions of interest (i.e., 

V1, V4, and IPS) using ITK-Snap (www.itksnap.org, Yushkevich et al., 2006). The refined 

segmentation was used to obtain a measurement of cortical thickness. Following previous 

studies, we assigned voxels in three layers (deeper, middle, superficial) using the equi-volume 

approach (Kemper, De Martino, Emmerling, Yacoub, & Goebel, 2018; Waehnert et al., 2014) 

as implemented in BrainVoyager (Brain Innovation, Maastricht, The Netherlands). This 

approach has been shown to reduce misclassification of voxels to layers, in particular for 

regions of interest presenting high curvature. Information from the cortical thickness map and 

gradient curvature was used to generate four grids at different cortical depths (ranging from 0, 

white matter, to 1, grey matter). Mapping of each voxel to a layer was obtained by computing 

the Euclidean distance of each grey matter voxel to the grids: the two closest grids represent 

the borders of the layer a voxel is assigned to (Figure 2).  

For the 3D GRASE control experiment, the same approach was used to obtain cortical layers. 

Here, we used the LAYNII tools (https://github.com/layerfMRI/LAYNII), as they provided 

better segmentation for images with a limited field of view. 

GE-EPI Functional data analysis 

The GE-EPI functional data were analysed using BrainVoyager (version 20.6, Brain 

Innovation, Maastricht, The Netherlands) and custom MATLAB (The MATHWORKS Inc., 

Natick, MA, USA) code. Preprocessing of the functional data involved three serial steps 

starting with correction of distortions due to non-zero off-resonance field; that is, at the 

beginning of each functional run, five volumes with inverted phase encoding direction were 

acquired and used to estimate a voxel displacement map that was subsequently applied to the 

functional data using COPE, BrainVoyager, Brain Innovation. The undistorted data underwent 

slice-timing correction, head motion correction (the single band image of each run was used as 

reference for the alignment), high-pass temporal filtering (using a GLM with Fourier basis set 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.14.947895doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.947895
http://creativecommons.org/licenses/by-nd/4.0/


 12 

at 2 cycles) and removal of linear trends. Preprocessed functional data were coaligned to the 

anatomical data using a boundary-based registration approach, as implemented in 

BrainVoyager (Brain Innovation, Maastricht, The Netherlands). Results were manually 

inspected and further adjusted where needed (Figure 2). To validate the alignment of functional 

to anatomical data, we calculated the mean EPI image of each functional run for each region 

of interest (ROI) and estimated the spatial correlation between these images (e.g., Marquardt, 

Schneider, Gulban, Ivanov, & Uludağ, 2018). We performed manual adjustment of the 

alignment if the spatial correlation was below 0.85. We excluded a small number of runs (n=3, 

n=1 for two participants respectively), as their alignment could not be improved manually.  

3D GRASE functional data analysis 

Functional images were analysed using BrainVoyager (version 21.0, Brain Innovation, 

Maastricht, The Netherlands), custom MATLAB (The MATHWORKS Inc., Natick, MA, 

USA) code, and Advanced Normalization Tools (ANTs, Avants et al., 2011) for images 

registration. The first volume of each run was removed to allow for the magnetisation to reach 

a steady state. Head motion correction was performed using as reference the first image (10 

volumes with TR=6s) acquired at the beginning of the functional runs. The higher contrast of 

this image facilitated the coregistration of the anatomical and functional images. After motion 

correction, temporal high-pass filtering was applied, using a GLM with Fourier basis set at 3 

cycles per run. Preprocessed images were converted into Nifti files and an initial manual 

registration was performed between the first image and the anatomical image using the manual 

registration tool provided in ITK-Snap (www.itksnap.org, Yushkevich et al., 2006). The 

resulting transformation matrix was applied to coregister the anatomical image to the functional 

space and fine-tuned adjustments were provided by means of antsRegistration tools.  

  

Regions of Interest (ROI) analysis. 
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We used the data from the retinotopic mapping scan to identify regions of interest. For each 

participant, we defined areas V1 to V4 based on standard phase-encoding methods. Participants 

viewed rotating wedges that created travelling waves of neural activity (e.g., Engel et al., 1997). 

Due to limited coverage during acquisition, area V4 was identified for 14 of the 15 participants. 

Intraparietal regions (comprising IPS1, and IPS2) were defined for each participant based on 

anatomical templates provided by Benson (https://hub.docker.com/r/nben/occipital_atlas/; 

Benson, Butt, Brainard, & Aguirre, 2014; Benson et al., 2012; Wang, Mruczek, Arcaro, & 

Kastner, 2015). This procedure uses the individual participant-based segmentation obtained 

with Freesurfer and an anatomical probabilistic template, to estimate the best location for the 

region of interest (i.e. IPS). Each IPS subregion was subsequently inspected to ensure 

consistent definition across participants.     

