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Abstract  37 

Background: 38 

Tourette syndrome is a neurodevelopmental disorder with the clinical hallmarks of motor and phonic 39 

tics which are associated with hyperactivity in dopaminergic networks. Dopaminergic hyperactivity in 40 

the basal ganglia has previously been linked to increased sensitivity to positive reinforcement and 41 

increases in choice impulsivity. 42 

Objective:  43 

We address whether this extends to changes in temporal discounting, where impulsivity is 44 

operationalized as an increased preference to choose smaller-but-sooner over larger-but-later rewards. 45 

Results are discussed with respect to neural models of temporal discounting, dopaminergic alterations 46 

in Tourette syndrome and the developmental trajectory of temporal discounting. 47 

Methods: 48 

In the first study we included nineteen adolescent patients with Tourette syndrome and nineteen age- 49 

and education matched controls. In the second study, we compared twenty-five adult patients with 50 

Tourette syndrome and twenty-five age- and education-matched controls.  51 

Results: 52 

In the light of the dopaminergic hyperactivity model, we predicted differences in temporal discounting 53 

in patients with Tourette syndrome. However, computational modeling of choice behavior using 54 

hierarchical Bayesian parameter estimation revealed reduced impulsive choice in adolescent patients, 55 

and no group differences in adults.  56 

Conclusion: 57 

We speculate that adolescents might show reduced discounting due to improved inhibitory functions 58 

that also affect choice impulsivity and/or the developmental trajectory of executive control functions. 59 

The absence of an effect in adults might be due to differences in the clinical population (e.g. patients 60 

who acquired successful tic inhibition during adolescence might have gone into remission). Future 61 

studies would benefit from adopting longitudinal approaches to further elucidate the developmental 62 

trajectory of these effects. 63 

 64 

 65 

 66 

 67 
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1. Introduction  68 

Tourette syndrome (TS) is a childhood onset neuropsychiatric disorder characterized by motor and 69 

phonic tics that wax and wane in their severity with an estimated prevalence of around 1 % (1). Motor 70 

tics are repetitive, sudden movements such as eye blinking or facial muscle contractions and phonic tics 71 

are repetitive sounds such as throat clearing or verbal utterances (1,2). TS onset occurs predominantly 72 

in early childhood with a peak of symptom severity between the age of 10 and 12 years. Thereafter, tics 73 

improve in around 80 % of children until the end of adolescence (3,4). TS is associated with high 74 

comorbidity rates, predominantly attention-deficit/hyperactive disorder (ADHD), obsessive-compulsive 75 

disorder (OCD), depression (5) and impulse control disorders such as self-injurious behavior (6). Studies 76 

estimate that only 8 to 37 % of patients with TS do not exhibit any comorbidity (1,5,7). Treatment 77 

possibilities include cognitive behavioral therapy (i.e. habit reversal training) (8), antidopaminergic 78 

drugs (9) and new experimental approaches including cannabinoids (10) and deep brain stimulation 79 

(11,12).  80 

Both clinical and neuroscientific research have highlighted possible developmental dysfunctions in the 81 

cortico-striatal-thalamo-cortical loops (13–15) especially with respect to dopamine (DA) that strongly 82 

modulates these circuits (16,17). The striatum, a main gateway in these loops (18) plays a key role in 83 

selectively amplifying converging sensory input to enable situation specific behavioral adaptations such 84 

as the adequate control of voluntarily movement (16). Predictions (i.e. expectations) of reward as well 85 

as the gating of specific motor responses are under dopaminergic modulation. Theories about the 86 

developmental underpinnings of TS in terms of DA function range from theoretical assumptions about 87 

a supersensitivity of striatal DA receptors (19) over tonic-phasic or presynaptic DA dysfunction (20–88 

22) to DA hyperinnervation (20,23). Whereas the latter (i.e. excessive innervation of the basal ganglia 89 

via dendrites of midbrain DA neurons) may account for a range of empirical observations, including 90 

those, that led to the establishment of earlier hypotheses mentioned above (see 24). 91 

To date several studies have investigated motor impulsivity in patients with TS with reference to DA´s 92 

role in reward and motor control (25,26). However, fewer studies have explored alterations in value-93 

based decision-making in TS. However, this question is of particular interest because motor and choice 94 

impulsivity might at least in part be supported by common neural systems. First, DA in fronto-striatal 95 

circuits plays a role in both motor control (27,28) and choice impulsivity (29–33). Second, some studies 96 

have suggested that lateral prefrontal cortex regions might support impulse control functions, both in 97 

motor and non-motor domains (34–39). Two studies (40,41) examined impairments in value-based 98 

decision-making in TS in the context of reinforcement learning tasks. Palminteri and Pessiglione (2018) 99 

observed impaired learning from negative feedback in TS, which is consistent with the idea of a 100 

hyperdopaminergic state. Kéri and colleagues observed impaired probabilistic classification learning, 101 

especially in children with severe tics (41). However, whether choice impulsivity is impaired in TS 102 

remains an open question. 103 
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One way to reliably assess reward impulsivity (choice impulsivity) is via temporal discounting tasks 104 

