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Summary: Statistical analyses of biological problems in life sciences often lead to high-dimensional linear models. To 
solve the corresponding system of equations, penalisation approaches are often the methods of choice. They are espe-
cially useful in case of multicollinearity which appears if the number of explanatory variables exceeds the number of ob-
servations or for some biological reason. Then, the model goodness of fit is penalised by some suitable function of inter-
est. Prominent examples are the lasso, group lasso and sparse-group lasso. Here, we offer a fast and numerically cheap 
implementation of these operators via proximal gradient descent. The grid search for the penalty parameter is realised by 
warm starts. The step size between consecutive iterations is determined with backtracking line search. Finally, the pack-
age produces complete regularisation paths. 
Availability and implementation: seagull is an R package that is freely available on the Comprehensive R Archive Net-
work (CRAN; https://CRAN.R-project.org/package=seagull; vignette included). The source code is available on 
https://github.com/jklosa/seagull. 
Contact: wittenburg@fbn-dummerstorf.de  
 
 
 

1 Introduction  
Linear regression is a widely used tool to explore the dependence be-

tween a response variable and explanatory variables. For instance, in 
genome wide association studies (GWAS), the explanatory variables are 
typically the counts of genetic variants along the genome that might 
affect a response. The response variable could contain records of a 
disease or (continuous) measures of a performance trait. Deciphering the 
effect of the genetic variants and therewith uncovering the genetic archi-
tecture is essential in precision medicine and for animal or plant breeding 
programs. 

The high throughput of modern biotechnological procedures enables 
studying an extremely large amount of explanatory variables (𝑝). How-
ever, this often goes along with relatively few observations (𝑛; 𝑝 ≫ 𝑛), 
making the estimation of effects a challenge. Especially in the presence 
of multicollinearity, penalisation methods have proved to be useful for 
estimating effects. Famous examples are the Tikhonov, the elastic net 
(Zou and Hastie, 2005) and the lasso (Least Absolute Shrinkage and 
Selection Operator; Tibshirani, 1996) regularisation. In case only a very 
small fraction of variables has non-zero effect, those methods are advan-
tageous that perform variable selection, such as lasso. However, in 
situations where the underling nature of effects is unknown, lasso might 
be prejudicial as it detects only the strongest signals. Then, causal rela-
tionships might be overlooked in GWAS (Waldmann et al., 2013). To 
simultaneously detect non-zero effects and account for the relatedness of 
variables, the lasso has been modified and enhanced to the group lasso 
(Yuan and Lin, 2006), the sparse-group lasso (Simon et al., 2013) and 
the ''Integrative LASSO with Penalty Factors'' (IPF-lasso, Boulesteix et 
al., 2017). These particular modifications of the lasso assume an under-
lying group structure within the explanatory variables. A group structure 

is likely to appear in genomic data due to, for example, linkage and 
linkage disequilibrium. The R package presented here contains imple-
mentations of the lasso variants mentioned above focusing on precision 
of parameter estimation and computational efficiency. 

2 Features 
The R package seagull offers regularisation paths for optimisation 
problems of the general form: 
 

min
( , )

1

2𝑛
‖𝑦 − 𝑋𝑏 − 𝑍𝑢‖ + 𝛼𝜆‖𝑢‖ + (1 − 𝛼)𝜆‖𝑢‖ , . 

 
This is also known as the sparse-group lasso (Simon et al., 2013). The 
first term expresses the “goodness of fit”. The second and third term are 
penalties, both of which are multiplied with the penalty parameter 𝜆 > 0. 
The vector 𝑦 contains 𝑛 observations of the response variable. The 
vectors 𝑏 and 𝑢 represent non-penalised and penalised effects, respec-
tively; 𝑋 and 𝑍 are the corresponding design matrices. Moreover, 
𝛼 ∈ [0, 1] is the mixing parameter for the penalties. 

From a frequentist’s perspective, the non-penalised effects 𝑏 and the 
penalised effects 𝑢 are often referred to as fixed and random effects. 
Assuming a normal distribution for all occurring random variables, the 
above optimisation approach is equivalent to the maximisation of the 
penalised log-likelihood. 