For each ROI and individual participant, we modelled BOLD signals using a GLM with two 

regressors, one per stimulus condition (adaptation, non-adaptation). We included estimated 

head motion parameters as nuisance regressors. The resulting t-statistical map was thresholded 

(t=1.64, p=0.10) to select voxels within each ROI that responded more strongly to the stimulus 

conditions compared to fixation baseline (Figure 2).  

Voxel selection within each ROI was further refined by excluding voxels that were 

confounded by vasculature effects that are known to contribute to a superficial bias in the 

measured BOLD signal; that is, increased BOLD with increasing distance from white matter 

(see Results: fMRI Adaptation at mesoscopic scale: correcting for vascular effects). In 

particular, it has been shown that the BOLD signal measured using GE-EPI, T2* weighted 

sequences is confounded by macro- and micro-vasculature signals (Uǧurbil, Toth, & Kim, 

2003; Uludaǧ et al., 2009; Yacoub, Van De Moortele, Shmuel, & Uǧurbil, 2005). The macro-

vasculature contribution is due to veins penetrating the grey matter and running through its 

thickness, as well as large pial veins situated along the surface of the grey matter (Duvernoy, 
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Delon, & Vannson, 1981). This results in increased sensitivity (i.e., strong BOLD effect) but 

decreased spatial specificity of the measured signal. The latter can be understood by the 

mechanics of draining veins carrying deoxygenated haemoglobin downstream from the true 

neuronal site of neural activation, leading to a response spatially biased towards the pial 

surface, an effect known as superficial bias.  

Here, we took the following approach to reduce superficial bias due to vasculature 

contributions. First, following previous work (Olman, Inati, & Heeger, 2007), we computed 

the temporal signal to noise ratio (tSNR) for each voxel in each ROI (V1, V4, IPS). We used 

this signal to identify voxels near large veins that are expected to have large variance and low 

intensity signal due to the local concentration of deoxygenated haemoglobin resulting in a short 

T2* decay time (i.e., dark intensity in a T2* weighted image). We identified voxels with low 

tSNR (mean tSNR across V1 and V4 smaller than 13.2 ± 2.43.), checked their correspondence 

with voxels of lower intensities on the T2* weighted images and removed these voxels from 

further analysis. Second, it has been shown that high t-values on a fMRI statistical map are 

likely to arise from large pial veins (Kashyap, Ivanov, Havlicek, Poser, & Uludağ, 2018; 

Polimeni, Fischl, Greve, & Wald, 2010). Therefore, voxels with low tSNR values or t-score 

values above the 90th percentile (mean t-score across V1 and V4 larger than t=12.92 ± 3.76.) 

of the t-score distribution obtained by the GLM described above, were removed from further 

analysis. 

 Further to account for possible differences in signal strength across cortical layers due 

to thermal and physiological noise, as well as signal gain (Goense, Merkle, & Logothetis, 2012; 

Havlicek & Uludağ, 2020), we a) matched the number of voxels across layers (i.e. to the layer 

with the lowest number of voxels) per participant and ROI, and b) z-scored the time courses 

within cortical layer per ROI, controlling for differences in signal levels across layers while 

preserving signal differences across conditions (after correction of vascular contributions, e.g. 
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Lawrence, Norris, & De Lange, 2019). Normalised fMRI responses for each condition 

(adaptation, non-adaptation) were averaged across the stimulus presentation (excluding 

participant responses; 32 - 34s after stimulus onset), blocks, and runs for each condition. For 

visual cortex ROIs we focused on the time window that captured the peak of the haemodynamic 

response to visual stimulus presentation (4 to 18s after stimulus onset). We conducted repeated 

measures ANOVAs to test for significant differences between conditions (adaptation, non-

adaptation), cortical depth (deeper, middle, superficial layers) and ROIs (V1, V4, IPS1, IPS2). 

Pairwise t-test comparisons were used as post-hoc tests. 
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 Functional Connectivity analysis 

We followed standard analyses methods to compute functional connectivity across ROIs and 

layers.  We pre-processed the functional and anatomical data in SPM12.3 (v6906; 
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http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We first performed brain extraction and 

normalisation to MNI space on the anatomical images (non-linear). The functional images were 

then corrected for distortions, slice-scan timing (i.e. to remove time shifts in slice acquisition), 

head motion (i.e. aligned each run to its single band reference image), coregistered all EPI runs 

to the first run (rigid body), coregistered the first EPI run to the anatomical image (rigid body) 

and normalised to MNI space (applying the deformation field of the anatomical images). Data 

were only resliced after MNI normalisation to minimize the number of interpolation steps. 

Next, we used an ICA-based denoising procedure (Griffanti et al., 2014). We applied 

spatial smoothing (2mm) and linear detrending, followed by spatial group ICA. The latter was 

performed using the Group ICA fMRI Toolbox (GIFT v3.0b) 

(http://mialab.mrn.org/software/gift/). Principal Component Analysis (PCA) was applied for 

dimensionality reduction, first at the subject level, then at the group level. A fixed number 

(n=35) of independent components was selected for the ICA estimation. The ICA estimation 

(Infomax) was run 20 times and the component stability was estimated using ICASSO 

(Himberg, Hyvärinen, & Esposito, 2004). Group Information Guided ICA (GIG-ICA) back-

reconstruction was used to reconstruct subject-specific components from the group ICA 

components (Du et al., 2016). The results were visually inspected to identify noise components 

according to published procedures (Griffanti et al., 2017). We labelled 12 of the 35 components 

as noise that captured signal from veins, arteries, CSF pulsation, susceptibility and multi-band 

artefacts. 

