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Abstract 

Autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD) and attention-

deficit/hyperactivity disorder (ADHD) are clinically and biologically heterogeneous 

neurodevelopmental disorders (NDDs). The objective of the present study was to integrate brain 

imaging and behavioral measures to identify new brain-behavior subgroups cutting across these 

disorders. A subset of the data from the Province of Ontario Neurodevelopmental Disorder 

(POND) Network including participants with different NDDs (aged 6-16 years) that underwent 

cross-sectional T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) 

scanning on the same 3T scanner, and behavioral/cognitive assessments was used. Similarity 

Network Fusion was applied to integrate cortical thickness, subcortical volume, white matter 

fractional anisotropy (FA), and behavioral measures in 176 children with ASD, ADHD or OCD 

with complete data that passed quality control. Normalized mutual information (NMI) was used 

to determine top contributing model features. Bootstrapping, out-of-model outcome measures 

and supervised machine learning were each used to examine stability and evaluate the new 

groups. Cortical thickness in socio-emotional and attention/executive networks and inattention 

symptoms comprised the top ten features driving participant similarity and differences between 

four transdiagnostic groups. Subcortical volumes (pallidum, nucleus accumbens, thalamus) were 

also different among groups, although white matter FA showed limited differences. Features 

driving participant similarity remained stable across resampling, and the new groups showed 

significantly different scores on everyday adaptive functioning. Our findings open the possibility 

of studying new data-driven groups that represent children with NDDs more similar to each other 

than others within their own diagnostic group. Such new groups can be evaluated longitudinally 

for prognostic utility and could be stratified for clinical trials targeted toward each group’s 

unique brain and behavioral profiles. 
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 INTRODUCTION 

Neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD), pediatric 

obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD), are 

often associated with poor cognitive and functional outcomes, although long-term trajectories 

vary considerably[1–4]. There are high rates of co-occurrence between different NDDs[5], as 

well as similarities in functional impairment[6] and clinical features (e.g. inattention[7], 

repetitive behaviours[5]). Together with similarity in genetic variants implicated in risk across 

NDDs[8], these convergences suggest that some children with different NDD diagnoses may be 

more similar to each other at the biological and behavioral level despite current distinct 

categorical (i.e., DSM-5/ICD-10-based) classifications. 

  

Recent transdiagnostic neuroimaging studies highlight the heterogeneity within and across 

different NDDs and emphasize the need for new research models to move the field forward[9–

11]. For example, a prior study from our group using the transdiagnostic Province of Ontario 

Neurodevelopmental Disorders (POND) dataset showed that children with ASD, ADHD, or 

OCD all featured non-distinct corpus callosum alterations compared to typically developing 

controls [12]. A continuous positive association between white matter microstructure and 

adaptive (everyday) functioning across children, irrespective of NDD category was also found. 

Others have also reported on the absence of clear biological distinctions on structural or 

functional neuroimaging measures when comparing different NDD diagnostic groups [13–18] 

  

Data-driven clustering approaches offer a methodological alternative to conventional 

comparisons between clinically defined groups. This alternative approach may better disentangle 

heterogeneity within and across current diagnostic categories to identify participant subgroups 

that may be more similar to each other in brain or behavior[10]. Some of these approaches use 

data integration techniques to identify data-driven subgroups beyond using neuroimaging[19] or 

behavioral features alone [13]. Different clustering techniques can identify subgroups of 

participants across disorders with more similar brain-behavior profiles than those within a 

disorder[20,21], including a recent effort in the POND sample that integrated cortical thickness 

and behavioral measures, showing that identified clusters did not divide along diagnostic 

boundaries[22]. 
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The present study aims to build on these efforts by simultaneously integrating different brain 

imaging phenotypes (regional cortical thickness, subcortical volume, and white matter tract 

fractional anisotropy, FA) with behavioral measures in children with primary ASD, ADHD or 

OCD clinical diagnoses using Similarity Network Fusion (SNF), a data integration approach[23]. 

SNF identifies participant similarity networks by integrating within and across data types, and 

thus groups participants together who are most similar to each other. We hypothesized that we 

would find new groups, each comprised of children with different NDDs who would show 

similar brain imaging and behavioral features to each other (i.e. within group) but different from 

other participants (i.e. between group); further, these differences would be of larger effect size 

than those found using categorical NDD diagnoses. We then examined whether differences 

between new groups would extend to out-of-model measures (e.g. functioning), hypothesizing 

again that a similar pattern would emerge.  Finally, we examined the stability of our model, and 

explored whether supervised machine learning could be used to compare accuracy of subgroup 

identification using different sets of top contributing model features. 

