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ABSTRACT
Motivation. Many C++ libraries for using Hidden Markov Models in

bioinformatics focus on inference tasks, such as likelihood calculation,
parameter-fitting, and alignment. However, construction of the state
machines can be a laborious task, automation of which would
be time-saving and less error-prone. Results. We present Machine
Boss, a software tool implementing not just inference and parameter-
fitting algorithms, but also a set of operations for manipulating and
combining automata. The aim is to make prototyping of bioinformatics
HMMs as quick and easy as the construction of regular expressions,
with one-line “recipes” for many common applications. We report data
from several illustrative examples involving protein-to-DNA alignment,
DNA data storage, and nanopore sequence analysis. Availability and
Implementation. Machine Boss is released under the BSD-3 open
source license and is available from http://machineboss.org/.
Contact. Ian Holmes, ihh@berkeley.edu

1 INTRODUCTION
Bioinformatics is a field littered with state machines, many of
them still functional. The venerable Needleman-Wunsch, Smith-
Waterman, and Gotoh algorithms from the 1970s and early
1980s can be thought of as aligning pairs of sequences to input-
output automata [35, 44, 16]. Gribskov’s protein profiles of the
late 1980s are state machines too [18]. The 1990s saw the
probabilistic interpretation of both these kinds of machine as
Hidden Markov Models (HMMs); respectively, the “pair HMM”
and the “profile HMM” [7, 12]. This inspired new applications
of HMMs in emerging areas of sequence analysis, such as
computational gene prediction [9]. The 2000s saw further evolution
of these ideas including HMMs for multiple sequence alignment
[20, 11], comparative genefinding [2, 32], and phylogenetics
[40, 41, 45]. HMMs (and automata more generally) continue
to represent the state of the art for many bioinformatic tasks;
for example, when reconstructing the indel histories of ancestral
sequences [30, 49, 21] or aligning protein to DNA [3]. Meanwhile,
the growing field of Deep Learning drew from HMM model-
fitting algorithms to train Recurrent Neural Networks (RNNs) with
sequential inputs and outputs; specifically, using Connectionist
Temporal Classification (CTC) which is based on the Forward-
Backward algorithm [17]. Inevitably, RNNs have found application
in bioinformatics, sometimes surpassing HMMs; for example, RNN
basecallers for nanopore sequence data [6] have been shown to
outperform the corresponding HMMs [10]. Even in cases such as
this, where RNNs have displaced HMMs, useful connections to

automata theory can sometimes still be made due to the underlying
parallels between CTC and HMM dynamic programming [42].

Over this period, a number of software libraries have been
developed for parsing, annotating, and aligning biological
sequences using generic state machines. Examples include
Dynamite [4], DART [20], GHMM [39], C4 [43], HMMoC [31],
HMMConverter [27], StochHMM [29], MuxStep [48], and ham
[36]. These various libraries all have slightly different capabilities
but typical features include the ability to work with state machines
of arbitrary topology, implementations of common dynamic
programming algorithms (like the Viterbi and Forward-Backward
algorithms), and generation of optimized code implementing
those algorithms. Some newer libraries for deep learning that
are frequently used in bioinformatics, such as TensorFlow [1],
often include implementations of algorithms with close state-
machine analogs, even though the libraries themselves are not
explicitly founded on automata theory. Examples include CTC
loss-minimization, or beam search to find the most likely output
sequence of a RNN.