The two penalty terms are convexly linked via 𝛼. In the two limiting 
cases of 𝛼 = 1 and 𝛼 = 0, the respective resulting objective function is 
the lasso (Tibshirani, 1996) and the group lasso (Yuan and Lin, 2006). 
However, if 𝛼 is chosen to be less than 1, it is assumed that the explana-
tory variables have an underlying group/cluster structure (with non-
overlapping groups). The determination of such groups needs to be 
performed prior to the call of seagull, for instance, by applying a suitable 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.947473doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.947473
http://creativecommons.org/licenses/by/4.0/


J.Klosa et al. 

cluster algorithm to the explanatory variables or by grouping them 
according to the source of measurement (RNA expression, SNP geno-
types, etc.). Referring to this structure, the entries of 𝑢 can be separated 
into the corresponding groups, say 𝑢( ) for group 𝑙. Hence, the definition 
of the second penalty becomes: 

‖𝑢‖ , = 𝑝 𝑢( )  , 

where 𝐿 is the total number of groups and 𝑝  is the size of group 𝑙. In our 
R package seagull, the following penalty operators are implemented: 
lasso, group lasso and sparse-group lasso. We show in the vignette of the 
package how the optimisation problem can be extended to consider 
weights for each explanatory variable and group. This option can be used 
for any reason but it also enables the user to apply the strategy of IPF-
lasso.  

3 Implementation 
Both penalties are multiplied with the penalty parameter 𝜆 > 0; 𝜆 re-
flects the strength of the penalisation. Our package provides the oppor-
tunity to calculate a maximal value for 𝜆 and to perform a grid search by 
gradually decreasing this value. To efficiently accelerate this grid search, 
we implemented warm starts. This means, the solution for the current 
value of 𝜆 is used as starting point for the subsequent value of 𝜆. Eventu-
ally, seagull provides a sequence of penalty parameters and calculates 
the corresponding path of solutions. 

Furthermore, the above optimisation problem is solved via proximal 
gradient descent (PGD; e.g. Parikh and Boyd, 2014). PGD is an exten-
sion of gradient descent for optimisation problems which contain non-
smooth parts, i.e. problems where the gradient is not available for the 
entire objective function. As PGD is an iterative algorithm, a proper step 
size between consecutive iterations is crucial for convergence. Determin-
ing such a step size is realised with backtracking line search. All imple-
mented algorithms are based on the R package Rcpp 1.0.3 (Eddelbuettel 
et al., 2019). 

4 Case study 
We analysed the blood DNA methylation profiles at about 1.9 million 
CpG sites and its association with chronological age in a stock of mice 
(𝑛 = 141). The data set is publicly available and described in detail in 
Petkovich et al. (2017). Such data are used to build regression models 
termed epigenetic clocks, which enable biological age to be predicted 
from DNA methylation status. Standard approaches employ elastic net 
regression, which performs well but typically results in only ~100 CpG 
sites with non-zero effect, limiting the potential for their genome-wide 
annotation and interpretation (Bell et al., 2019). We split the data set into 
training (𝑛 = 75) and validation (𝑛 = 66) data, where all age classes 
appeared almost equally  in both sets, and applied the sparse-group lasso 
variant of seagull 1.0.5. R scripts for the processing of the data are 
available in the supplementary material. 

Fig. 1A shows the model fit based on regression coefficients which 
led to the minimum mean squared error of chronological age in the 
validation set. The correlation between the chronological and the pre-
dicted age (“Methylation age”) was 95.8%, and 5095 non-zero effects 
were identified. Hence using only the identified fraction of CpG sites 
enabled a precise prediction of age. As an option for regulating the 
sparsity, increasing the convergence parameter of seagull by two magni-
tudes (10-6 to 10-4) increased the number of non-zero effects by one 
magnitude. Furthermore, we compared the outcome of seagull to that of 
the established R package SGL 1.3 (Simon et al., 2019). Its implementa-

tion is based on accelerated generalized gradient descent. Though the 
implemented convergence criteria differed between both packages, 
results were similar. The correlation between regression coefficients 
leading to the minimum mean squared error was 99.5% (Fig. 1B). The 
number of non-zero effects obtained with SGL was 8822. In contrast to 
SGL, seagull computed the solution in a fraction of the time (seagull: ~2 
hours; SGL: ~45 hours). In summary, seagull is a convenient envelope of 
lasso variants. Despite the similarities with SGL, only seagull offers the 
opportunity to incorporate weights for each penalised variable which 
enables further variants of the lasso.  
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Figure 1 (A) Relationship between observed (chronological) and predicted (methyla-
tion) age. Each blue dot represents a sample in each class of observed chronological age 
(3mos, 4mos, etc.). Mean methylation age and error bars are displayed in black for each 
class of age. (B) Methylation age obtained with seagull vs. SGL. Blue dots represent 
samples; the dashed line is a regression line with slope 1. 
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