To clean the fMRI signals from signals related to motion and the noise components, we 

followed the soft cleanup approach (Griffanti et al., 2014) on the BrainVoyager unsmoothed 

data in native space (see GE-EPI Functional data analysis). That is, we first regressed out the 

motion parameters (translation, rotation and their squares and derivatives; Friston, Holmes, 

Poline, Price, & Frith, 1996) from each voxel and ICA component time course. Second, we 
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estimated the contribution of every ICA component to each voxel’s time course (multiple 

regression). Finally, we subtracted the unique contribution of the noise components from each 

voxel’s time course to avoid removing any shared signal between neuronal and noise 

components. 

Further, following recent work (Cole et al., 2019), we deconvolved the denoised time 

courses using Finite Impulse Response functions (FIR). In particular, we fitted 23 regressors 

per condition that covered the duration of each task block, including the response period and 

fixation block, to capture the whole hemodynamic response. This method allows us to 

accurately model and remove the cross-block mean response for each condition (adaptation, 

non-adaptation) to account for potential task-timing confounds that have been shown to inflate 

the strength of the computed task-based functional connectivity. Within the GLM, the data 

were high-pass filtered at 0.01Hz and treated for serial autocorrelations using the FAST 

autoregressive model (Corbin, Todd, Friston, & Callaghan, 2018; Olszowy, Aston, Rua, & 

Williams, 2019). For each ROI and layer, we then computed the first eigenvariate across all 

voxels within the region to derive a single representative time course per layer and ROI for 

connectivity analysis. We computed functional connectivity as the Pearson correlation between 

the eigenvariate time courses across ROIs and layers. Finally, we performed a paired t-test on 

the functional connectivity values (after Fisher z-transform) to test for significant differences 

in connectivity between conditions (adaptation, non-adaptation). 

 

Results 

fMRI Adaptation in visual cortex 

We tested for fMRI adaptation in visual cortex due to stimulus repetition by comparing fMRI 

responses (i.e. percent signal change from fixation baseline) for the adaptation condition (i.e. 
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the same oriented sinewave grating presented repeatedly within a block), vs. non-adaptation 

condition (i.e. gratings of varying orientation presented in a block). Consistent with previous 

studies (Fang, Murray, Kersten, & He, 2005; Larsson et al., 2006) we observed decreased fMRI 

responses for the adaptation compared to the non-adaptation condition across visual areas 

(Figure 3). In particular, a repeated measures ANOVA for condition (adaptation, non-

adaptation) and ROI (V1, V2, V3, V4) showed a significant main effect of ROI (F(3,39)=9.437, 

p<0.01) and condition (F(1,13)=10.525, p<0.01), but no significant interaction (F(3,39)=2.126, 

p=0.138). 

During scanning, participants performed a RSVP task to ensure that they attended similarly in 

the adaptation and non-adaptation condition (Larsson et al., 2006). That is, participants were 

asked to detect a target from a stream of letters presented in the centre of the screen. The mean 

performance across participants for the RSVP task (adaptation condition: 62.7% ±0.3%; non-

adaptation condition 60.15% ±0.4%, SEM) did not differ significantly between conditions 

(t(12)=0.312, p=0.76). Thus, it is unlikely that the fMRI adaptation we observed was due to 

differences in attention across conditions, as the RSVP task was similarly difficult across 

conditions.  
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A subset of the participants (n=7) that participated in the fMRI experiment were also tested on 

a behavioural adaptation task outside the scanner. We used an established tilt aftereffect (TAE) 

paradigm based on a two-alternative forced choice task (Larsson et al., 2006).  In particular, 

we tested for a shift in the perceived orientation of a probe stimulus following adaptation (i.e. 

exposure to the same oriented grating for a prolonged period). Figure S1 shows a significant 

shift (t(6) = 5.048, p<0.01) in perceived orientation after adaptation to (a) a leftward orientated 

grating (μ=-1.78º) and (b) a rightward orientated grating (μ=2.07º) compared to (c) non-

adaptation (μ=-0.04º). Considering the fMRI data for this subset of participants (Figure S1) 

showed a significant decrease in BOLD signal for adaptation compared to non-adaptation 

condition (main effect of condition: F(1,5)=6.786, p<0.05) across visual areas (i.e. no 

significant interaction between condition and ROI: F(3,15)=0.303, p=0.746), consistent with 

their behavioural adaptation effect. 
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fMRI Adaptation at mesoscopic scale: correcting for vascular contribution 

We next tested for fMRI adaptation at a finer, mesoscopic scale. Before proceeding with the 

analysis of BOLD signals across cortical layers (deeper, middle, superficial), we treated the 

data for vascular confounds (see Methods: Regions Of Interest (ROI) Analysis). In particular, 

Figure 4 shows that the superficial bias is evident in our GE-EPI acquired BOLD data. That is, 

the BOLD signal increased with increasing voxel distance from the white matter boundary. 