Despite all of these libraries for doing automata-based inference
on sequences, there are few (if any) general-purpose tools for
working with the automata themselves as manipulable mathematical
objects. As one illustration of why this is useful, we consider
GeneWise, one of the most successful (and elaborate) automata of
bioinformatics. The underlying state machine of GeneWise aligns
an amino acid sequence to the (unspliced and imperfectly-observed)
protein-coding genomic DNA. In doing so, it simultaneously
models translation, splicing, and sequencing errors—as detailed
in the GeneWise paper [3]. The machine developed to do this
in full is highly intricate, containing 21 states and 93 transitions
when expressed as a Moore machine [34]; prototyping and
subsequent optimization yielded a reduced-size machine with 6
states and 23 transitions. (In using these descriptions to assess
the mathematical complexity of GeneWise and the computational
complexity of its algorithms, one should note that the transition
output labels are strings, not just individual characters, and the
transition weights include contributions from all the constituent sub-
models: translation, splicing, and sequencing errors.) GeneWise
also includes an algorithm that aligns profile HMMs of protein
domains to genomic DNA, accepting HMMER-format profiles as
used by the PFAM database [14]. All these state machines were
laboriously developed, validated and debugged by hand (albeit with
the help of Dynamite to generate the dynamic programming code
once the state machines were specified). In principle—given that the
GeneWise model can notionally be “factorized” into independent
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component machines for translation, splicing, and sequencing
error—this approach should be amenable to incremental variations
or enhancements; e.g. different profile HMM architectures (as may
be found in later releases of HMMER), alternate genetic codes,
or richer models of the context-dependent error profile of later-
emerging sequencing technologies like that of Oxford Nanopore
Technologies (ONT) [23]. In practice, however, because this
factorization of the GeneWise state machine into sub-machines is
performed manually, these kinds of upgrade would take a significant
amount of work—and quick prototyping would be impossible.

More generally, many bioinformatic automata can be viewed as
being derived from simpler state machines by operations such as
concatenation, composition (or multiplication), intersection, union
(or addition), reversal, complementation, substitution, or other well-
defined mathematical transformations. This is particularly useful
in cases which inherently involve transforming one sequence into
another via several steps. GeneWise is one example. Another
example occurs in the context of encoding binary information into
DNA as a storage medium: in doing this, it is desirable to avoid
repeated nucleotides (which are easily misread by DNA sequencers)
and this can be conceived of as converting a binary sequence to a
base-3 (ternary) sequence, followed by a conversion from ternary
to DNA. Each conversion can be formulated as an input-output
state machine (Figure 1); related coding operations, such as the
introduction of parity bits for error correction, can similarly be
formulated using state machines (Figure 2).

The approach of formally composing automata is well-
documented in other applications of automata in computer science,
for example in linguistics [33]. The automata, and the operations
to combine or transform them, can be expressed compactly
using the notation of linear algebra; in this view, an automaton
formally represents an infinite matrix whose rows and columns
are indexed by input and output sequences [5]. To take one
example, the GeneWise combination of three translation, splicing,
and error sub-machines corresponds straightforwardly to a three-
way matrix multiplication. For some tasks, such as statistical
phylogenetic alignment (where such automata generalize the idea
of the “substitution matrix” to whole sequences, allowing indels
as well as substitutions), this view of state machines as algebraic
objects that can be systematically combined on the branches of a
tree is absolutely central to the underlying probabilistic framework
[20, 37, 45, 38, 49, 21]. Even without adopting the linear algebraic
view, there is clear utility to being able to transform automata by
simple operations like reverse-complementation or concatenation.
Yet, for all the general-purpose state-machine libraries, this ability
to formally operate on the state machines themselves is not
generally available. Certainly, most libraries allow state machines
to be constructed programmatically, by building appropriate data
structures directly in the source code that links to the library.
However, this is an intricate and error-prone procedure, and is a
far cry from being able to construct state machines from modular
components using reliable, general-purpose implementations of
elementary operations such as “multiply”, “concatenate”, or
“reverse-complement”.

Motivated by this gap in the bioinformatics tool chain, and
finding ourselves repeatedly in need of reference implementations
of automata-theoretic algorithms (for prototyping and debugging
purposes in both HMM- and RNN-based applications) that allowed
for algebraic manipulation of the underlying state machines, we

developed Machine Boss, an open source software package that
meets this need. In the Methods section and the Supplementary
Information, we review the representation of state machines used
throughout Machine Boss, and outline its capabilities. In the
Results section, we describe nontrivial example applications of
Machine Boss to several problems of interest; these include
incorporating context-dependent error models (appropriate for
nanopore sequencing) into GeneWise-like protein-to-DNA aligners,
decoding the output of neural network basecallers for ONT
sequencing instruments, and prototyping modular codes for
encoding binary information in DNA. In the Discussion, we
discuss how this sort of prototyping fits into a bioinformatics
tool development workflow, and briefly mention several further
applications.