  

MATERIALS AND METHODS 

Participants: Participants included children recruited through the POND Network between June 

2012 to July 2017 from the Hospital for Sick Children and Holland Bloorview Kids 

Rehabilitation Hospital who were all scanned on the same Siemens Tim Trio (Malvern, Pa.) 3T 

magnetic resonance imaging (MRI) scanner located at the Hospital for Sick Children (Toronto, 

Canada). Additional data collection through POND is ongoing post scanner upgrade to the 

PrismaFIT, which was not analyzed for this report. Each institution received approval for this 

study from their respective research ethics boards. Following a complete description of the study, 

written informed consent/assent from primary caregivers/participants was obtained. Inclusion 

criteria included: age<18 years, presence of a primary clinical diagnosis of ASD, ADHD or 

OCD, confirmed using the Autism Diagnostic Interview-Revised[24] and Autism Diagnostic 

Observation Schedule-2[25] for ASD, Parent Interview for Child Symptoms[26] for ADHD, and 

the Schedule for Affective Disorders–Children’s Version (Kiddie-SADS)[27] and the Children’s 

Yale-Brown Obsessive Compulsive Scale[28] for OCD. Full-scale IQ was estimated using age-

appropriate Wechsler scales in all participants. After quality control of MRI data (n=57 

removed), removal of participants with missing behavioral data (n=26) and those older than 16 
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years (n=7) to ensure similar age variance across groups (Figure S1), data from a total of 176 

participants were used for the main analyses (Table 1; see Supplementary Materials and 

Methods). 

  

Clinical/Behavioral Assessments: Behavioral measures were selected to capture clinical 

features of each NDD that varied dimensionally across participants. Seven total raw parent-

report scores from five behavioral scales were selected as input features for SNF analysis: the 

Child Behavior Checklist (CBCL 6-18) externalizing and internalizing broad-band scores[29]; 

Toronto Obsessive-Compulsive Scale (TOCS) total score[30]; Social Communication 

Questionnaire (SCQ) total score[31]; Repetitive Behaviors Scale-Revised(RBS-R) total 

score[32]; and total Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour 

(SWAN) inattention and hyperactivity/impulsivity item scores[33]. The parent-reported general 

adaptive composite score from the Adaptive Behaviour Assessment System-II(ABAS-II)[34] 

capturing cross-disorder impairments in adaptive functioning was also assessed in participants. 

 

Table 1. Sample characteristics presented by diagnostic group 

  1. ASD 

n=88 

M (SD) 

2. OCD 

n=39 

M (SD) 

3. ADHD 

n=49 

M (SD) 

X2=3 p value Post-hoc 

Sex (F) 88 (20%) 14 (36%) 7 (12%) 7.3 p=0.03 2>3 

Age (years) 11.5 (2.9) 12.1 (2.2) 10.1 (2.0) 15.5 p<0.0001 2,1>3 

FSIQ  97.7  

(17.0) 

n=78 

115.0 

(16.5) 

n=17 

101.8  

(15.0)  

n=41 

12.9 p<0.0001 2>3,1 

CBCL 

Internalizing  

64.1 (9.8) 65.5 (9.3) 62.5 (9.1) 2.1 n.s   

CBCL 

Externalizing  

58.7 (9.5) 54.6 (11.5) 63.1 (8.8) 14.8 p<0.0001 3>1>2 
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TOCS -5.6 (22.4) 16.3 (19.3) -18.3 

(22.3) 

47.2 p<0.0001 2>1>3 

SWAN I 4.5 (2.9) 2.3 (3.0) 6.2 (2.2) 33.2 p<0.0001 3>1>2 

SWAN H/I 3.3 (2.9) 1.5 (2.4) 4.7 (3.0) 28.3 p<0.0001 3>1>2 

RBS-R 30.4 (20.4) 27.1 (22.3) 14.0 (11.8) 27.5 p<0.0001 1, 2>3 

SCQ 18.4 (7.9) 5.9 (7.2) 8.3 (5.7) 73.2 p<0.0001 1>3>2 

GAC 70.2 (16.1) 

n=85 

93.7 (21.6) 

n=34 

78.4 (15.6) 

n=48 

30.0 p<0.0001 2>3>1 

All descriptive statistics are represented as means with standard deviations indicated in brackets except for self-

reported sex, where percentage of females is included in brackets. Chi-squared (sex) and Kruskal-Wallis tests (all 

other measures) were used to test group differences. All participants were included in statistics except in the case of 