(42–46). Temporal discounting describes a general preference for smaller sooner (SS) over larger, but 105 

later rewards (LL) (47). A relative preference for SS rewards (steep discounting of value over time) is 106 

associated with a range of problematic behaviors including substance use disorders and 107 

overweight/obesity (48) but also the tendency to procrastinate to invest for retirement (49) or to 108 

procrastinate to save up for future investments (50). The rate of temporal discounting is under complex 109 

modulation by individual and contextual variables (51–53), whereas striatal DA networks and prefrontal 110 

top down modulation seem to be the key regions of interest. However, the precise relationship between 111 

dopaminergic states and impulsive choice is complex. On the one hand, pharmacological reduction in 112 

DA levels decreases discounting (31–33,54). On the other hand, hyperdopaminergic states e.g. due to 113 

administration of the dopamine precursor L-DOPA, are also sometimes associated with increased 114 

discounting (29). Likewise, patients with Parkinson’s disease can exhibit increased impulsive behavior 115 

following DA replacement therapy (30). To sum up, DA modulation likely contributes to the modulation 116 

of intertemporal choice via its action on different fronto-striatal loops, but there is little evidence for a 117 

clear and simple linear relationship between DA levels and choice impulsivity.  118 

In terms of top-down inhibitory mechanisms the picture is somehow relatively clear. The LPFC is 119 

assumed to modify choice impulsivity (55–58). That is, inhibition of the selection of tempting SS 120 

choices in this model depends on prefrontal inhibitory regulation of subcortical or ventromedial 121 

prefrontal value representations. Changes in structural and functional connectivity within this network 122 

are linked to the development of self-control (in this study the term self-control generally refers to far 123 

sighted behavior in value based decision making) from adolescence to early adulthood (59–61). 124 

Inhibition and top-down control likewise plays a central role in motor impulsivity and so is believed to 125 

modulate TS pathophysiology, e.g. in the context of suppressing urges and tics (25).  126 

Studies did show that motor and cognitive impulsive actions might require different forms of the 127 

construct of self-control and can be differentiated (62). Even though it seems to play an important role 128 

in TS pathophysiology, evidence on the ability to successfully inhibit motor output in patients with TS 129 

is mixed and evidence is not entirely convincing that adolescents and adults show a general deficit in 130 

inhibitory control (25,26,63–67). However, there is extensive evidence for regional overlap between 131 

inhibitory mechanisms in terms of motor, choice impulsivity and even other forms like emotion 132 

regulation (35–38,68,69). Training in one domain might possibly affect performance other domains 133 

(70). Regarding choice and motor impulsivity the dorsal striatum might be a key region of interest where 134 

top down inhibitory processes (originating in PFC) modulate the execution or the re-evaluation of choice 135 

outcomes (71). These anatomical regions and attributed functions might be affected by TS 136 

pathophysiology (72)  137 

To date it is still an open question whether patients with TS show aberrations in the domain of 138 

intertemporal choice. In the present study, we compared adolescents (Study 1, Hamburg) and adults 139 

(Study 2, Cologne) with TS to controls using two modified temporal discounting tasks. Based on the 140 
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dopaminergic hyperinnervation model (24) we hypothesized that adolescents and adults with TS will 141 

show differences in temporal discounting compared to controls. We hope to broaden the understanding 142 

of value based decisions in TS on one operational measure of choice impulsivity that may predict, with 143 

unavoidable uncertainty, the vulnerability for short sighted behavior(49,50,73,74). 144 

2. Methods and Materials 145 

2.1 Ethics  146 

The Ethics committee of the University of Cologne approved the study (protocol ID: DRKS00011748) 147 

and all participants provided written consent. Patients were recruited at the University Hospital of 148 

Cologne whereas healthy controls were recruited by advertisement. The Ethics committee of the 149 

University Hospital Hamburg approved the second study. Adolescents provided written assent and their 150 

parents provided written consent (PV4439). Adolescents with TS were recruited in the University 151 

Hospital of Hamburg and healthy adolescents were recruited by advertisement. 152 

2.2 Study 1 methods (Adolescents)  153 

2.2.1 Participants 154 

We included 19 adolescents with TS (mean(age): ± 14.21, SD: 2.37) and 19 age, education and gender-155 

matched controls (mean(age): ± 14.21, SD: 2.53). All participants underwent a clinical assessment and 156 

performed a modified DD paradigm. Out of 19 adolescents, two were taking medication. 157 

2.2.2 Clinical Assessment  158 

Adolescents were assessed with the YGTSS (75), the PUTS (76) and the Children’s Yale-Brown 159 

