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Abstract 

 
The development of Coronary Artery Disease (CAD), one of the most prevalent diseases in the world, is heavily 

influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may 

assist healthcare practitioners in timely detection of CAD, and ultimately, may improve outcomes. In this study, we 

have applied six different ML algorithms to predict the presence of CAD amongst patients listed in an openly 

available dataset provided by the University of California Irvine (UCI) Machine Learning Repository, named “the 

Cleveland dataset.” All six ML algorithms achieved accuracies greater than 80%, with the “Neural Network” 

algorithm achieving accuracy greater than 93%. The recall achieved with the “Neural Network” model is also 

highest of the six models (0.93). Additionally, five of the six algorithms resulted in very similar AUC-ROC curves. 

The AUC-ROC curve corresponding to the “Neural Network” algorithm is slightly steeper implying higher “true 

positive percentage” achieved with this model. We also extracted the variables of importance in the “Neural 

Network” model to help in the risk assessment. We have released the full computer code generated in this study in 

the public domain as a preliminary effort toward developing an open solution for predicting the presence of 

coronary artery disease in a given population and present a workflow model for implementing a possible solution. 

 

Introduction 

Coronary artery disease (CAD) is the most common type of heart disease affecting millions worldwide. According 

to recent statistics from the American Heart Association, CAD accounted for 13% of deaths in the United States in 

2016 (see https://healthmetrics.heart.org/wp-content/uploads/2019/02/At-A-Glance-Heart-Disease-and-Stroke-

Statistics-%E2%80%93-2019.pdf). Worldwide, CAD was found to be the cause of 15.6% of all deaths in 2015, 

making it one of the most common causes of mortality[1].  Because CAD is associated with several modifiable risk 

factors pertaining to lifestyle and intervention, timing of detection and diagnostic accuracy are especially relevant 

in its treatment. Over the past several years, approaches that include machine learning (ML) are making significant 

impact in the detection and diagnosis of diseases[2, 3, also see 4–7]. In general, the ML approach involves 

“training” an algorithm with a control dataset for which the “outcome” (disease or no disease) is known, and then 

applying this trained algorithm to predict outcomes in patients whose CAD status is not yet determined. When 

applied to disease outcomes involving modifiable risk factors (as in CAD), the ML approach may hasten the 

diagnostic process while decreasing error, allowing for improved mortality and morbidity. 

 

The application of ML concepts to CAD has been significantly hampered by the availability of appropriate clinical 

datasets. However, one of the components of the “UCI Heart Disease Dataset”, dubbed as the “Cleveland Dataset”, 

is publicly available on the UCI Machine Learning Repository (see 

https://archive.ics.uci.edu/ml/datasets/Heart+Disease). Originally intended to be a teaching aid, the Cleveland 

dataset has been highly exploited for exploring ML concepts. Available since 1988, the Cleveland dataset has so far 
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received more than one million downloads and is currently ranked as the fifth most popular dataset in the UCI 

repository. A GoogleScholar search with the terms “Cleveland dataset,”  “heart disease,” and “machine learning,” 

returns little more than 300 records available since 2010, of which most studies analyzed one ML method  at a time 

(for a latest survey review, see[8]). In addition, there is no way to verify claims in any of the publications for the 

accuracy of the algorithms, as the computer code has not been made publicly available
1
. A PubMed search using 

the same keywords identified ten original articles and one comprehensive review article[9]. Of the ten original 

articles, three used the Cleveland dataset, whereas the remaining seven used proprietary datasets. Of the ten, none 

of the studies have made the computer code publicly available. In our view, all recent studies pertaining to the 

application of the ML approach to CAD thus far appear exploratory rather than seeking to provide clinical 

assistance to healthcare practitioners in the treatment of CAD. 