However, following removal of voxels with high temporal signal to noise and high t-statistic 

for stimulation contrast, the magnitude and variance of the GE-EPI BOLD signal from voxels 

closer to the pial surface were reduced. We observed a significant interaction between GE-EPI 

acquired BOLD signal from different cortical depths (deeper, middle, superficial) before vs. 

after correction (F(2,28)=58.556, p<0.001). That is, the superficial bias correction we 

employed resulted in decreased BOLD signal across cortical layers, mainly in middle and 

superficial layers as indicated by post-hoc comparisons (middle: t=7.992, p<0.05; superficial: 

t=11.241, p<0.05). 

As an additional control, we scanned a subset of participants (n=5) with a 3D GRASE sequence 

that is known to be sensitive to signals from small vessels and less affected by larger veins, 

resulting in higher spatial specificity of the measured BOLD signal (e.g., De Martino et al., 

2013; Kemper et al., 2015). Consistent with previous studies (De Martino et al., 2013), the 3D 

GRASE data showed: a) overall lower BOLD signal in V1 compared to the GE-EPI acquired 

BOLD data and b) similar BOLD amplitude across V1 cortical depths. Figure 4 shows that the 

corrected GE-EPI BOLD signal in V1 follows a similar pattern across V1 cortical depth as the 

3D GRASE BOLD. In particular there were no significant differences in BOLD acquired with 

3D GRASE vs. the corrected GE-EPI BOLD signal across cortical depths (i.e. no significant 

sequence x cortical layers interaction: F(2,6)=2.878, p=0.187). These results suggest that our 
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method for correcting vascular effects in BOLD reduced substantially the superficial bias 

observed in GE-EPI measurements. 

 

 

fMRI Adaptation in visual areas across cortical depths 

We tested for fMRI adaptation (i.e. differences in fMRI responses between adaptation vs. non-

adaptation) across cortical depths comprising deeper, middle, and superficial layers. Previous 

studies have suggested that comparison of BOLD signals across layers is limited by differences 

in thermal and physiological noise as well as signal gain (Goense, Merkle, & Logothetis, 2012; 

Havlicek & Uludağ, 2020). To control for these possible confounds when comparing BOLD 

signals between conditions (adaptation vs. non-adaptation) and across cortical depths, we a) 

corrected for vasculature contributions (i.e. removing voxels with high temporal signal to noise 

and high t-statistic for stimulation contrast), b) matched the number of voxels across layers for 

each participant and ROI, c) ensured that the mean BOLD signal for stimulus vs. fixation was 
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similar across layers (i.e. for V1: superficial 1.10±0.11, middle: 1.06±0.06, deeper: 1.12±0.06), 

and d) z-scored the laminar-specific time courses to control for differences in variance across 

layers, while preserving condition-dependent differences within each cortical layer.  

We focused on two visual areas representing early (V1) and later (V4) stages of visual 

processing. Our results showed fMRI adaptation across cortical layers and visual areas with 

stronger fMRI adaptation in superficial than middle and deeper layers (Figure 5A). In 

particular, a repeated measures ANOVA showed significant main effects of ROI (V1 vs. V4: 

F(1,14)=30.922, p<0.001) and condition (adaptation vs. non-adaptation: F(1,14)=8.180, 

p<0.05), a significant interaction between ROI and condition (F(2,28)=5.157, p<0.05), as well 

as between condition and cortical layer (F(2,28)=8.594, p<0.01). Post-hoc comparisons 

showed that the fMRI adaptation effect was significant across all cortical layers (deeper: 

t(14)=-2.672, p<0.05; middle: t(14)=-3.070, p<0.01; superficial: t(14)=-3.502, p<0.01). We 

observed no significant interaction (F(2,26)=0.958, p=0.375) between ROI (V1, V4), condition 

(adaptation, non-adaptation), and cortical layer (deeper, middle, superficial).  

A similar pattern of results was observed when we controlled for signal contribution 

from voxels at the border of adjacent layers, using a spatial regression analysis (Kok, Bains, 

Van Mourik, Norris, & De Lange, 2016; Koster, Chadwick, Chen, Hassabis, & Kumaran, 2018; 

Markuerkiaga, Barth, & Norris, 2016). To unmix the signal, we regressed out the time course 

of voxels assigned to middle layers and adjacent to the superficial layers from the time course 

of voxels assigned to superficial layers. We applied the same approach to voxels assigned to 

the deeper layers and adjacent to the middle layers. Following this correction, we observed a 

significant interaction between condition and cortical layer (F(2,28)=8.603, p<0.01), 

suggesting that the layer-specific fMRI adaptation we observed could not be due to BOLD 

signal in voxels adjacent to the layer boundaries. Post-hoc comparisons showed significantly 
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decreased fMRI responses in deeper (t(14)=-2.633, p<0.05), middle (t(14)=-3.039, p<0.01), 

and superficial (t(14)=-3.444, p<0.01) cortical layers. 