Obsessive Compulsive Scale (CY-BOCS), a semi structured interview to evaluate OCD severity. For 160 

the CY-BOCS data are available from all the adolescents with TS and 13 controls; in total three 161 

adolescents with TS had a higher score than 12, which is an indicator for an OCD diagnosis (77). The 162 

“Fremdbeurteilungsbogen/Selbstbeurteilungsbogen für Aufmerksamkeitsdefizit-/Hyperaktivitäts-163 

störungen” (FBB)-ADHD/(SBB)-ADHD is a diagnostic instrument to identify ADHD and includes a 164 

third-party assessment (FBB-ADHD) and self-reporting questionnaire (SBB-ADHS) (78). FBB-ADHD 165 

data is available for all adolescents with TS and 16 controls. SBB-ADHS data is available for 18 166 

adolescents with TS and 17 controls. All adolescents also filled out a questionnaire on demographic 167 

measurements. 168 

2.2.3 Temporal Discounting 169 

The adolescents temporal discounting task consistent of 50 trials whereas patients and controls could 170 

choose between a SS reward (0, 1, 2, 3 or 4 cents) and a constant LL reward (5 cents), which was 171 

available after a varying waiting period (10, 20, 30, 40 or 60 seconds). The LL option was depicted with 172 

a blue circle and the SS option with a red circle both presented on a computer screen. The position of 173 

the red and blue circle was varied on a trial-wise manner whereas choice was indicated with a mouse 174 
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click (see Figure 1, supplemental data). After each choice, the received reward (money) would be 175 

saved either immediately or after the appointed waiting period into a virtual saving account followed by 176 

visual feedback (displayed for 500ms). Thereafter, a blue screen with a black fixation cross was 177 

presented if the subject had chosen the immediate reward. The screen was presented for the same time 178 

the adolescents would have waited, had they chosen the delayed option (e.g. 20s if the waiting time for 179 

5 cents would have been 20s). The overall task time was thereby kept constant, no matter whether 180 

participants chose predominantly SS or LL rewards. On a green bar below the choices, the participants 181 

could see how many trials had passed. Depending on the choices, participants could gain between 2.50 182 

€ and 5 € (79).  183 

2.3 Study 2 methods (Adults) 184 

2.3.1 Participants 185 

We recruited 25 patients (mean(age): ± 29.88, SD: 9.03) with TS diagnosed according to DSM-5 criteria 186 

(80) and 25 age, education and gender-matched controls (mean(age) ± 29.40, SD: 9.28). All participants 187 

underwent a clinical assessment, performed a temporal discounting paradigm, including a pretest based 188 

on prior procedures (see 81,82). Out of 25 patients, nine patients were taking medication or 189 

cannabinoids. Five patients were taking antidopaminergic drugs (Aripiprazole, risperidone, tiapride), 190 

one patient was taking an anticonvulsant (Orfiril) one patient was taking a noradrenergic and specific 191 

serotonergic antidepressant (Mirtazapine), and one patient was medicated with two antidopaminergic 192 

drugs (Aripiprazole, risperidone) and a selective serotonin reuptake inhibitor (Citalopram). One patient 193 

regularly smoked medical cannabis. 194 

2.3.2 Clinical Assessment  195 

All participants performed on an equal clinical assessment. They filled out the Obsessive Compulsive 196 

Inventory-Revised (OCI-R) (83) and the Beck Depression Inventory (BDI) (84). The Wender Utah 197 

Rating Scale was used to assess ADHD symptoms (85). All participants filled out a short intelligence 198 

test (Leitprüfsystem-3 (LPS 3)) (86), followed by a demographic questionnaire with information on age, 199 

gender, handedness, years of education and current drug or alcohol use. Further, patients with TS 200 

completed an assessment with the Yale Global Tic Severity Scale (YGTTS) (75) and the premonitory 201 

urges scale (PUTS), a self-report scale to identify premonitory urges (76). All questionnaires were in 202 

German. 203 

2.3.3 Temporal discounting 204 

Behavioral Pretest 205 

All participants underwent an adaptive pretest to estimate an individual a-priori  discount-rate via 206 

Maximum Likelihood estimation assuming and hyperbolic model (Equation 2, see below) and a 207 

softmax-Choice rule (Equation 3, see below). This rate was then used to create subject-specific trials 208 

for the following experimental session (see 81).  209 
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To create subject-specific trials, we used custom Matlab routines (MATLAB version 8.4.0. Natick, 210 

Massachusetts: The MathWorks Inc) (82). All experiments were administered using Presentation 16.3 211 

(Presentation software; Neurobehavioral Systems, Inc). 212 

Experimental session  213 

The DD paradigm consisted of a series of 140 choices between direct (smaller-sooner (SS)) and delayed 214 