IQ and ABAS-II where a subset of the sample was used with available data (as indicated). ASD=Autism Spectrum 

Disorder, OCD=Obsessive Compulsive Disorder, ADHD=Attention-Deficit/Hyperactivity Disorder, F=female, 

FSIQ=Full-Scale Intellectual Quotient (estimated using WASI=Wechsler Abbreviated Scale of Intelligence or 

WISC=Wechsler Intelligence Scale for Children), CBCL Internalizing/Externalizing=Child Behaviour Checklist 

Internalizing or Externalizing t-score. Raw scores for Toronto Obsessive-Compulsive Scale (TOCS), Strengths and 

Weaknesses of Attention-Deficit/Hyperactivity-symptoms and Normal Behaviours (SWAN) inattention (I) and 

hyperactivity/impulsivity (H/I), Repetitive Behaviours-Revised (RBS-R), and Social Communication Questionnaire 

(SCQ) presented. The General Adaptive Composite (GAC) Scaled Score for the Adaptive Behaviour Assessment 

System-II (ABAS-II) is also presented. 

 

MRI Acquisition Parameters: All MRI data was acquired on the same 3T scanner using a 12-

channel head coil. T1-weighted and diffusion-weighted acquisitions are detailed in 

Supplementary Materials and Methods [12,17,35].  

Image Analysis: Cortical thickness and surface area values (for 68 regions) and subcortical 

volumes (for 14 regions) were derived from T1-weighted images using the Desikan-Killiany 

Atlas in FreeSurfer (v.5.3)[36] for regional parcellation. Diffusion MRI data were preprocessed 

using a combination of FSL(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and 

MRtrix(http://www.mrtrix.org/) to denoise, upsample the data, and correct for motion and eddy 

currents (Supplementary Materials and Methods). Tract-based spatial statistics(v1.2)[37] and the 
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ENIGMA DTI pipeline were used to estimate white matter FA as an indirect index of white 

matter microstructure (for 46 regions) [38]. Imaging metrics for subcortical volume, cortical 

thickness and white matter FA were included as brain-based input features in the SNF analysis. 

Subcortical volumes were divided by intracranial volume. Surface area was used subsequently as 

an out-of-model measure to test data-driven group differences 

Quality Control: Please see Supplementary Materials and Methods for quantitative and 

qualitative MRI quality control details. 

  

SNF Data Integration and Cluster Determination: SNF(v2.3.0 R package) was used to 

integrate structural imaging (cortical thickness, subcortical volume, white matter FA) and 

behavioral (CBCL, SCQ, RBS-R, SWAN, TOCS scores) data types (see Table S3 listing all SNF 

input features). Separate networks describing participant similarity for each data type were first 

created, followed by the use of a nonlinear combination method to iteratively fuse networks for 

each data type into a single participant similarity network representing the full spectrum of 

included features[23]. Similarity matrices for each of the four data types (i.e., cortical thickness, 

subcortical volume, white matter FA and behavioral data) were calculated using Euclidean 

distance with a nearest neighbours value of 18 and normalization parameter of 0.8, based on 

consultation with developers and suggested nearest neighbour value of sample size/10. 

Normalized mutual information (NMI) was used as a metric describing the overlap in a similarity 

matrix created using any single model feature compared to the fused matrix created using all 

model features (NMI range 0-1). Features with higher NMI scores indicate greater contribution 

to participant similarity. Spectral clustering (SNF spectralClustering function) was then applied 

to delineate groups based on participant similarity matrices determined using 135 model features 

across 1000 iterations of resampling 80% of participants. A silhouette plot quantified the 

similarity between participants within a given group compared to participants in all other groups. 

The R package qgraph (v.1.6.1) was used for visualization of relative similarity among 

participants. 

 

Comparisons Among Identified Data-Driven Groups on Demographic, Cognitive and Top 

Contributing Model Features 
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Separate one-way ANCOVAs were conducted to examine whether data-driven groups differed 

on age, sex and IQ measures. Based on the results, all subsequent analyses used to evaluate data-

driven group distinctions on model features covaried for age, sex and IQ. Separate one-way 

ANCOVAs were conducted to provide a standardized effect size estimate (using eta squared) of 

data-driven group distinctions for model features contributing to participant similarity, as well as 

for diagnostic groups. Correction for multiple comparisons was applied to all 135 features using 

a false discovery rate (FDR) of 5%. Where ANCOVAs were significant, follow-up Tukey 

comparison tests were run to determine distinctions between specified groupings. 