 

We have now undertaken a comparative analysis by applying six different ML algorithms (models) using the UCI 

Cleveland dataset to predict disease outcomes. In an effort to initiate an open source ML solution for detecting 

CAD, we have deposited our computer code on the GitHub platform (see https://github.com/aa54/CAD_1), making 

it available for other researchers to test and improve our work. We also welcome the opportunity to gain access to 

larger datasets to further our efforts towards an open source solution. As for the six ML algorithms used in our 

study, we have found that all six (Linear Regression, Regression Tree, Random Forest, Support-Vector Machine, 

Random Forest, Nearest Neighbor, and k-Nearest Neighbor) perform well with an accuracy of greater than ~80%, 

with the Nearest Neighbor’s accuracy greater than 93%. We consider Accuracy, Recall, F1 score, and the Area 

Under the Curve–Receiver Operating (AUC-ROC) as performance metrics for comparative analysis amongst the 

ML models.  

 

Numerous risk factor variables contribute to the development of CAD, some of which can be controlled (or 

modifiable) (e.g., see[10]). These include high blood pressure, high cholesterol, smoking, diabetes, obesity, lack of 

physical activity, unhealthy diet, and stress. The risk factors that cannot be controlled (or non-modifiable) are age, 

sex (gender), family history, and race or ethnicity. Traditional approaches assess these risk factors to predict future 

risk (prognosis) of cardiovascular disease[11]. However, a large number of individuals at risk of cardiovascular 

disease fail to be identified by these approaches, while some individuals not at risk are given preventive treatment 

unnecessarily (see [12, 13]). Several of the ML algorithms have the ability to summarize the impact of individual 

variables on response variable and are referred as “variables of importance”, thus leading to the building of 

prognostic models[14]. In the present study, we extract the variables of importance in one model in an effort to 

demonstrate the feasibility of including risk assessment component in the ML based open solution. 

 

Dataset and Preprocessing 

The dataset used in this study is downloaded from the repository maintained by the UCI (University of California, 

Irvine, CA) Center for Machine Learning and Intelligent Systems. The repository contains four datasets from four 

different hospitals. The Cleveland dataset contains less missing attributes than the other datasets and has more 

records. This dataset has fourteen sets of variables on 303 patients. Table 1 lists all fourteen variables in the dataset, 

the associated datatype for each of the attributes, and a brief description of the attributes.  

                                                           
1 We noticed that a second copy of the “Cleveland dataset” is available on the UCI repository with a different name 

as “Statlog (Heart) Dataset” (see http://archive.ics.uci.edu/ml/datasets/statlog+(heart)) and several publications 

combine these two datasets for model building, or build on one dataset and validate on the other, which may lead to 

significantly misleading predictions. 
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Table 1: Dataset variables names, types, and descriptions 

Variable Type Description 

age continuous patient age in years 

sex categorical patient gender (1 = male; 0 = female) 

cp categorical chest pain (1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 4 = no pain) 

trestbps continuous resting blood pressure (in mmHg) on admission to the hospital 

chol continuous serum cholesterol in mg/dL 

fbs categorical fasting blood sugar higher than 120 mg/dL (1 = true; 0 = false) 

restecg categorical resting EKG (0 = normal; 1 = ST-T wave abnormality; 2 = probable/definite LVH) 

thalach continuous maximum heart rate achieved (during thallium test) 

exang categorical exercise induced angina (1 = yes; 0 = no) 

oldpeak continuous ST depression induced by exercise relative to rest 

slope categorical slope of the peak exercise ST segment (1 = up-sloping; 2 = flat; 3 = down-sloping) 

ca categorical number of major vessels (0 to 3) colored by fluoroscopy 

thal categorical thallium heart scan (3 = normal; 6 = fixed defect; 7 = reversible defect) 

num categorical diagnosis of heart disease (angiographic disease status) (0 = absent; 1 to 4 = present) 

 

  

Figure 1: Correlation matrix of the various parameters in the dataset. 
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During the data preprocessing steps, (1) six variables with unknown values were dropped resulting in a dataset of 

297 observations; (2) two dataset columns of factor datatype were converted to numeric datatype; (3) continuous 

variables (four, excluding age) were normalized; (4) the column “num” was renamed to “hd” for clarity; and (5) the 

values 1 to 4 in the heart disease (hd) column are replaced with value 1 to form a binary classification—disease 

(value of 1) or no disease (value of 0). 