(larger-but-later (LL)) monetary rewards. The SS reward of 20€ was labeled as being available 215 

immediately whereas the LL reward was uniformly distributed (depending on the subject-specific pre-216 

test) between 20.5€ and 80€ and available after 1, 2, 7, 14, 30, 90 or 180 days respectively. Participants 217 

were informed that one trial-choice combination would be selected at random and payed after the task 218 

was completed (see 85,86). 219 

2.4 Analysis (Both studies) 220 

 Model free analysis  221 

We first analyzed both datasets using model agnostic approaches to avoid possible caveats associated 222 

with model-based analysis, e.g., problems with parameter estimation or the choice for a theoretical 223 

framework (hyperbolic vs. exponential).  224 

Due to task structure in study 1 (adolescents; see above), we used the percentage of LL in contrast to  225 

SS choices as a model agnostic quantification of choice behavior. For comparison we used a two-sided 226 

parametric test on the arc-sin-transformed values of SS vs. LL choices. 227 

In study 2 (adults) we computed the area under the empirical discounting curve (AUC)(note, due to the 228 

number of varying delays, this procedure does not provide further information when applied to the data 229 

in study 1). In detail, the AUC corresponds to the area under the connected data points that describe the 230 

decrease of the subjective value (y-axis) over time (delay; x axis). Each specific delay was expressed as 231 

a proportion of the maximum delay and plotted against the normalized subjective (discounted) value. 232 

We then computed the area of the resulting trapezoids using Equation 1. 233 

x2-x1

!
(y1+y2)

2 "
  

(1) 

Smaller AUC-values indicate more discounting (more impulsive choices) and higher AUC-values 234 

indicate less discounting (less impulsive choices) (range between zero and one).  235 
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 236 
Figure 1. Hierarchical Bayesian model. Parameter estimates for each subject [n = 38 (study 1); n = 50 (study 237 
2)], k (choice impulsivity) and temp (choice stochasticity) were drawn from different group distributions [ngroup 238 
= 2 (patients with TS (P)/ healthy controls (HC))] and mapped on the choice data [n = 50 (study 1); n = 140 (study 239 
2)] for each participant. 240 

 241 

Computational modeling  242 

Based on prior analysis and basic research in the field of temporal discounting we assumed a hyperbolic 243 

model (87,88) to describe the decrease in subjective value over time for both datasets (Equation 2). The 244 

LL reward that is delivered after a specific delay (D) is devaluated via a subject specific discount rate 245 

(k) that weights the influence of time on the subjective value (SV). A lower k-parameter reflects more 246 

patient preferences (reduced discounting) whereas a higher k-parameter reflects steeper discounting: 247 

SV= LL
(1+kD)

  
(2) 

 248 

After devaluating the delayed option our model assumes that subjects compare the devaluated LL reward 249 

with the 20€ SS trial by trial and select the most valuable action under the influence of subject specific 250 

noise. This decision process between both subjective values is modeled by a simple softmax choice rule 251 

(Equation 3) where a free temp parameter scales the influence of value differences on choice. A high 252 

temp value implies that participants decide purely on value differences whereas lower values indicates 253 

higher choice stochasticity. For limit of temp=0 choices are random. 254 

Ct

SVt

P(chosen)t

Dt
LL LLt

ki

t=1,…,ntrials

tempi

λj

μj

λj

μj

i=1,…nsubj
j=1,…ngroup

λk,HC~ Gamma(0.001, 0.001) T(0.001, ∞)
λk,P~ Gamma(0.001, 0.001) T(0.001, ∞)
µk,HC~ Uniform (-20, 3)

µk,P~ Uniform (-20, 3)

λtemp,HC~ Gamma(0.001, 0.001) T(0.001, ∞)
λtemp,P~ Gamma(0.001, 0.001) T(0.001, ∞)
µtemp,HC~ Uniform (0, 10)

µtemp,P~ Uniform (0, 10)

k~ Gaussian (µk , λk, )

temp ~ Gaussian (µtemp,, λtemp)

DLL in days
LL in monetary units

SV= LL
1+k∗	𝐷𝐿𝐿

P(chosen) = exp(𝑡𝑒𝑚𝑝 	∗𝑆𝑉 𝑐ℎ𝑜𝑠𝑒𝑛 )
exp(𝑡𝑒𝑚𝑝 ∗𝑆𝑉 𝑐ℎ𝑜𝑠𝑒𝑛 )+exp(𝑡𝑒𝑚𝑝 ∗𝑆𝑉 𝑜𝑡ℎ𝑒𝑟 )

C ~ Bernoulli (P)
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P(chosen)= exp(SVchosen*temp)
exp(SVother*temp)+ exp(SVchosen*temp)

  
(3) 

Models were fit using a hierarchical Bayesian framework to estimate parameter distributions via Markov 255 

Chain Monte Carlo (MCMC) sampling with Just Another Gibbs Sampler (JAGS) (89). Individual choice 256 

data were modeled using Equations 2 and 3 (see above). Single subject parameters were drawn from 257 

group-level normal distributions, with mean and variance hyper-parameters that were themselves 258 

estimated from the data (see Figure 1). Model convergence was assessed via the RHAT statistic 259 