 

Evaluation of Clusters 

Cluster Stability: Internal cluster reproducibility was evaluated via bootstrap resampling across 

1000 iterations of 80% of participants to calculate stability measures. We used proportion of 

resampling (i.e. would top features consistently remain top features), the percentage of time that 

each participant clustered with each other participant, and an Adjusted Rand Index measure of 

the overlap between clusters to determine stability of the data-driven model. 

Extension of Data-Driven Group Differences to Out-of-Model Features: Brain and 

behavioral measures that were excluded from SNF analysis (i.e. ABAS-II General Adaptive 

Composite, surface area) were compared using ANCOVAs to evaluate whether distinctions 

found between data-driven groups extended to out-of-model features. Similarly, cortical 

thickness brain network measures of global efficiency, network strength, and density were 

compared across a range of thresholds using permutation testing. All analyses accounted for the 

effects of age, sex, and IQ, 

Comparison of Classification Accuracy Based on Different Selections of Top Contributing 

Features: A random forest machine learning algorithm was applied across 100 permutations of 

randomly resampled participants with an 80/20 train-test split to evaluate the reliability of group 

prediction using different sets of top contributing model features. Due to the limitations of 

testing classification within the sample used to identify initial groups (versus out-of-sample 

testing), this approach was considered exploratory to help understand the reliability of group 

identification and to determine which features might be more likely to accurately classify groups 

(see Supplementary Materials and Methods). 
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RESULTS 

Top Ranking Features Contributing to Formation of Four Transdiagnostic Data-Driven 

Groups 

The four transdiagnostic data-driven participant similarity groups identified using SNF and 

spectral clustering (Figure 1, Table S2) featured an average silhouette width of 0.69, indicating a 

good-to-strong cluster structure (Figure S6). Model features with the highest NMI scores (top 10 

features) included cortical thickness of the pars triangularis, insula, middle temporal, 

supramarginal, superior and middle frontal gyrus regions and the SWAN inattention score (Table 

2). The SWAN hyperactivity/impulsivity score and right pallidum volume were the only model 

features besides additional cortical thickness regions ranked among the top 35 features 

contributing to participant similarity. White matter FA measures did not prominently drive 

clustering (NMI scores were in the bottom half of all included features). 

 

 

 

Figure 1. Representations of relative participant-participant similarities derived from the final 

SNF similarity matrix labelled by (A) data-driven group and by (B) diagnostic label.  

 

Influence of Demographic and IQ Variables on Data-Driven Groups 

There was a significant effect of age on data-driven groups (F3,172=13.1, p<0.0001), due to 

younger age, on average, among Group 3 participants compared to all other groups (Figure S2). 
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However, differences between groups on top ranking features were consistent across age (Figure 

2A-C), and no group-by-age interaction effects were shown after FDR correction. There was also 

an effect of IQ (F3,132=4.5, p=0.005) and sex (X2=17.0, p=0.0007) on data-driven groups (Table 

S3), due to higher IQ in Group 1 compared to all other groups and proportionally more females 

in Groups 1 and 2 compared to Groups 3 and 4 (Figure S2). 

 

Comparison of Top Contributing Features Between Data-Driven vs. NDD Groups 

One-way ANCOVAs showed a significant main effect of group (FDR-corrected p<0.05) across 

top ranking model features (i.e. top 35), after controlling for the effects of age, sex and IQ (Table 

2). With the exception of the SWAN inattention score (where effect size was much smaller), top 

ranking SNF features were not different between NDD groups. The top two model features with 

the largest effect sizes for data-driven group differences from each of the four data types 

examined included: bilateral middle temporal thickness (left: F3,129=29.9, p=1.28e-12, η2=0.40; 

right: F3,129=28.2, p=3.01e-12, η2=0.39), right thalamus (F3,129=12.6, p=1.04e-6, η2=0.23), right 

nucleus accumbens volume (F3,129=12.8, p=8.76e-07, η2=0.22), FA in the right posterior limb of 

the internal capsule (F3,129=3.73, p=0.02, η2=0.08), right cingulum FA (F3,129=3.2, p=0.04, 

η2=0.06), SWAN inattention score (F3,129=16.0, p=3.46e-8, η2=0.27), SCQ score (F3,129=11.4, 

p=3.75e-6, η2=0.19)(Table S3). In contrast, there were no significant differences between NDD 

groups on any of the brain features included in the SNF analysis; effect sizes were typically 

smaller by ten fold (or more) (Table 2, Table S3).   