The correlation matrix for the fourteen variables in the dataset is shown in Figure 1, depicting the Pearson 

coefficients, or r, corresponding to the association between two variables, which can range from –1 to +1. A higher 

absolute value of r indicates a stronger correlation between two variables. A positive r indicates a direct relationship 

between two variables, whereas a negative r suggests an indirect relationship. In this analysis, we considered an 

absolute value of 0.5 as threshold, that is, if r is greater than 0.5 or less than –0.5, we assume those two variables 

are correlated. The above correlation matrix shows that only a few variables correlate with coefficients greater than 

0.5, demonstrating poor correlation between the variables. Having a low value of r indicates that all these 

independent variables and can be included in the machine learning model building. 

Additional analysis of the dataset is presented in the Supplementary Material.  

 

Machine Learning Models, Model Building, and Model Evaluation 

In applying machine learning models, it is generally understood that no single algorithm is superior to the 

others[15]. In machine learning, if every instance in the dataset is given to the model with known labels (the 

corresponding correct outputs), like in the Cleveland dataset, then the learning is called “supervised”, in contrast to 

“unsupervised” learning in which instances are unlabeled. Below we present the general idea on how each of the six 

supervised machine learning algorithms work on the dataset and any assumptions we make in each case. Each 

algorithm is first trained (or fitted) with a fraction of the dataset, usually known as the “training set” and then tested 

on the “test set” that is put aside as “unseen data” for evaluating the algorithm. For a detailed description of the 

models we refer the reader to the excellent treatise by James et al[16]. 

 

Binary Logistic Regression: In Binary Logistic Regression, each independent variable in every instance of the 

dataset is multiplied by a weight and the cumulative result is passed to a sigmoid function. The function maps real 

values into probability values between 0 and 1. In our present modeling, we left the threshold to the default value, 

which is 0.5, such that for probability values greater than 0.5, the model predicts the dependent variable to be 1 (the 

patient has CAD), and for values less than or equal to 0.5, the model predicts the dependent variable to be 0 (the 

patient does not have CAD). 

Decision Tree: Decision (Regression) Tree is tree-like structure that classifies instances by sorting them based on 

the values of the variables. Each node in a decision tree represents a variable in an instance to be classified, and 

each branch represents a value that the node can assume. Instances are classified starting at the root node and sorted 

based on the values of the variables. The variable that best divides the dataset would be the root node of the tree. 

Internal nodes (or split nodes) are the decision-making part that make a decision, based on multiple algorithms, and 

to visit subsequent nodes. The split process is terminated when a user defined criteria is reached  at the leaf (for the 

present modeling, we left it to be the default value, which is 20). The paths from root nodes to the leaf nodes 

represent classification rules. 

Random Forest: Random Forest is ensemble model constating of multiple regression trees like in a forest. Random 

forest combines several regression trees, trains each one on a slightly different set of the dataset instances, splitting 
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nodes in each tree considering a limited number of the variables. The final predictions of the random forest are 

made by averaging the predictions of each individual tree, which enhances the prediction accuracy for unseen data. 

The number of regression trees chosen for present modeling is (ntree) 500. 

Support Vector Machine:  In Support Vector Machine, each data point is plotted in an n-dimensional space with 

the value of each variable being the value of particular coordinates and classification is performed based on the 

hyperplane that differentiates the two data classes. Following this, characteristics of new instances can be used to 

predict the class to which a new instance should belong. 

k-Nearest Neighbor:  k-Nearest Neighbor (kNN) is one of the most basic and non-parametric algorithms, it does 

not make any assumptions about the distribution of the underlying data. The algorithm is based on the principle of 

Euclidean distance that is the instances within a dataset generally exist in close proximity to other instances that 

have similar properties. If the instances are tagged with a classification label, then the value of the label of an 

unclassified instance can be determined by observing the class of its nearest neighbors. For the present modeling, 

the whole process is repeated three times (repeats=3) each with a k value of 10 (number=10) and taking the average 

of the three iterations. 