(Gelman-Rubinstein convergence diagnostic) where values < 1.01. (two chains) were considered 260 

acceptable.  261 

Group comparisons were conducted by examining the differences in posterior distributions per 262 

parameter of interest. The strength of evidence for directional effects was examined by computing 263 

directional Bayes Factors for each group level difference distribution. A Bayes factor > 3 yields positive 264 

evidence (90). 265 

3. Results 266 

3.1 Study 1 (Adolescents) 267 

3.1.1 Demographic characteristics and clinical assessment 268 

Demographic and clinical characteristics between adolescents with TS and controls are shown in Table 269 

1. For demographic, clinical and neuropsychological characteristics of adolescents with TS and controls 270 

adjusted for multiple comparison see Table 1, supplemental data. 271 

 272 

  273 
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Table 1. Demographic, clinical and neuropsychological characteristics of adolescents with TS and healthy 274 
controls. 275 

 Adolescents with TS 

(n=19) 

Healthy controls 

(n=19) 

 

 

T/U/ Χ2  

 

 

p Mean SD Mean SD 

Age (Years) a 14.21 2.37 14.21 2.53 0.000 1.000 

Male/Female c 13/6 - 78.9 - 0.543 0.467 

Right-handed c 14/19 - 84.2 - 1.276 0.435 

Current medication  2/19 - - - - - 

YGTSS impairment 16.00 8.00 - - - - 

YGTSS 23.37 12.38 - - - - 

PUTS 19.53 5.61 - - - - 

FBB-ADHDb 0.38 0.26 0.82 0.48 -3.226 0.093 

SBB-ADHDa  0.39 0.22 0.68 0.39 88.0 0.497 

CY-BOCS b 6.84 6.31 0.08 0.277 21.50 <0.001 

ADHD, attention deficit hyperactivity disorder; CY-BOCS, Children’s Yale-Brown Obsessive-Compulsive Scale; 276 
(FBB)-ADHD/(SBB)-ADHD, Fremdbeurteilungsbogen/Selbstbeurteilungsbogen für Aufmerksamkeitsdefizit-277 
/Hyperaktivitätsstörungen; PUTS, Premonitory Urge for Tics Scale; TS, Tourette syndrome; YGTSS, Yale Global 278 
Tic Severity Scale.  279 

a. T-test was used because data was normally distributed.  280 
b. Mann Whitney U test was used because data was not normally distributed. 281 
c. Χ2 square test. 282 

 283 

3.1.2 Temporal discounting  284 

Model free analysis  285 

Controls chose the LL reward in 48.3 % of all cases whereas adolescents with TS chose the that option 286 

in 58.4 % of all trials (see Figure 2, supplemental data). Before using a parametric-test we applied an 287 

arcsin-transformation on all mean choice proportions (by participant) and then tested for group 288 

differences. Even though patients with TS did choose the LL option around 10% more often both groups 289 

did not differ significantly (T =1.0646; df = 35.83; p = 0.29). 290 

 291 
 292 
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 293 
Figure 2. (A) Group level hyperparameter distributions of log(k) parameter for adolescents with TS (blue) and 294 
healthy controls (orange). (B) Difference distribution of (A) healthy controls minus adolescence with TS. The 295 
black bars indicate the 95% and 85% highest density intervals respectively. 89% of posterior hyperparameter 296 
samples exceed 0 (Note, even though 89% of samples exceed 0, the 85% HDI overlaps with 0. This is due to the 297 
fact that the HDI is computed differently from 10% and 90% quantiles or the subtraction of posterior samples 298 
which are just in Bayesian comparisons of posterior distributions (see Kruschke 2011 for details).In other words 299 
89% of the target distribution from adolescents with TS is lower than the equivalent distribution in healthy controls. 300 
This can be interpreted as a chance of 89% of decreased discounting of delayed rewards in adolescents with TS 301 
when compared to healthy controls.  302 

Computational modeling 303 

Examination of the posterior distributions of log(k) from the computational model revealed attenuated 304 

impulsive choice (smaller log(k)) in patients with TS:  89.07 % of the log (k) posterior difference 305 

distribution (controls minus patients) exceeded 0, suggesting steeper discounting of value over time in 306 

controls (Equation 2). Computing a directional Bayes Factor (dBF) for the group difference yielded 307 

dBF=8.13, that is, given the data, a reduction in discounting in patients was 8.13 times more likely than 308 

an increase. For analysis of choice stochasticity see Figure 4, supplemental data.  309 