2 RESULTS
2.1 Aligning protein sequences to nanopore reads with

a context-dependent error model
Our first test of Machine Boss was an experiment to see whether
richer error models might benefit a GeneWise-like protein-to-DNA
search. Specifically, we sought to prototype an application to search
amino acid sequences against individual nanopore reads, to see if
they contained coding genes for known E.coli proteins. To do this,
we combined a protein-to-DNA alignment model with two alternate
error models: a “symmetric context-independent” error model
parameterized by a substitution matrix and gap opening/extension
parameters, and a richer “asymmetric context-dependent” error
model with separate parameters for insertion and deletion (hence
“asymmetric”), that also allows the error probabilities at a particular
position of the genome to depend on the neighboring bases
(hence “context-dependent”). For this application we were primarily
interested in the power of the DNA substitution model; to reduce
computation time, we did not incorporate an amino acid substitution
model (as the analogous GeneWise algorithm does), but this can
easily be incorporated.

The datasets and the construction and parameterization of
the constituent state machines are described in more detail in
the Methods and Supplementary Information. The protein-to-
DNA model with symmetric context-independent errors has 242
states and 803 transitions (329 IO-conditioned). The model with
asymmetric context-dependent errors has 1,349 states and 7,464
transitions (2,558 IO-conditioned).

After constructing the state machines, we used Machine Boss to
generate custom C++ code for the Forward algorithm, compiled this
code, and ran it to scan for a representative E.coli IS26 transposase
protein (insB1, 167aa).

Figure 3 shows the results of this experiment. Broadly, both error
models performed similarly, scoring on average around 1.4 bits per
codon aligned. (This is a rather low alignment score, reflecting the
extremely noisy nature of the training alignments.) We observed a
small (3%) but significant improvement in log-odds scores for true
positives when using the asymmetric context-dependent model, with
negligible effect on log-odds scores for true negatives.

To investigate how much of this improvement arose from the
separate insertion and deletion probabilities, we prototyped a third
error model, based on the symmetric context-independent model
(and having similar state and transition counts), but relaxing the
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symmetry constraint between insertions and deletions. Results
for this model are not shown in Figure 3 but its log-likelihoods
for protein-to-DNA alignment generally lie in between the other
two models, with a relative improvement of around 1% over the
symmetric context-independent model. Thus, the improvement
from allowing context-dependence appears to be roughly double the
improvement from allowing symmetry-breaking, for this task.

2.2 Aligning protein domain profiles to nanopore reads
In the previous section we developed a state machine to model
nanopore-specific sequencing errors and used that to better align
protein sequences to nanopore reads. Machine Boss is able to
combine arbitrary state machines, so the previous error models can
be easily combined with other bioinformatics state machines. We
next sought to investigate whether a richer error model would also
benefit a profile HMM search. Instead of aligning a single protein
sequence to a nanopore read, we combined a profile HMM with
our nanopore specific error model and aligned it to the same set of
nanopore reads from the previous section.

For this experiment we again focused on the insB1 transposase
from the previous example and used the Pfam DDE Tnp IS1
domain (accession PF03400), which profiles its catalytic domain.
We imported the HMMER-formatted profile HMM from the Pfam
database into Machine Boss, and composed it with each of two
error models: the symmetric context-independent error model, and
the asymmetric context-dependent model. We did not use the
asymmetric context-independent model in this experiment.

Results are shown in Figure 4. Proceeding from the symmetric
context-independent model to the richer asymmetric context-
dependent model, we see a relative increase in the log-likelihood
of 4.1% for true positives and 2.2% for true negatives.