 

Table 2. The top 35 ranking model features contributing to participant similarity as determined 

by normalized mutual information and corresponding statistical summaries of between group 

differences for data-driven and diagnostic groups 

   Data-driven Groups Diagnostic Groups 

Rank Top Contributing Features 

Normalized 

Mutual 

Information 

Statistic pFDR 
Eta 

squared 
Statistic pFDR 

Eta 

squared 

1 Right pars triangularis CT 0.182 20.3 1.06E-09 0.315 0.33 n.s      0.0047 

2 Right insula CT 0.182 24.9 4.05E-11 0.355 1.14 n.s      0.016 

3 SWAN Inattention Score 0.181 16.0 3.46E-08 0.268 8.82 0.0086 0.11 
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Group differences were determined using ANCOVAs while including age, sex and IQ as covariates. 

 

Brain-Behavior Profiles of Data-Driven Groups Based on Top Model Features 

Follow-up Tukey comparison tests (Table S3) examining group differences on top contributing 

model features suggested that Groups 2, 3, and 4 had greater impairments on brain and 

behavioral measures (compared to Group 1), although specific profiles differed. Group 2 (n=54), 

consisted of a near even split of children with ADHD (n=24) or ASD (n=23), and fewer OCD 

4 Right middle temporal CT 0.180 28.2 3.01E-12 0.392 0.33 n.s      0.0046 

5 Left supramarginal CT 0.172 23.7 9.67E-11 0.343 0.83 n.s      0.012 

6 Right inferior temporal CT 0.169 17.5 9.36E-09 0.285 0.94 n.s      0.013 

7 Left middle temporal CT 0.165 29.9 1.28E-12 0.404 1.92 n.s      0.027 

8 Right superior frontal CT 0.165 19.7 1.60E-09 0.308 0.25 n.s      0.0036 

9 Left rostral middle frontal CT 0.162 21.7 3.68E-10 0.321 0.85 n.s      0.012 

10 Left insula CT 0.161 21.2 5.12E-10 0.307 1.43 n.s      0.019 

11 Left fusiform CT 0.159 19.3 2E-09 0.308 2.84 n.s      0.039 

12 Left pars opercularis CT 0.158 23.3 1.12E-10 0.350 0.63 n.s      0.0092 

13 Right inferior parietal CT 0.158 20.2 1.09E-09 0.306 1.43 n.s      0.019 

14 Right rostral middle frontal CT 0.157 18.0 6.33E-09 0.292 0.56 n.s      0.0084 

15 Left inferior parietal CT 0.157 20.4 1.0E-09 0.304 0.94 n.s      0.013 

16 Left inferior temporal CT 0.153 21.8 3.68E-10 0.335 1.63 n.s      0.024 

17 Right precentral CT 0.149 13.2 6.66E-07 0.228 0.22 n.s      0.0031 

18 Left lateral orbitofrontal CT 0.148 16.6 1.88E-08 0.261 0.69 n.s      0.0093 

19 Left lateral occipital CT 0.148 15.1 8.89E-08 0.253 1.34 n.s      0.018 

20 Left lingual CT 0.145 10.2 1.32E-05 0.181 1.41 n.s      0.018 

21 Right supramarginal CT 0.145 17.2 1.24E-08 0.272 0.23 n.s      0.0031 

22 Left pars triangularis CT 0.137 17.5 9.36E-09 0.281 0.22 n.s      0.0031 

23 Right fusiform CT 0.136 16.9 1.43E-08 0.278 0.94 n.s      0.013 

24 Right lateral orbitofrontal CT 0.134 13.1 6.94E-07 0.224 0.89 n.s      0.012 

25 Left postcentral CT 0.134 15.2 7.8E-08 0.259 1.97 n.s      0.028 

26 SWAN Hyperactivity Score 0.132 7.59 2.35E-04 0.146 6.14 n.s      0.083 

27 Right lateral occipital CT 0.132 19.2 2.18E-09 0.299 1.99 n.s      0.027 

28 Left superior frontal CT 0.131 13.9 2.91E-07 0.239 0.27 n.s      0.0039 

29 Right medial orbitofrontal CT 0.127 12.9 8.3E-07 0.217 0.37 n.s      0.0051 

30 Left pericalcarine CT 0.126 7.49 0.000258 0.143 0.21 n.s      0.0029 

31 Left caudal middle frontal CT 0.123 19.6 1.69E-09 0.310 0.62 n.s      0.0093 

32 Right caudal middle frontal CT 0.119 18.6 3.71E-09 0.296 0.1 n.s      0.0015 

33 Right postcentral CT 0.118 10.4 1.01E-05 0.194 3.25 n.s      0.047 

34 Left pars orbitalis CT 0.115 15.0 9.18E-08 0.253 0.45 n.s      0.0067 

35 Right pallidum 0.115 8.02 0.000155 0.154 0.94 n.s      0.014 
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(n=7). Group 2 consistently featured significant decreases in cortical thickness within regions 

with top NMI scores (e.g. right pars triangularis) compared to Groups 1, 3 and 4 (Figure S4). In 