 310 

3.2 Study 2 (Adults) 311 

3.2.1  Demographic characteristics and clinical assessment 312 

Demographic and clinical characteristics of patients with TS and controls are shown in Table 2. Controls 313 

did not score in any clinically relevant ranges. Neither patients nor controls reported clinically relevant 314 

drug or alcohol abuse.  315 
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Table 2: Demographic, clinical and neuropsychological characteristics of patients with TS and healthy controls. 317 

 Patients with TS 

(n=25) 

Healthy controls 

(n=25) 

 

 

T/U/ Χ2  

 

 

p Mean SD Mean SD 

Age (Years)a 29.88 9.03 29.40 9.28 0.185 0.854 

Male/Female c 19/6 - 68.00 - 0.397 0.529 

Right-handed 22/25 - 88.00 - 0.000 1.000 

Current medication 6/25 - - - - - 

Years of education b 11.68 1.25 11.90 1.22 250.00 0.197 

Tourette Onset 8.76 5.13 - - - - 

YGTSS motor 15.84 5.72 - - - - 

YGTSS verbal 12.32 6.36 - - - - 

YGTSS impairment 26.80 11.08 - - - - 

YGTSS 54.96 20.78 - - - - 

PUTS 30.02 4.22 - - - - 

BDI b 11.68 9.34 5.28 5.19 165.50 0.004 

WURS-k a 26.12 11.60 16.04 9.55 3.36 0.002 

OCI-R b 20.30 12.06 10.92 7.58 149.50 0.002 

LPS-3 b 55.80 8.25 58.60 8.48 249.50 0.213 

BDI, Becks depression inventory; LPS-3, Leistungsprüfsystem; OCI-R, Obsessive-Compulsive Inventory-318 
Revised; PUTS, premonitory urge tic for scale; TS, Tourette syndrome; WURS-k, Wender-Utah-Rating-Scale; 319 
YGTSS, Yale Global Tic Severity Scale.  320 

a. T-test was used because data was normally distributed.  321 
b. Mann Whitney U test was used because data was not normally distributed. 322 
c. Χ2 square test. 323 

 324 

3.2.2 Temporal Discounting  325 

Model free analysis  326 

Applying a parametric t-test on the integral of the area under the empirical discounting curve revealed 327 

no significant differences between patients with TS (mean(AUC) = 0.459) and controls (mean(AUC) = 328 

0.511) (t = -0.8791; df = 46.1; p = 0.38), see Figure 3, supplemental data. 329 

 330 
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 331 
Figure 3. (A) Group level hyperparameter distributions of log(k) for patients with TS (blue) and healthy controls 332 
(orange); The orange and blue bars indicate the 95% highest density interval for each group (B) Difference 333 
distribution of hyperparameters shown in (A) - healthy controls minus patients with TS. The black bars indicate 334 
the 95% and 85 % highest density interval respectively. 72 % of the hyperparameter distribution is below 0 which 335 
can be interpreted as a chance of 72% of steeper discounting in patients with TS.  336 

 337 

Computational modeling 338 

In line with our model-agnostic approach examination of the posterior distributions of log(k) from the 339 

computational model revealed only minor differences in impulsive choice (smaller log(k)) in controls 340 

as only 38 % of the log (k) posterior difference distribution (controls minus patients) exceeded 0. This 341 

suggests no significant differences in discounting of value over time. Computing a directional Bayes 342 

Factor (dBF) for the group difference yielded dBF=0.38 (no mentionable evidence), that is, if anything 343 

a descriptive decrease in discounting in controls when compared to patients with TS. In consequence 344 

absolute log(k) distributions showed substantial overlap between groups (Figure 4A). Since some 345 

patients with TS were treated with antidopaminergic drugs we excluded these six subjects and repeated 346 

our computational analysis. The exclusion of these patients only had marginal effects and the result 347 

pattern did not change. For analysis of choice stochasticity see Figure 5, supplemental data.  348 

Further, no ties between subject specific choice impulsivity (median(k)) and choice stochasticity 349 

(median(temp)) parameters and our questionnaire data could be detected. In detail, we performed a 350 

simple correlation analysis (corrected for multiple comparisons; note an additional exploratory analysis 351 

without correcting for multiple corrections did not reveal any significant correlation) in between the 352 

before mentioned model parameters and the following inventories: WURSK-k scale, OCI-R and BDI 353 