2.2.1 A note on code generation and performance For this
experiment we did not generate custom C++ code, for the reason
that the Profile HMM-derived models are immense: even a
relatively small model such as DDE Tnp IS1, which has 131 match
states, grows to 50,766 states and 174,118 transitions (93,631 IO-
conditioned) when combined with a DNA-to-protein model and the
simplest nontrivial error model (symmetric context-independent).
This in turn generates multiple C++ source files that are over
4Mb in size, including functions with over 50,000 lines of code
(since each state requires at least one line), which in practice cause
severe problems for C compilers (we were not able to compile
these files using Apple LLVM version 9.0.0 / clang-900.0.39.2).
It should yet be possible to compile these files by breaking up
the generated code into smaller subroutines, at some small cost to
performance; alternatively, it would be straightforward to generate
efficient platform-specific assembly language directly, bypassing
the C compiler altogether. We did not pursue either of these
ideas, but instead for the profile HMM examples we used Machine
Boss’s internal implementation of the Forward algorithm, which
dynamically interprets the state machine (and so is generically
re-usable for all models).

We would expect generic interpreted code to run slower than
custom-generated compiled code. Empirically, we observe the
compiled code runs around 40-fold faster than the interpreted code
(e.g. on a 3.5GHz Intel Xeon E5, the compiled Forward algorithm
runs at around 180M transitions/sec while the interpreted Forward

algorithm runs at around 4M transitions/sec; these rates refer to the
IO-conditioned transition counts).

2.3 Decoding the most likely output sequence of a
neural network basecaller

Our third experiment tests the decoding algorithms used
for basecalling on the Oxford Nanopore Technologies (ONT)
sequencing platform. As a single strand of DNA (or RNA) passes
through the protein nanopore, it perturbs an electrical current
signal in a sequence-dependent way. A neural network trained
with Connectionist Temporal Classification (CTC, [17]) outputs a
probability distribution over sequences, which requires an additional
decoding step to find the most likely sequence. CTC was developed
for speech recognition and first applied to nanopore sequencing by
Chiron [46], and was later adopted by various ONT basecallers.

Bonito (https://github.com/nanoporetech/bonito) is ONT’s most
recent research basecaller: it uses a convolutional architecture based
on QuartzNet [26], and is trained with CTC loss. In practice, Bonito
uses Viterbi decoding, which simply takes the argmax of the logits
and concatenates the resulting nucleotide and gap characters.

In this test, we compare the use of a Viterbi decoding scheme,
which just finds the single most probable path through the data,
with a beam search, a heuristic search algorithm which looks for
the best label sequence. The CTC probability outputs are similar
to profile HMMs and as such can be interpreted as state machines
[42]. We evaluated these algorithms on a small sample of 100 reads
from a publically available R9.4 Klebsiella pneumoniae dataset
[50]. Accuracy was evaluated by aligning basecalled reads with
minimap2 [28] to a reference genome from the same study. Each
read was basecalled with a version of Bonito modified to save
the network output, which was then loaded as a state machine
into Machine Boss using the --recognize-merge-csv option,
which constructs a state machine that merges repeated characters in
the same manner as the CTC loss, as described in [17].

Results are shown in Figure 5. We found that the beam search
yielded an increase of 0.2% median accuracy over Viterbi, though
in practice its greater computational cost would likely not be worth
such a slight improvement. These results were obtained with a beam
width of 5; a larger beam size of 50 did not noticeably improve the
results.

In addition to the decoding of single reads, more elaborate
dynamic programming algorithms for consensus decoding [42] can
also easily be implemented and tested in Machine Boss. In this case
performance is too slow for practical application to large datasets,
though these reference implementations can be used to debug
domain-specific software. In our case, Machine Boss has helped
with testing our own consensus basecalling software PoreOver
(https://github.com/jordisr/poreover, manuscript in preparation).

2.4 Constructing a repeat-avoiding code for DNA data
storage

Our last computational experiment is motivated not by sequence
analysis, but by analysis of the state machines themselves. We
sought to investigate the complexity of error-tolerant codes for
storing information in DNA.

We developed a state machine for converting binary information
to DNA sequences using, as a starting point, the DNA storage code
developed by Goldman et al [15]. The central idea of this code is
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that DNA homopolymers are often misread by many sequencing
technologies, so this class of errors can be avoided altogether
by never repeating a base in the encoded sequence. This leaves
three nucleotides available for encoding information at any given
position in the sequence, which corresponds to a radix-3 (ternary)
representation.