To further quantify fMRI adaptation effects, we computed an fMRI adaptation index 

(i.e. fMRI responses for non-adaptation minus adaptation) per layer and ROI (Figure 5B). A 

repeated-measures ANOVA on this index showed a significant main effect of cortical layer 

(F(2,26)=8.594, p<0.01), and of ROI (F(1,13)=5.157, p<0.05), but no significant interaction 

between ROI and cortical layer (F(2,26)=0.923, p=0.387). Post-hoc comparisons showed 

significantly stronger fMRI adaptation in superficial compared to middle (t(14)=2.433, p<0.05) 

and deeper cortical layers (t(14)=3.155, p<0.01). The same pattern of results was observed after 

unmixing of the signal across cortical layers (main effect of cortical layer: F(2,26)= 8.603, 

p<0.01) and ROI: F(1,13)=5.159, p<0.05).  

Finally, we observed similar fMRI adaptation patterns across cortical layers for the data 

collected with 3D GRASE (Figure S2), suggesting that the fMRI adaptation effects we 

observed in superficial layers could not be simply attributed to superficial bias effects. Taken 

together our results demonstrate fMRI adaptation across layers in visual cortex with stronger 

effects in superficial than middle and deeper layers, suggesting that adaptation alters local 

recurrent processing of read-out signals from superficial layers rather than the processing of 

input signals in middle layers.  
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fMRI Adaptation beyond the visual cortex  

We next tested for adaptive processing in posterior parietal cortex regions (IPS1, IPS2 Benson 

et al., 2014, 2012; Wang et al., 2015) that have been shown to be involved in processing 

expectation due to stimulus familiarity (de Lange et al., 2018; Garrido et al., 2009; Li et al., 

2010; Summerfield & De Lange, 2014). We observed fMRI adaptation across cortical layers 

in IPS1 and IPS2 (i.e. significantly decreased responses for adaptation than non-adaptation, 

Figure 6). In particular, a repeated measures ANOVA with condition (adaptation, non-
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Figure 5 - Laminar BOLD and Adaptation Index for V1, V4
(A) Mean BOLD in V1 and V4 cortical layers. Bar plots show z-scored BOLD signal for adaptation (grey)
and non-adaptation (white) conditions across cortical layers of V1 (left) and V4 (right). Error bars indicate
standard error of the mean across participants (N=15 for V1; N=14 for V4).
(B) fMRI adaptation index (z-scored BOLD for non-adaptation minus adaptation) across cortical layers
(D, deeper; M, middle; S, superficial) for V1 and V4. Bar plots show difference in fMRI response
between the non-adaptation and the adaptation conditions.
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adaptation) and cortical layer (deeper, middle, superficial) showed a main effect of condition 

(F(1,13)=6.640, p<0.05), but no significant interactions between condition and cortical layers 

(F(2,26)=0.720, p=0.448), nor between ROI, condition, and cortical layer (F(2,26)=1.507, 

p=0.243). Spatial regression analysis as performed for visual ROIs (V1, V4) showed similar 

pattern of results (main effect of condition: F(1,13)=6.595, p<0.05).  

 

Functional Connectivity 

Ultra-high field fMRI allows us to interrogate the finer functional connectivity across areas 

based on known anatomical models of connectivity across cortical layers. Recent work (for 

review: Lawrence, Formisano, Muckli, & de Lange, 2019) has proposed that anatomical 

connections between V1 superficial layers and middle layers of higher areas relate to 

feedforward processing, while anatomical connections between V1 deeper layers and deeper 
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layers of higher areas relate to feedback processing. We tested these circuits of anatomical 

connectivity to discern feedforward vs. feedback processing for orientation-specific adaptation 

(Figure 7A). We did not test anatomical connections between V1 superficial layers and deeper 

layers of higher areas, as they are known to relate to both feedback and feedforward processing.  

We used ICA-based denoising and Finite Impulse Response functions (FIR) to denoise 

and deconvolve the time course data per layer, controlling for noise and potential task-timing 

confounds. Comparing functional connectivity (i.e. Pearson correlation between the 

eigenvariate time courses) within visual cortex (between V1 and V4) and between visual and 

posterior parietal cortex (between V1 and IPS) showed dissociable results. That is, stronger 

functional connectivity for adaptation was observed for feedforward connections within visual 

cortex (i.e. V1 superficial and V4 middle layers), while stronger functional connectivity for 

adaptation between visual and posterior parietal cortex was observed for feedback connections 

(i.e. V1 deeper layers and IPS). A repeated measures ANOVA showed a significant three-way 

interaction (F(2,26)=5.089, p<0.05) between circuit (V1-V4, V1-IPS1, V1-IPS2), connectivity 

(feedforward, feedback), and condition (adaptation, non-adaptation). 