Artificial Neural Network: An artificial neuron network (ANN) is based on the structure and functions of 

biological neural networks—the network learns (or changes) based on the input and output. The units in ANN are 

segregated into three classes: input units, which receive information to be processed; output units, where the results 

of the processing are found; and units in between known as hidden units. The network is first trained on a dataset of 

paired data to determine input-output mapping. The weights of the connections between neurons are then fixed and 

the network is used to determine the classifications of a new set of data. For the present modeling we consider the 

hidden units to be three (hidden=3) and threshold to be 0.05 (threshold=0.05). 

To overcome our inability of using real-world data, we split the dataset into a “training set” (70%, i.e., 208 

observations) and a “test set” (30%, i.e., 87 observations) making sure to balance the class distributions within the 

split (see the associated computer code on GitHub, https://github.com/aa54/CAD_1). The “training” dataset is used 

to train the model; the model sees and learns from this training data. The “test” dataset is then used to provide an 

unbiased evaluation of a final model fit to the training dataset. In some cases, we ran multiple experiments to 

validate model results on different splitting ratios. 

The following four metrics[17] were used to evaluate the performance of the predicted models and compare them 

amongst one another. 

1) Accuracy: the proportion of total dataset instances that were correctly predicted out of the total instances 

  accuracy = (true positives + true negatives ) / total  

2) Recall (sensitivity): the proportion of the predicted positive dataset instances out of the actual positive instances; 

 sensitivity = true positives / (true positives + false negatives) 

3) F1 score: a composite harmonic mean (average of reciprocals) that combines both precision and recall. For this, 

we first measure the precision, the ability of the model to identify only the relevant dataset instances 

 precision = true positives / (true positives + false positives) 

The F1 score is estimated as 

 F1 = 2 * (precision * recall) / (precision + recall) 

4) AUC (area under the curve): an estimate of the probability that a model ranks a randomly chosen positive 

instance higher than a randomly chosen negative instance. Additionally, the full AUC-ROC (Area Under the 

Curve–Receiver Operating Characteristic) curves are plotted to visually compare the models’ performance. 
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Results and Discussion 

For our machine learning model building, we started with two basic models, Logistic Regression and Decision 

Tree, to predict the presence of CAD. Our intuition was that it would be easy to interpret the results of the basic 

models and to explain model to the non-machine learning audience. After analyzing the results, however, we 

realized that the Decision Tree model is prone to over-fitting. and Logistic Regression did not perform relatively 

well with this simple dataset. We then considered applying the standard SMOTE methodology[18] to create 

additional synthetic data. Although we achieved more accurate results with SMOTE (5% to 6% higher accuracy),  

we felt that SMOTE is not necessarily a good approach as it creates data points based on the distance algorithm, 

and these synthetic datapoints may not be “true” representations of patients. Therefore, we decided not to perform 

SMOTE on the dataset and proceeded to apply the remaining, more complex ML algorithms.  

As shown in Table 2, an accuracy value higher than 0.84 is achieved with all but the Decision Tree model (just 

below 0.80). The other performance parameters, recall, F1 score, and AUC are also high. A mean value is 

calculated with all the later three parameters for each of the models (shown in the last column in Table 2) to judge 

which model performs best as a whole. We excluded accuracy in calculating the Mean, as accuracy is often 

considered to be a misleading indicator in measuring the performance of models with biomedical datasets (e.g., see 

[3]).  

 

Table 2: Model performance metrics 

Model Accuracy Recall F1 score AUC Mean 

Generalized Linear Model 0.8764 0.8000 0.8786 0.883 0.85 

Decision Tree 0.7978 0.7447 0.7970 0.801 0.78 

Random Forest 0.8764 0.8261 0.8751 0.880 0.86 

Support-Vector Machine 0.8652 0.7959 0.8662 0.871 0.84 

Neural Network 0.9303 0.9380 0.8984 0.796 0.88 

k-Nearest Neighbors 0.8427 0.7872 0.8419 0.847 0.83 

 

As seen in Table 2, the performance of the Neural Network model is outstanding with an accuracy of 0.9303 and a 

recall of 0.9380. In addition, running multiple experiments with differently proportioned training and test sets 

(changing from 70:30 to either 60:40 or 80:20) with Neural Network, the performance metrics were unchanged.  