We implement this as a multiplication of two machines: one that
converts binary to ternary (with some unavoidable inflation of the
message size), and a second machine that converts ternary to non-
repeating DNA. This configuration is shown in Figure 1.

Using Machine Boss, we were able to successfully prototype this
machine and to confirm that it accurately encodes binary messages
to nonrepeating DNA strings and decodes in the opposite direction,
with the ratio of binary to DNA message lengths asymptotically
approaching the expected limit of 3

2
. This ratio is calculated

as follows. The conversion of binary to ternary is approximate,
batching the input bits into triplets (with 23 = 8 possibilities
per batch) and outputting trits—i.e. ternary digits—in pairs (with
32 = 9 possibilities per batch). Thus, the input sequence has 3

2

as many characters as the output. The ternary-to-DNA conversion
converts each ternary digit to a single nucleotide, so the overall
input/output ratio for the full binary-to-DNA conversion is also 3

2
.

This is slightly wasteful given that the Shannon information
content of a nonrepeating DNA sequence is log2 3 ' 1.58
bits/symbol, slightly greater than 3

2
. The wastage is incurred by the

batched binary-to-ternary conversion, since there are more output
possibilities than input possibilities for each batch. As can be seen
in machine A of Figure 1, there is no triplet of input bits that
will ever output the pair of trits “22”. This reflects a more general
phenomenon that a finite-state machine cannot perfectly convert a
radix-2 input to a radix-3 output (essentially, it can only compute
the last digit of this conversion, which amounts to dividing the input
by 3 and outputting the remainder; the quotient must then be fed
into a similar machine to compute the second-last digit, and so on).
It is possible to get quite close to the limit, though, by batching
input bits in this way, and a batch size of 3 bits is a reasonably
efficient compromise in terms of the number of states required by
the machine; no improvement can be gained by improving the batch
size until one reaches 11 bits, whereupon the ratio of input/output
message lengths is 11/7 ' 1.57, but this requires O(211) states
to track each batch. Such a machine can readily be prototyped with
Machine Boss, but the algorithms to manipulate and use the state
machines become quite cumbersome for large machines (in addition
to the well-known time complexity of dynamic programming to
state machines, Machine Boss performs operations like topological
sort and state elimination that can be slow for very large machines).

The input/output ratio of 3
2

is approached asymptotically from
below, because there is a necessary overhead involved in encoding
the message length itself; our machine encodes this by employing
the otherwise-unused pair of output trits “22” as an end-of-message
terminator sequence. For simplicity, this mechanism is not included
in Figure 1; when it is included, the combined machine for binary-
to-nonrepeating-DNA conversion has 85 states and 132 transitions
(44 IO-conditioned). The component machines were constructed
with a short JavaScript program, and are available as presets in
Machine Boss.

We can readily extend the above-described approach to study
more elaborate DNA storage codes. For example, we can develop
a DNA-encoding machine that avoids not just repeated nucleotides

in the output, but also avoids certain nucleotide motifs, such
as restriction enzyme sites; briefly, the transition graph of
such a machine can be found by starting with a de Bruijn
graph over k-mers, from which the prohibited k-mers are then
deleted. (Of course, restriction enzyme sites that contain repeated
nucleotides would already be excluded.) We might also incorporate
error-correction units, such as Hamming codes or indel-resistant
“watermarks”. Finally, we can incorporate technology-specific
models of sequencing error, such as the nanopore error models
described in previous sections, when decoding messages. All
these variations can be implemented as modular machines and
factored into the “matrix multiplication” of Figure 1. For example,
introducing a Hamming(7,4) error-correcting parity code (Figure 2)
to the nonrepeating-DNA code (Figure 1) yields a machine with
1,365 states and 1,812 transitions (292 IO-conditioned), whose
input/output ratio is 4

7
× 3

2
= 6

7
. A deeper exploration of these ideas,

using state machines to prototype the codes and investigating their
error-correcting properties by simulation, is available in a separate
preprint [19].

3 METHODS
Detailed descriptions of state machines and sequence data may be
found in the Supplementary Information to this paper.