contrast, Group 3 (n=41) had the highest cortical thickness relative to other groups, was 

comprised mainly of children with ASD (n=25), a sizeable minority with ADHD (n=13), and 

few with OCD (n=3), and was male dominant. Group 4 (n=48) included predominantly children 

with ASD (n=31), with a sizeable minority of ADHD (n=12), and fewer children with OCD 

(n=5), and was male dominant. Group 4 featured significant decreases in right pallidum volume 

(the top NMI subcortical measure) compared to Groups 2 and 3. Groups 3 and 4 were the most 

behaviorally impaired. SWAN inattention and hyperactivity/impulsivity scores were 

significantly lower in Group 1 (n=33), which was comprised mainly of children with OCD 

(n=24) and fewer with ASD (n=9). 

Notably the cortical thickness and subcortical measures in Group 1 were neither highest nor 

lowest. Internal capsule and cingulum FA (white matter regions with largest between group 

effects) were increased in Group 4 versus Group 2. 
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Figure 2. Figure panels depict features ranking among the top 35 features contributing to 

participant similarity, including top ranking (A) cortical thickness regions, (B) behavioural 

measures, and (C) subcortical volume plotted across age. Graphs show values after the effects of 

sex and IQ have been regressed out. Shaded areas represent 95% confidence intervals. Similar 

group difference patterns were found across other top contributing brain features within the same 

data type (Figure S1). 
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Cluster Evaluation 

Cluster Stability: Top ranking features based on NMI score remained consistent across 

resampling. Of the top 10 features, 8 remained within the top 35 ranking features across 60-90% 

of clustering permutations, including SWAN inattention score; the remaining 2 features 

originally among the top 10 (right inferior temporal and left supramarginal thickness) remained 

within the top 35 across 40-42% of permutations. SWAN hyperactivity/impulsivity score and 

right pallidum volume remained among the top 35 features across 68% and 52% of permutations, 

respectively. Other subcortical volumes were also among the top 35 features across a substantial 

number of permutations (e.g. right thalamus: 65%). Across resampling, any given participant 

clustered with each other participant within their group on average 67% of the time, as compared 

to across them (9.4% of the time, Figure S5). An Adjusted Rand Index of 0.46 across 1000 

iterations was found, indicating over 70% agreement across clusters[39].  

 

Extension of Data-Driven Group Distinctions to Out-of-Model Features  

In the three out of model ‘phenotypes’ [adaptive (everyday) functioning, surface area, brain 

structural covariance network indices], we found that effect sizes for differences between data-

driven groups were larger than for NDD groups.  For data-driven groups, the effect size of the 

between-group difference on the General Adaptive Composite score (F3,126=9.1, p=1.8E-5, 

η2=0.16) was larger compared to NDD groups (F2,127=8.1, p=4.9E-4, η2=0.10) (see Figure 3), 

when covarying for sex, age and IQ. Surface area was generally not different among either data-

driven or NDD groups. For structural covariance network indices, effects were larger among 

data-driven compared to NDD groups for network strength and density across thresholds (See 

Supplementary Materials and Methods for detailed results). 
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Figure 3. (A) ABAS-II General Adaptive Composite scores for both data-driven and diagnostic 

groups after regressing out the effects of age, sex and IQ. (B) Structural covariance network 

densities across a range of Pearson r thresholds for both data-driven and diagnostic groups. 