In particular, for functional connectivity between V1 and V4 layers, our results showed 

significantly higher functional connectivity between V1 superficial layers and V4 middle layers 

for the adaptation compared to the non-adaptation condition (t(13)=3.03, p<0.01), suggesting 

enhanced feedforward processing for adaptation within visual cortex (Figure 7B). In contrast, 

no significant differences between conditions were observed in functional connectivity 

between V1 deeper layers and V4 deeper layers, that is known to relate to feedback processing 

(t(13)=0.98, p=0.351).  

For functional connectivity between V1 and posterior parietal cortex, we tested 

differences in connectivity between V1 layers and IPS subregions (IPS1, IPS2) as there were 

no significant differences in fMRI adaptation across IPS layers (F(2,28)=0.542, p=0.493). Our 
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results showed significantly higher functional connectivity between V1 deeper layers and IPS1 

for the adaptation compared to the non-adaptation condition (t(14)=2.15, p<0.05). This result 

is consistent with fMRI adaptation in V1 deeper layers (t(14)=3.33, p<0.01) and suggests 

enhanced feedback processing for visual adaptation. In contrast, no significant differences in 

functional connectivity between V1 superficial layers and IPS1 (i.e. functional connectivity 

related to feedforward processing) were observed between conditions (t(14)=0.7313, p=0.477). 

Further, no significant differences in functional connectivity between conditions were observed 

between V1 and IPS2 (V1 deeper layers and IPS2: t(14)=1.12, p=0.281; V1 superficial layers 

and IPS2: t(14)=0.551, p=0.59). 

Finally, we didn’t observe any significant differences in connectivity between V4 and 

IPS1 nor IPS2 across conditions (V4 deeper layers and IPS1: t(13)=-0.370, p=0.717; V4 

superficial layers and IPS1: t(13)=1.053, p=0.311; V4 deeper layers and IPS2: t(13)=-0.389, 

p=0.703; V4 superficial layers and IPS2: t(13)=0.366, p=0.72). 
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Discussion 

We provide evidence for the fine-scale human brain circuits that mediate adaptive processing 

within and beyond visual cortex, by capitalising on the unique advantages of ultra-high field 

imaging for the non-invasive study of the human brain at high spatial resolution. In particular, 

UHF laminar imaging allows us to interrogate adaptive processing across cortical depth at a 

finer scale than afforded by standard fMRI methods and discern feedforward from feedback 

mechanisms. Our results advance our understanding of the brain mechanisms that mediate 

adaptive processing in the following main respects. First, visual adaptation is implemented by 

suppressive local recurrent processing of signals across layers within visual cortex, as indicated 

by fMRI adaptation (i.e. BOLD decrease due to stimulus repetition) across layers with stronger 

effects in superficial than middle and deeper layers. Second visual adaptation extends beyond 

the visual cortex, as indicated by decreased BOLD across layers in posterior parietal cortex. 

Third, dissociable connectivity mechanisms mediate adaptive processing: feedforward 

connectivity within the visual cortex that may relate to inherited adaptation from early to higher 

visual areas (e.g., Larsson et al., 2016; Solomon & Kohn, 2014), while feedback connectivity 

from posterior parietal to visual cortex, reflecting top-down influences (i.e. expectation of 

repeated stimuli) on visual processing.  

Specifically, our findings provide novel insights into mesoscopic scale circuits that 

mediate adaptive processing that are consistent with the known anatomical organisation of 

cortical circuits (Douglas & Martin, 2007). In particular, sensory inputs are known to enter the 

cortex at the level of the granular layer (middle layer 4) and output information is fed forward 

through the supragranular layer (superficial layer 2/3). In contrast, feedback information is 

thought to be exchanged mainly between infragranular layers (deep layer 5/6) (M. Larkum, 

2013; Markov et al., 2014). Neurophysiological studies have shown that this micro-circuit is 

involved in a range of visual recognition (Self, van Kerkoerle, Supèr, & Roelfsema, 2013; Van 
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Kerkoerle et al., 2014), and attention (Buffalo, Fries, Landman, Buschman, & Desimone, 2011) 

tasks. Further, recent laminar fMRI studies provide evidence for the involvement of this circuit 

in the context of sensory processing (De Martino et al., 2015) and visual attention (Fracasso, 

Petridou, & Dumoulin, 2016; Lawrence, Norris, et al., 2019; Scheeringa, Koopmans, Van 

Mourik, Jensen, & Norris, 2016). 

Our results show fMRI adaptation across layers in visual cortex with stronger 

adaptation in superficial than middle and deeper layers. These signals are then read out by 

higher visual areas, as indicated by increased functional connectivity between V1 and V4. 