3.1 Weighted finite-state machines
The following definitions mostly parallel those found elsewhere [33,
49].

For our purposes, a machine is a tuple T = (ΩI ,ΩO,Φ, τ,Θ,Ψ, υ)
where ΩI is an input alphabet, ΩO is an output alphabet, Φ is a
nonempty ordered list of states (of which the first element is the start
state and the last is the end state), τ ⊆ Φ × (ΩI ∪ {ε}) × (ΩO ∪
{ε}) × Φ is a set of transitions between states (labeled with input
and/or output symbols), Θ is a set of named parameters (a subset of
which are assigned nonnegative real values), Ψ is a set of constraints
(partitioning Θ into rates, mutually exclusive probability, and other
parameters), and υ : τ → Λ is the transition weight function, where
Λ represents the set of closed-form differentiable expressions over
Θ (with an expression grammar that allows real numbers, arithmetic
operators, powers, exponentials and logarithms). LetM denote the
set of all such possible machines.

For a given input sequence x ∈ Ω∗I and output sequence y ∈ Ω∗O ,
let Tx,y be the total weight of all paths through the transition graph
of T that have input label x and output label y. The sequence
weight Tx,y can be computed by the Forward algorithm in time
O(|x| × |y|) and memory O(min(|x|, |y|)). The derivatives ∂Tx,y

∂λ

for λ ∈ Θ can be computed using the Forward-Backward algorithm.
(Machine Boss implements these algorithm only for the case when
all transition weights can be computed as real values, i.e. all relevant
parameters are specified.)

This notation encourages us to think of T as being like an infinite
matrix, indexed by sequences, with Tx,y being the element in row
x and column y. We can then, for example, multiply machines like
matrices: if T,U ∈ M, then we can readily find a machine TU ∈
M such that (TU)x,z =

∑
y Tx,yUy,z . Other matrix expressions

such as T + U , transpose(T ), or αT (for some scalar α) are also
straightforward to implement.
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A machine for which ΩI = ∅ is called a generator. A machine for
which ΩO = ∅ is called a recognizer. We can, for example, think
of profile HMMs as generators (because they generate sequences as
output) and regular expressions as recognizers (because they accept
sequences as input). The labeling of one sequence as “input” and
the other as “output” is arbitrary and, for many purposes, largely
irrelevant. In the linear algebra analogy, the distinction between a
generator and a recognizer corresponds to the choice as to whether
to represent a vector in row or column form, and exchanging the
“input” and “output” labels corresponds to taking the transpose.

3.2 Machine Boss capabilities
Machine Boss defines a (validatable) JSON format for machines in
M, and implements the following operations:

• Matrix-like operations such as multiplication, transposition,
addition, intersection (a.k.a. point product or Hadamard
product), the matrix identity (for a given alphabet), and
multiplication by a scalar;

• String-like operations such as concatenation, reversal, reverse-
complement, repetition, Kleene closure, local matching
(padding with flanking states),

• HMM transition graph-related operations such as topological
sorting, elimination of ε-transitions, elimination of redundant
or inaccessible states, downsampling, normalization, and
various probabilistic weightings;

• Construction of generators and recognizers for particular
sequences, elementary patterns (e.g. wildcards), or regular
expressions;

• Import of models from various sources such as HMMER files
[13], FASTA files, CSV files, or HTTP fetches from PFAM
[14] or DFAM [22];

• Export of models to GraphViz format;

• Useful built-in “preset” machines such as probabilistic Smith-
Waterman [8], GeneWise-like models [3], DNA storage codes
[15], the Jukes-Cantor model [25], and the Thorne-Kishino-
Felstenstein model [47];

• Implementations of common dynamic programmic (Forward,
Forward-Backward, Viterbi) and HMM-related algorithms
(Baum-Welch and other forms of Expectation Maximization,
respecting the user-specified parameter constraints), with
banding heuristics;

• Implementation of search algorithms for finding the highest-
weighted input or output sequences, or sampling such
sequences probabilistically by weight; including prefix search,
beam search, stochastic prefix search, MCMC, and simulated
annealing;

• Generation of C++ code (32- or 64-bit) and/or JavaScript code
for the Forward algorithm;

• Multiple convenient ways to specify input and output
sequences (as strings from the command line, JSON arrays,
or FASTA files);

• A flexible logging system for progress reports and debugging
messages.