Networks were created from cortical thickness regions after effects of age, sex and IQ were 

regressed out. (C) Left insula surface area in data-driven groups after regressing out the effects of 
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age, sex and IQ (**** =p<0.0001, ***= p<0.001, **= p<0.01, *=p <0.05). Boxplots show the 

first and third quartile with extensions representing 1.5 * the inter-quartile range.  

 

Comparison of Classification Accuracy Based on Different Selections of Top Ranking 

Features: Model performance was highest when the top 2 ranking features (highest NMI scores) 

from each of the four data types (i.e., right pars triangularis, right insula thickness, SWAN 

inattention and hyperactivity/impulsivity, right pallidum, right putamen volume, left anterior 

limb internal capsule FA, right retrolenticular internal capsule FA), or all 135 input features were 

included in the classifier (Figure S7), compared to when only top ranking features were included 

in the classifier. Mean sensitivity performance for detecting data-driven groups when including 

the top 2 features across data types in the classifier ranged from 62-75%, exceeding chance. 

Mean specificity performance was >80%. When the top 10 or 35 ranking features were included 

in the classifier, performance remained stable for prediction of Groups 1 and 2, but 

comparatively declined for Groups 3 and 4. When features from only one of the four data types 

were included, mean sensitivity dropped to below 50% for at least two of Groups 1, 3 and 4. 

  

DISCUSSION 

By fusing across multiple brain imaging phenotypes and behavioral measures, we identified 

novel transdiagnostic data-driven groups, which feature more homogeneous characteristics 

within groups in both brain and behavioral measures compared to current DSM-5 categories 

(ASD, ADHD, OCD). In particular, we found that cortical thickness in regions important for 

social behavior (inferior frontal gyrus, insula, inferior parietal cortex, temporal cortex) and 

executive function (superior and middle frontal gyrus) along with inattention scores were the top 

contributors to the model. These differences were consistent across the age range, a period of 

dynamic brain growth and change[40,41]. Data-driven participant similarity groups displayed 

internal stability of clustering, and stability of top contributing model features and pairwise 

participant clustering across resampling. Stronger differences between data-driven groups 

compared to DSM-5 diagnostic groups extended to clinically and biologically relevant features 

excluded from the SNF analysis, most notably adaptive (everyday) functioning. Although white 

matter FA was not among the top contributing features, classification accuracy was best when 

this data type was included in the model.  
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Of the four data-driven groups, Groups, 2, 3, and 4 were the most behaviorally and functionally 

impaired, consistent with alterations in brain imaging measures. However, among these groups, 

there were notable differences, suggesting different neurobiological features may relate to 

different behavioral profiles. Group 2, comprised evenly of children with ADHD or ASD, had 

higher inattention scores and a distinct pattern of decreased cortical thickness compared to all 

other groups. The Group 2 profile found in the current study may be most consistent with prior 

work showing delayed and deviated cortical and neural network maturation, particularly in 

frontal regions in large-scale studies of children with ADHD, including reduced 

thickness[42,43]. In direct contrast to Group 2, Group 3 showed elevated hyperactivity and 

higher cortical thickness in top ranking regions, but was also the youngest group and in earlier 

stages of normative behavioural and cortical development, perhaps accounting for some of these 

differences[40]. Nevertheless, plotting cortical thickness across age showed that these findings 

were sustained and age-independent. These contrasting cortical thickness phenotypes were not 

elicited through diagnostic comparisons (for which there were no significant differences in 

thickness). By contrasting data-driven versus diagnostic groups and via inclusion of multiple 

imaging phenotypes (i.e., cortical thickness, subcortical volumes, white matter FA) our findings 

build on a previous analysis of the POND sample[22]. In addition, the novelty of our findings is 

also notable because of out-of-model differences among the data-driven groups in adaptive 

functioning and brain network structure. Similar frontal and temporal cortical regions have also 

been implicated in a mega-analysis from the ENIGMA group comparing ASD to typically 

developing controls, with both increased and decreased thickness found in ASD[44]. Our work 

suggests that these same regions contribute to biological differences among data-driven groups. 

It is possible that reduced cortical thickness in some cases versus increased thickness in others 

(which may reflect delayed maturation) exists in subgroups of children with the same NDD 

diagnosis, but is associated with different behavioral phenotypes (e.g., more inattention vs. more 

hyperactivity). 

  

Group 4 was characterized biologically by decreases in striatal and thalamic subcortical volumes. 