(see Table 2, supplemental data). 354 

4. Discussion  355 

We examined temporal discounting in adolescents and adults with TS. Based on neural models of the 356 

etiology of TS we predicted increased temporal discounting in TS due to a putative increase in DA 357 

signaling (23). In contrast to our prediction, computational modeling using hierarchical Bayesian 358 

parameter estimation revealed that adolescent TS patients showed reduced temporal discounting 359 
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compared to controls. In contrast, we observed little evidence for robust group differences in adult TS 360 

patients.  361 

TS is a complex neuropsychiatric disorder that is associated with developmental dopaminergic 362 

anomalies and a failure to control involuntary actions (1,2,24–26). These dopaminergic anomalies may 363 

either cause, enable or enhance tics via inadequate gating of information through the striatum (16).  In 364 

the current study, we report data from two temporal discounting tasks to examine if self-controlled 365 

choices are under modulation of TS pathophysiology. We hypothesized that dopaminergic anomalies 366 

might interfere with the valuation of decision options, which are modulated by both dopaminergic 367 

signaling and prefrontal inhibitory control (24–26). 368 

The DA hyperinnervation model of TS, in conjunction with some of the empirical findings linking 369 

elevated DA to increased human temporal discounting (24,29), might then predict increased discounting 370 

in patients with TS. However, other studies point towards reductions in temporal discounting due to 371 

pharmacological elevation of DA levels. Generally, the human literature on dopaminergic contributions 372 

to impulsivity is characterized by substantial heterogeneity (91). A further complicating factor is that 373 

dopaminergic effects might be non-linear (92), as summarized in the inverted U-model of DA 374 

functioning (93). However, it is obvious that transient pharmacological dopaminergic interventions in 375 

healthy subjects and long-term abnormal dopaminergic states in neurodevelopmental conditions such as 376 

TS will have markedly different behavioral effects. Nevertheless, our results suggest that the putative 377 

chronic hyperdopaminergic state of TS does not give rise to substantial changes in temporal discounting 378 

in adults.  379 

In contrast, we did find evidence for a moderate decrease in temporal discounting in adolescents with 380 

TS when compared to healthy controls. Our analysis revealed that a decrease in temporal discounting in 381 

adolescents with TS was about 8 times more likely than an increase (dBF = 8.13). Adolescents typically 382 

show higher discount rates than adults (94,95). This is thought to be attributable to increases in 383 

functional and structural fronto-subcortical connectivity that continue until early adulthood (26,59–61). 384 

Adolescents with TS are constantly faced by tics and the need to control their motor output. Even though 385 

these tics might emerge from complex neurophysiological interactions i.e. hyperactive DA modulated 386 

striatal gating and reduced inhibition of GABAergic interneurons (96,97), one could speculate that the 387 

ability to inhibit tics might foster the ability to inhibit other impulses thereby strengthening cognitive 388 

control more generally (70). The question then arises why such an effect would not likewise translate 389 

into greater self-control during temporal discounting in the adult TS patients as well. One possibility is 390 

that such a “training” account merely affects the developmental trajectory of self-control, such that 391 

adolescents with TS reach adult levels of self-control earlier than their healthy peers. Testing such a 392 

model would of course require longitudinal studies. 393 

Additional clinical differences between adolescent and adult TS patients further complicate the 394 

interpretation of the differential effects in the two age groups. Adolescents and adults with TS exhibit 395 

different tic-phenomenology, adolescents exhibit less variability and/or fluctuations in tics as well as 396 
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additional comorbidities such as autistic spectrum disorders and oppositional defiant disorder (1). 397 

Adolescents who successfully control their tics have a greater likelihood of eventual remission, likely 398 

due to better executive control capabilities (98). In contrast, patients who still exhibit TS in adult life 399 

exhibit attenuated inhibitory control (66). In both samples, the discount rate (k) was not significantly 400 

correlated (corrected for multiple comparisons) with ADHD, OCD comorbid symptomatology or the 401 

YGTSS (see Table 1 and Table 2, supplemental data). 402 

The present study has several limitations. First, adolescents and adults performed different temporal 403 

discounting tasks with different reward magnitudes (0-4 cents vs. 20-80€) on a different timescale 404 

(immediate up to a minute (adolescents) vs. immediately after the task to up to weeks (adults)). Reward 405 

magnitudes in the range of cents vs. tens of Euros may entail different valuation and/or control processes 406 

(99,100). This precludes direct comparisons in log(k) between age groups. Second, we do draw 407 

theoretical conclusions from reward impulsivity to motor inhibition in patients with TS, even though we 408 

do not compare motor inhibition empirically. Further studies should try to further examine the 409 

developmental trajectories of both of them. Third, although only two adolescents with TS took 410 

medication, about a quarter of adult patients (n=6) were on antipsychotic medication. An integrative 411 

review showed that most TS medication (i.e. D2 antagonists) reduce phasic DA, tonic DA or both (24) 412 

and DA dysfunction in cortico-striatal-thalamo-cortical was likely affected by the medication. However, 413 

a control analysis in which all medicated participants were excluded yielded the same pattern of results. 414 