To compute the sum over all state paths, the Forward algorithm
requires that the “silent” (i.e. ε-labeled) subset of the transition
graph is acyclic and topologically sorted [12]. Most Machine Boss
operations attempt to maintain this property in the state machines
that they construct, automatically topo-sorting and eliminating
silent cycles by marginalization. However, for large state machines
(particularly when the transition weights are expressed symbolically
as closed-form algebraic formulae, rather than as real numbers)
these operations can become computationally expensive. For such
cases, Machine Boss also offers inexact versions of the operations
that either attempt to break silent cycles (by deleting silent
transitions i → j where j < i, until no cycles remain) or just leave
them in place (acknowledging that the Forward algorithm may then
give a technically incorrect, albeit stable, result).

With the operations described, prototyping and evaluating new
machines with Machine Boss is a relatively quick process that can
take place interactively on the command line. In fact, many of these
operations can be accessed in multiple ways: from the command
line, via the JSON API, or by interfacing directly to the C++ API.

Machine Boss compiles on Apple Mac and Linux systems to
a command-line executable with limited dependencies (GSL, and
SSL if using the network capabilities) and can also be compiled to
WebAssembly using emscripten (and thus run in the web browser,
or in node).

4 DISCUSSION
Machine Boss can be useful for prototyping, testing, and theoretical
analysis of state machines. In most cases, it is not suitable for
developing polished bioinformatics tools, since further heuristic
or custom optimizations of the generated state machines and code
(beyond Machine Boss’s automated capabilities) is often possible
and desirable.

As an example of this further optimization, our context-dependent
error model has 50 states: a start state, an end state, and 48
states which consist of match, insert, and delete states repeated
in 16 different flanking contexts. However, it is unnecessary to
allocate storage for all 50 states during dynamic programming: the
flanking context is always exactly determined by the position in
the input genomic sequence, so only 5 states are ever accessible
at any position in the dynamic programming matrix. An optimized
implementation could make use of this, but Machine Boss currently
lacks the sophistication to deduce such optimizations automatically.
Rather, Machine Boss can be used (as we have done here) to
evaluate whether such development is worthwhile, and to provide a
robust reference implementation against which the results of a more
optimized version can be checked.

In this manner, we have also found Machine Boss useful for
debugging deep learning algorithms, such as beam-search decoding
of RNNs [42] The outputs of ONT’s recent RNN basecallers can be
interpreted as transition weights in a finite-state machine [24, 50]. In
analyzing and improving on these results, we have found Machine
Boss useful as a debugging and profiling tool.

Compared to recent deep learning approaches, automata
retain some merits: they are highly interpretable, conceptually
straightforward, and generally predictable. The interpretability is
especially appealing when paths through the automaton have clear
meaning—as is the case when state machines are used to represent
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biological processes such as translation and splicing, information-
theoretic processes like radix-based coding, or evolutionary
processes such as indels (for which purpose Machine Boss includes
a reference implementation of the Thorne-Kishino-Felsenstein
model [47]). The software development was motivated directly by
these cases, but the algorithms implemented are general enough that
we have been able to use it for applications in nanopore analysis as
well. The README file in the Machine Boss repository describes
several further applications, including machines to search for a
PROSITE regular expression in a protein sequence and to count
copies of this motif in a (translated) DNA sequence. As with the
examples in this paper, the power of this approach rests on the ability
to combine such state machines in a general way, together with new
machines as yet undeveloped.
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[6]V. Boz̆a, B. Brejová, and T. Vinar̆. DeepNano: Deep recurrent
neural networks for base calling in MinION nanopore reads.
PLoS ONE, 12(6):e0178751, 2017.