Reductions in similar regions were shown in ASD in the recent case-control ENIGMA ASD 

mega-analysis[44]. When this group of features are taken together, involvement of the cortico-
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striatal-thalamic-cortical (CSTC) circuit also emerges as a notable pattern. The CSTC is a 

network widely implicated as vulnerable in ASD, ADHD and OCD[45–49]. Children in this 

group may represent those with this shared vulnerability pathway cutting across diagnoses. 

  

In contrast to Groups 2-4, Group 1 was largely comprised of children with OCD. This group 

featured reduced impairment across included behavioural features (except for OCD symptoms), 

lacked distinguishable biological impairments, and had higher IQ scores than Groups 3 and 4. 

Some prior studies using POND data have found, on average, children with OCD have milder 

impairments at the brain and behavioural level compared to children with ASD or 

ADHD[12,22,35]. Our results identified some children with ASD that also feature milder 

impairments and fit into this group. Group 1 also featured highest adaptive functioning compared 

to Groups 2, 3 and 4 on out-of-model evaluation. Longitudinal analyses are needed to track 

whether outcomes differ in this group compared to other groups over time. If lower adaptive 

functioning impairment in this group remains stable over time, features differentiating this group 

could potentially have clinical utility for identifying children with NDDs that may have 

favourable outcomes or respond differently to available treatment or clinical management 

approaches. 

  

Although modest, brain network comparisons among the groups provided support for 

generalizability of distinctions between data-driven groups to features that were not utilized to 

delineate groups. In particular, the lower network density in Group 2 among cortical thickness 

regions supported the impaired cortical thickness phenotype found in this group using the data-

driven model. Lower network density in Group 2 (and 4) may indicate broader, more wide-

ranging network based alterations associated with their respective behavioural alteration profiles, 

and perhaps earlier developmental insults affecting more of the brain[50]. 

  

It is notable that females with a diagnosis of OCD or ADHD mainly clustered into Groups 1 and 

2, while females with ASD clustered across data-driven groupings. Biological sex is an 

important source of heterogeneity in NDDs[11] and aspects of sex-specific brain structure and 

functional connectivity patterns have been found in ASD[51] and to a lesser degree in 

ADHD[52] or OCD[53]. Previous evidence has suggested a protective effect for females, or 
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required increased biological ‘hit’ related to resilience to developing NDDs[54,55].  However, 

interpretation of any differences found amongst males versus females in the current study is 

limited due to the small numbers of represented females with NDDs. 

  

We took a series of approaches to determine the stability of data-driven grouping and potential 

meaningfulness. We found that top contributing features could reliably identify our groups 

(mean sensitivity 42-86%), which may improve with larger sample sizes. Although all groups 

were identifiable using the full spectrum of features included in our SNF analysis, sensitivity for 

prediction of Groups 1 and 2 remained stable when based on a more constrained set of top 

contributing features (i.e. cortical thickness and inattention/hyperactivity-impulsivity symptom 

scores), suggesting that these groups may be identifiable in another sample using more 

constrained behavioral and biological information. In contrast, a fuller spectrum of data may be 

needed to identify children with more complex presentations (and perhaps more overlapping 

behavioral and functional impairment profiles) as in Groups 3 and 4. Although Group 1 was the 

most stable across resampling, participants in this group were not classified with the highest 

sensitivity, perhaps due to their intermediate values on biological measures. 

  

Limitations 

Results should be interpreted in the context of study limitations. Sample sizes were unequal 

across diagnostic groups, and larger numbers could have provided a number of statistical 

advantages. Future work could extend the dimensionality of input features to include cognitive, 

genetic, environmental and other neuroimaging features. Visualizing similarities between 

participants showed that although participants within the four data-driven groups identified 

featured more similar and separable brain-behaviour profiles than found using conventional 

DSM-5 diagnostic categories, some participants did not cluster ‘cleanly’ into a specific data-

driven group. Although studying individuals on a spectrum may be more informative for 

characterizing the continuum of brain-behavioural relationships present across the population 

(and shown to be relevant on clustering of children with different NDDs[22], others argue that 

biotypes (i.e. new subgroups) may be needed to parse multi-dimensional brain-behaviour profiles 

into groupings that can be useful for clinical translation[10] . 
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Conclusion 

The current study adds to recent work suggesting biological and behavioral convergences across 

NDDs, as well as divergences within them [16,22,56]. We identified new groups cutting across 

NDDs characterized by multi-level neuroimaging and behavioral data. The more similar 

biological profiles found among our data-driven groups invites future work to replicate findings, 

test longitudinally for prognostic value as well as stratification for targeted treatment studies. 
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