These orientation-specific fMRI adaptation effects suggest that adaptation alters the processing 

of read-out signals in superficial layers rather than input signals in middle layers. These results 

are consistent with previous neurophysiological studies showing that sensory adaptation is a 

fast form of plasticity (Gutnisky & Dragoi, 2008; Whitmire & Stanley, 2016; Xiang & Brown, 

1998) and brain imaging studies showing that adapted BOLD responses in higher visual areas 

are inherited from downstream processing in V1 (Ashida, Kuriki, Murakami, Hisakata, & 

Kitaoka, 2012; Larsson et al., 2016).  

A possible mechanism by which orientation-specific adaptation is implemented in 

visual cortex is via recurrent processing of signals across V1 columns (Self et al., 2013). 

Horizontal connections across V1 columns are known to mediate iso-orientation inhibition 

(Malach, Amir, Harel, & Grinvald, 1993); that is suppression of neurons that are selective for 

the same orientation across columns. Iso-orientation inhibition is shown to be more pronounced 

in superficial layers and support orientation tuning (Rockland & Pandya, 1979). In particular, 

previous work has shown that horizontal connections between V1 columns primarily terminate 

in middle and superficial layers (Rockland & Pandya, 1979) and pyramidal cells in superficial 

layers make extensive arborisations within the same layer (Douglas & Martin, 2007). 

Consistent with this interpretation, previous neurophysiological studies have shown stronger 
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decrease in neural population responses due to stimulus repetition in superficial layers of V1, 

while delayed adaptation effects in middle and deeper levels (Westerberg, Cox, Dougherty, & 

Maier, 2019). The neural connectivity within superficial V1 layers (layer 2/3) has been also 

shown to be rapidly and dynamically modulated by sensory adaptation (Hansen & Dragoi, 

2011). In particular, before exposure to prolonged stimulus presentation, neurons tuned to the 

same orientation were shown to be strongly connected (i.e. cross-correlation between pairs of 

neurons). However, after adapting to a non-preferred orientation, stronger connectivity was 

observed between neurons tuned to the adapted orientation.  

An alternative explanation is that layer-specific BOLD effects in superficial layers 

reflect feedback processing (e.g. Gau, Bazin, Trampel, Turner, & Noppeney, 2020; Muckli et 

al., 2015). Previous work has shown that synaptic input to superficial layers may result due to 

increase in feedback signals carried by neurons that have dendrites projecting to the superficial 

layers and their cell bodies in deeper layers (Larkum, 2013). Our results showing fMRI 

adaptation in deeper layers in primary visual cortex and increased functional connectivity 

between IPS and deeper V1 layers suggest that long-range feedback from the posterior parietal 

cortex contributes to adaptive processing in V1, consistent with the role of parietal cortex in 

expectation and prediction due to stimulus repetition. Recent fMRI studies focusing on higher 

visual areas have investigated the role of expectation in repetition suppression that– similarly 

to sensory adaptation for simple stimulus features in V1– is characterized by decreased BOLD 

responses to more complex stimuli (i.e. faces, objects) in higher visual areas (Grill-Spector et 

al., 2006). In particular, Summerfield et al., (2008) showed stronger repetition suppression in 

the lateral occipito-temporal cortex for identical stimulus pairs that were repeated frequently, 

providing evidence for a role of top-down influences (i.e. expectation) in repetition suppression 

and visual processing. Previous studies suggest a key role of intraparietal cortex in expectation 
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and novelty detection (de Lange et al., 2018; Garrido et al., 2009; Li et al., 2010; Summerfield 

& De Lange, 2014).  

A possible framework for linking adaptive processing within visual cortex and feedback 

repetition suppression mechanisms due to expectation is proposed by the predictive coding 

theory (Friston, 2005; Rao & Ballard, 1999; Shipp, 2016). According to this framework, 

perception results from comparing feedback expectation and prediction signals in upstream 

regions with feedforward signals in sensory areas. When these signals match, the error (i.e., the 

difference between the prediction fed back and the incoming sensory input) is low; in contrast, 

when the expectation does not match with the sensory input, the prediction error is high 

resulting in increased neural responses for unexpected compared to expected (i.e. repeated 

stimuli). Bastos et al., (2012) have proposed a microcircuit model of predictive coding that 

combines excitatory and inhibitory properties of pyramidal neurons across cortical layers to 

account for prediction encoding, prediction errors, and modulation of incoming sensory inputs 

to minimise prediction error. Considering our findings in light of this model provides insights 

in understanding the micro-circuit underlying adaptive processing in the human brain. In 

particular, it is likely that long-range top-down information (e.g. expectation signals from 

posterior parietal cortex) is fed back to the deeper layers of V1 and it is then compared with 

information available at the superficial layers. A mis-match (i.e. prediction error) of signals 

(i.e. expectation of a repeated stimulus compared to the presentation of an unexpected stimulus) 

results in decreased fMRI responses for expected compared to unexpected stimuli in deeper 

layers of visual cortex. This is consistent with a previous laminar imaging study (Kok et al., 

2016) showing fMRI responses in deeper V1 layers for the perception of illusory contours and 

suggesting top-down influences in visual processing. 