[7]M. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sjölander, and
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Fig. 1. A nonrepeating DNA storage code can be factored into two separate state machines: one for converting binary sequences to ternary, and one for
converting ternary to DNA [15]. In this diagram, a state machine transition is annotated x/y if it inputs x and outputs y; the symbol ε denotes the empty
string. (A) Machine for (imperfectly) converting a binary input sequence into ternary, batching the input into groups of three binary digits and outputting pairs
of ternary digits. This machine is inefficient in that the output is log(9)/ log(8) ' 1.06 times longer than it would be for a perfect conversion from base 2 to
base 3 (because no triplet of input bits is ever converted the pair of output trits “22”, which means one of the nine possible output-trit pairs is wasted; more
fundamentally, perfect conversion between indivisible integer bases is not possible with a finite state machine). In applications where the length of the input is
not known in advance and so must be signaled with an end-of-file character (EOF), the ternary sequence “22” can be used to encode this EOF. (B) Machine
for converting a ternary input sequence into a nonrepeating DNA sequence. The output of this machine is log(4)/ log(3) ' 1.26 times longer than the DNA
would be if repeated nucleotides are allowed. (AB) Machine for a binary input sequence into a nonrepeating DNA sequence, obtained by “multiplying” A
and B. The output of this machine is 4/3 times longer than the Shannon limit (obtained by multiplying the inefficiencies of the two constituent machines).
The machine diagrams in this figure were generated automatically using Machine Boss and GraphViz.
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Fig. 2. A state machine that implements the Hamming(7,4) error correction code, which interleaves 4 data bits with 3 parity bits, has 70 states and 85
transitions. A transition is annotated x/y if it inputs x and outputs y; the symbol ε denotes the empty string. The diagram was generated automatically using
Machine Boss and GraphViz.
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Fig. 3. A richer error model slightly improves the discriminative power of a protein alignment to noisy sequencing reads. The plot shows the smoothed density
of log-odds ratios of global alignments of E.coli protein insB1 to nanopore reads that fully contain a gene for that protein (“Positives”), versus those that don’t
contain that protein or close homologs (“Negatives”), using error models with and without insertion/deletion asymmetry and context dependence (SCI =

symmetric context-independent; ACD = asymmetric context-dependent). The log-odds ratio for a read is L = log2
P (read|H1)

P (read|H0)
where H1 is the hypothesis

that the read contains the insB1 gene and H0 the hypothesis that it does not. The mean of L is shown for each group. Using the asymmetric context-dependent
error model increases the mean of the true positives (∆L ' 6.9 bits, a relative increase of around 3%) with negligible effect on the true negatives (∆L ' 0.1

bits).
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Fig. 4. A richer error model slightly improves the discriminative power of a protein profile HMM search of noisy sequencing reads. The plot shows the
smoothed density of log-odds ratios of the PFAM domain DDE Tnp IS1 (PF03400) for the IS1 transposase, aligned to nanopore ONT reads that fully contain
a gene for the corresponding insB1 protein (“Positives”), versus those that don’t contain that protein or close homologs (“Negatives”), using error models
with and without insertion/deletion asymmetry and context dependence (SCI = symmetric context-independent; ACD = asymmetric context-dependent). The

log-odds ratio for a read is L = log2
P (read|H1)

P (read|H0)
where H1 is the hypothesis that the read contains the insB1 gene and H0 the hypothesis that it does not.

The mean of L is shown for each group. Using the asymmetric context-dependent error model increases the mean of the true positives (∆L ' 4.1 bits) with
a smaller effect on the true negatives (∆L ' 2.2 bits).
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Fig. 5. A beam-search decoding of the maximum likelihood sequence of Oxford Nanopore’s Bonito basecaller slightly outperforms a Viterbi best-path
decoding on a sample of 100 Klebsiella pneumoniae reads. The percent accuracy is defined as the number of identities in the alignment divided by the total
alignment length. Median accuracy with Viterbi was 92.8% while beam search yielded a median accuracy of 93.0%. This slight increase in accuracy does
incur a computational cost: the beam search (width of 5) takes roughly 1.25 times as long as the Viterbi decoding. We further observe that a bespoke Python
implementation of Viterbi decoding (optimized for this model architecture) was roughly 5 times as fast as Machine Boss’s generic C++ implementation of
Viterbi decoding (which spends most of its time constructing and topo-sorting the state machine). This reinforces the conclusion that Machine Boss is better
suited to prototyping and debugging during development, than to computationally intensive end-user applications.
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