 

A high recall value indicates a lower propensity for false negatives. In disease prediction, a low recall (high 

frequency of false negatives), would misdiagnose patients with CAD as healthy, which may have devastating 

consequences. For example, a recall rate of 0.9380 (achieved with Neural Network) implies that this algorithm will 

correctly identify the presence of CAD in approximately 94 patients out of 100 patients with CAD. 

 

Figure 2 compares the performance of the six ML algorithms using AUC-ROC. AUC-ROC curves allow to 

visualize the tradeoff between the True Positive Rate and False Positive Rate, whereas AUC (see above) is useful to 

compare multiple algorithms or hyperparameters combinations (these two are obtained by different methods). As 

seen in the figure, all models except for Decision Tree perform well, there is very little difference in the AUC-ROC 

cures. Nevertheless, the ROC curve corresponding to the Neural Network model has a relatively higher positive 

slope, indicating that this model gives higher “true positive percentage.” Combining with the results obtained for 

the performance metrics, it may be concluded that the Neural Network model is able to predict CAD more 

effectively than the other models.  
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We next extracted at the “variable of importance” in the Neural Network model. Understanding the relative 

importance of variables may dictate which variables are necessary to be included in the risk prediction of CAD. As 

shown in Figure 3, “restcg” (resting EKG), and sex (gender) have a relatively high importance, while the three 

attributes “age,” “thalch” (maximum heart rate achieved during the thallium test), and “exang” (exercise induced 

angina) have the least importance. The top ten variables of importance as assigned by the Neural Network model, in 

descending order, are: 

resting EKG,  

patient gender,  

chest pain,  

slope of the peak exercise ST segment, 

ST depression induced by exercise relative to rest, 

-30

-15

0

15

30

0

15

30

Figure 3: Variable of importance in the Neural Networks model. The top 

graph shows the importance as obtained with a built-in code library 

functiuon and the bottom is the normalized graph.  

Figure 2: Classifier performance comparison with Receiver Operating Characteristic (ROC) curves. Left: Area 

under the ROC curve (AUC) for all the six models with estimated 95% confidence intervals. Right: Full ROC 

curves for the six models. Note the matching color code. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948414doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948414
http://creativecommons.org/licenses/by/4.0/


fasting blood sugar (higher or lower than 120 mg/dl), 

thallium heart scan, 

number of major vessels, 

resting blood pressure, and 

serum cholesterol 

 

Heinze et al[19] proposed certain recommendations on the application of variable selection methods to help 

modeling in life sciences and its worth following these recommendations in future efforts of identifying which of 

the variables of importance are worth studying in the risk modeling. 

 

Conclusions and Future Scope 

 

In this study, we demonstrated that ML algorithms can be applied with high accuracy and recall to detect the 

presence of CAD using a publicly available dataset. We also demonstrated that the Neural Network model 

outperforms other ML models to detect CAD. We deposited the associated computer code in the public domain (see 

https://github.com/aa54/CAD_1) in the hopes that we are contributing to an open source community. 

 

 
Figure 2: An ideal framework for developing a viable machine learning model. 

The dashed arrow indicates the iteration involving the ML algorithms presented here (also 

marked 1). Steps 2 and 3 (solid arrows) indicate future explorations. (Modified from 

https://www.jeremyjordan.me/ml-projects-guide/).  

 

We visualize that a viable ML solution for predicting coronary artery disease (CAD) evolves in three steps: (1) 

model exploration; (2) model refinement; and (3) monitoring and maintenance. A proposed framework for arriving 

at a practical ML solution for the detection of CAD is depicted in Figure 4. We believe that with our current effort, 

we have achieved the first step (marked 1 in Fig. 4). We are hopeful that this study can help form the basis for 

further testing/validating of our algorithms with multiple and larger datasets. We look forward to gain access to 

larger datasets for further validation and refinement (depicted as step 2 in Fig. 4), with the eventual goal of 

providing an open source solution (step 3 in Fig. 4) to aid health care practitioners in the detection and treatment of 

CAD. 
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