Finally, despite the advances afforded by UHF imaging, GE-EPI remains limited by 

vasculature contribution to BOLD signals at the cortical surface resulting in loss of spatial 
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specificity (Kay et al., 2019). Here, we combined several approaches to reduce this superficial 

bias by removing voxels with high temporal signal to noise ratio (Olman et al., 2007) and high 

t-statistic for stimulation contrast (Kashyap et al., 2018; Polimeni et al., 2010). Further, we 

applied a signal unmixing method (Kok et al., 2016; Koster et al., 2018) to control for draining 

vein effects from deep to middle and middle to superficial layers. We compared BOLD signals 

across conditions (adaptation vs. non-adaptation) and layers after z-scoring the signals within 

each layer to account for possible differences in signal strength across layers (Goense, Merkle, 

& Logothetis, 2012; Havlicek & Uludağ, 2020). Following these corrections, we observed 

stronger fMRI adaptation (i.e. stronger BOLD response for non-adapted than adapted stimuli) 

in superficial layers, suggesting that our results are unlikely to be significantly confounded by 

venous artefacts. In addition, we corroborated our fMRI adaptation results in superficial layers 

using a 3D GRASE sequence that measures BOLD signals that are less affected by macro-

vascular contribution. Our findings on orientation-specific adaptation in superficial layers are 

consistent with previous laminar imaging studies showing BOLD effects in superficial layers 

in a range of tasks (De Martino et al., 2015; Olman et al., 2012). Recent advances in cerebral 

blood volume (CBV) imaging using vascular space occupancy (VASO) (e.g., Beckett et al., 

2019; Huber, Uludağ, & Möller, 2019) could be exploited in future studies to enhance the 

spatial specificity of laminar imaging in the human brain. 

In sum, exploiting UHF imaging, we provide evidence that adaptive processing in the 

human brain engages a circuit that integrates processing within visual cortex with top-down 

influences (i.e. stimulus expectation) from posterior parietal cortex via feedback mechanisms. 

Combining laminar imaging with electrophysiological recordings has the potential to shed 

more light in this circuit, consistent with recent evidence (Buffalo et al., 2011; Self et al., 2013; 

Van Kerkoerle et al., 2014) that gamma oscillations are linked to feedforward processing in 

input layers, while alpha/beta oscillations are related to feedback mechanisms in superficial 
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and deeper cortical layers. Finally, understanding the interactions between excitatory and 

inhibitory connectivity is the next key challenge for deciphering the fast brain plasticity 

mechanisms that support adaptive behaviour in our interactions in complex and dynamic 

environments.  
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Figure S1 - Behavioural and BOLD results
(A) Mean behavioural performance (accuracy) across participants (N=7): psychometric functions
were fitted to the participants' responses to the test stimuli. Open circles represent non-adaptation
data points, grey circles show data points for adaptation to stimulus with anti- and clockwise
orientations from vertical. Solid line indicates fitting of the non-adaptation condition, dashed
lines for the adaptation conditions. Perceptual bias due to adaptation is indicated by performance
at the vertical orientation (0 deg). The fitted data curves for the adaptation (to anti- and clockwise
orientations), are shifted to the left and right of the fitted data curve for the non-adaptation condition,
respectively, indicating perceptual bias away from the vertical orientation for the adaptation condition.
(B) BOLD percent signal change in early visual cortex. Bar plot shows mean BOLD (i.e., percent
signal change from fixation baseline) for the two experimental conditions (adaptation in grey, non-
adaptation in white) for the subset of participants (N=7) that completed the behavioural task.
Significant decreased BOLD for the adaptation compared to the non-adaptation condition was
observed across visual areas (V1, V2, V3, and V4). Error bars indicate standard error of the mean
across participants.
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Figure S2 - BOLD percent signal change in V1 measured with 3D GRASE
(A) Mean BOLD (i.e., percent signal change from fixation baseline) measured with 3D GRASE for the
adaptation (grey) and non-adaptation (white) conditions across cortical layers in V1. A decrease in BOLD
signal for the adaptation, compared to the non-adaptation condition can be observed across cortical layers.
This effect is not statistically significant due to the small sample size (N=4).
(B) Correlation of orientation-specific fMRI adaptation for the subset of participants scanned with both
GE-EPI and 3D GRASE sequences (N=4) across cortical layers. Individual dots indicate fMRI adaptation
index, computed as the difference in fMRI response for the non-adaptation and the adaptation conditions,
for each participant and run (Nruns=5 for 1 participant, Nruns=6 for 1 participant, Nruns=8 for the remaining 2
participants) for GE-EPI (y-axis) and 3D GRASE (x-axis) sequences. Black dashed lines indicate correlation
between GE-EPI and 3D GRASE fMRI-adaptation index, stronger in superficial (r=0.535, p=0.004) and
middle (r=0.505, p=0.007), than deeper (r=0.468, p=0.014) layers. This correspondence of results across
sequences suggests that our results, showing stronger fMRI adaptation in superficial than middle and deeper
layers, could not be simply due to vasculature confounds.
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