Finally, patients and controls in the two different studies did not complete the exact same set of 415 

questionnaires (i.e. LPS-3). 416 

5. Conclusion 417 

The present study assessed temporal discounting in adolescent and adult TS patients, as well as matched 418 

healthy controls. Our data suggest reduced discounting in adolescent TS patients compared to matched 419 

controls. We speculate that this might be due to improved inhibitory functions that affect choice 420 

impulsivity and/or the developmental trajectory of executive control functions. Interestingly, adult 421 

patients with TS exhibited levels of discounting similar to controls. This might be due higher disease 422 

severity in adult patients with TS (e.g., patients who acquired successful tic inhibition during 423 

adolescence might have gone into remission). Future studies would benefit from adopting a longitudinal 424 

approach to further elucidate the developmental trajectory of these effects, and from directly examining 425 

effects of dopaminergic medication on these processes in TS.  426 
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Supplemental data 694 
 695 
Tables: 696 
 697 
Table 1. Demographic, clinical and neuropsychological characteristics of adolescents with TS and healthy 698 
controls adjusted for multiple comparison (using holm´s method; note: an additional exploratory analysis 699 
without correcting for multiple corrections did not reveal any significant correlation).  700 

 Patients with TS (n=19) Healthy controls (n=18) 

Questionnaire/ 

subscale 

median(k)/ 

r (p-value) 

median(temp)/ 

 r (p-value)  

median(k)/ 

r (p-value) 

median(temp)/ 

r (p-value)  

SBB Attentional 0.25 (0.32[1.00]) 0.03 (0.90[1.00]) -0.02 (0.94[1.00]) -0.02 (0.93[1.00]) 

SBB_Motor 0.33 (0.18[1.00]) -0.04 (0.87[1.00]) 0.20 (0.44[1.00]) 0.00 (0.99[1.00]) 

SBB Impulsive -0.17 (0.50[1.00]) 0.43 (0.07[0.71]) 0.24 (0.35[1.00]) -0.12 (0.63[1.00]) 

SBB ADHD 0.12 (0.65[1.00]) 0.22 (0.37[1.00]) 0.13 (0.60[1.00]) -0.05 (0.85[1.00]) 

 701 
Table 2. Correlation analysis in adult patients with TS and healthy controls adjusted for multiple 702 
comparison (using holm´s method).  703 

 Patients with TS (n=25) Healthy controls (n=25) 

Questionnaire/ 

subscale 

median(k)/ 

r (p-value) 

median(temp)/ 

 r (p-value) 

median(k)/ 

r (p-value) 

median(temp)/ 

r (p-value) 

WURSK-k -0.03 (1.00) -0.14 (1.00) 0.29 (1.00) 0.09 (1.00) 

OCI-R 0.20 (1.00) -0.39 (1.00) 0.31 (1.00) -0.20 (1.00) 

BDI -0.18 (1.00) 0.43 (1.00) * 0.28 (1.00) 0.03 (1.00)  

BDI, Becks depression inventory; OCI-R, Obsessive-Compulsive Inventory-Revised; TS, Tourette syndrome; 704 
WURS-k, Wender-Utah-Rating-Scale. 705 

  706 
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 707 
Figures: 708 
 709 

 710 
Figure 1: Example for two trials in the temporal discounting task adapted for children and adolescents. The blue 711 
circle shows the reward (in cents) that the participant will receive if they wait. How long they have to wait is 712 
indicated by the lines, i.e. one blue line = 10s wait, 6 blue lines = 60s wait. The red circle indicates how much the 713 
participant will receive if they move on to the next trial immediately (0-4 cents). Participants received feedback 714 
about the amount earned after every trial (piggy bank). The green bar below the two circles indicates how many 715 
trials the participant has already finished. 716 

 717 
 718 
 719 
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 720 
Figure 2. Percentage of larger, but later (LL) choices in adolescents with TS and healthy controls.  721 

 722 

 723 
Figure 3. Subject specific measurements of the integral under the empirical area under the curve in adults with TS 724 
and healthy controls. 725 
  726 

Study 2 (adolescent) 727 
Choice stochasticity 728 
We applied the identical as for log(k) to the inverse temperature parameter (see Equation 3) and yielded 729 
a dBF of 0.66 (no mentionable evidence) implying no difference in between controls and adolescent 730 
patients with TS concerning value independent noisy choices. 731 
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 732 
Figure 4. (A) Group-level hyperparameter distributions of the decision noise parameter temp for adolescents with 733 
TS (blue) and healthy controls (orange). (B) Difference distribution of temp hyperparameter healthy controls 734 
minus adolescents with TS. 735 
 736 
 737 
Study 2 (adults) 738 
Choice stochasticity 739 
The additional analysis for choice stochasticity yielded a dBF of 0.67 indicating no substantial difference 740 
in decision noise. We observed a substantially higher variance in the decision noise (temp) 741 
hyperparameter in controls, an effect that was driven by a few participants with very high and some with 742 
very low decision noise. In contrast, in adult patients with TS, observed temp values were more 743 
homogenous. 744 
 745 

 746 
Figure 5 (A) Group-level hyperparameter distributions of the decision noise parameter temp for TS patients and 747 
healthy controls. (B) Difference distribution of temp hyperparameter TS patients – healthy controls with 95% and 748 
85% highest density intervals. 749 
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