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ABSTRACT 34 

 35 

Homologous recombination is an important mechanism for genome integrity maintenance, and 36 

several homologous recombination genes are mutated in various cancers and cancer-prone 37 

syndromes. However, since in some cases homologous recombination can lead to mutagenic 38 

outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark 39 

of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, 40 

when deleted, cause hyper-recombination between direct repeats. One was performed with the 41 

classical patch and replica-plating method. The other was performed with a high-throughput 42 

replica-pinning technique that was designed to detect low-frequency events. This approach 43 

allowed us to validate the high-throughput replica-pinning methodology independently of the 44 

replicative aging context in which it was developed. Furthermore, by combining the two 45 

approaches, we were able to identify and validate 35 genes whose deletion causes elevated 46 

spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-47 

Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, 48 

and a number of other DNA replication, repair and recombination genes. Since several of our hits 49 

are evolutionary conserved, and repeated elements constitute a significant fraction of mammalian 50 

genomes, our work might be relevant for understanding genome integrity maintenance in 51 

humans. 52 

 53 
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INTRODUCTION 55 

 56 

Homologous recombination (HR) is an evolutionarily conserved pathway that can repair DNA 57 

lesions, including double-strand DNA breaks (DSBs), single-strand DNA (ssDNA) gaps, 58 

collapsed replication forks, and interstrand crosslinks, by using a homologous sequence as the 59 

repair template. HR is essential for the maintenance of genome integrity, and several HR genes 60 

are mutated in human diseases, especially cancers and cancer-prone syndromes (Krejci et al., 61 

2012; Symington et al., 2014). HR is also required for meiosis (Hunter, 2015) and is important 62 

for proper telomere function (Claussin and Chang, 2015). The yeast Saccharomyces cerevisiae 63 

has been a key model organism for determining the mechanisms of eukaryotic recombination. 64 

Our current understanding of the HR molecular pathway comes mainly from the study of DSB 65 

repair. However, most mitotic HR events are likely not due to the repair of DSBs (Claussin et al., 66 

2017), and can be triggered by diverse DNA structures and lesions, including DNA nicks, ssDNA 67 

gaps, arrested or collapsed replication forks, RNA-DNA hybrids and noncanonical secondary 68 

structures (Symington et al., 2014). An essential intermediate in recombination is ssDNA, which, 69 

in the case of a DSB, is generated by resection of the DSB ends by nucleases. Rad52 stimulates 70 

the loading of Rad51 onto ssDNA, which in turn mediates homologous pairing and strand 71 

invasion, with the help of Rad54, Rad55, and Rad57. After copying the homologous template, 72 

recombination intermediates are resolved with the help of nucleases and helicases, and the HR 73 

machinery is disassembled (Symington et al., 2014). 74 

While HR is important for genome integrity, excessive or unregulated recombination in 75 

mitotic cells can be deleterious. Indeed, even though HR is generally considered an error-free 76 

DNA repair pathway, outcomes of HR can be mutagenic. For instance, single strand annealing 77 

(SSA) occurring between direct repeats results in the deletion of the intervening sequence 78 
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(Bhargava et al., 2016), while recombination between ectopic homolog sequences can lead to 79 

gross chromosomal rearrangements (Heyer, 2015). Mutations and chromosomal aberrations can 80 

be the outcome of recombination between slightly divergent DNA sequences, a process termed 81 

“homeologous recombination” (Spies and Fishel, 2015). Allelic recombination between 82 

homologous chromosomes can lead to loss of heterozygosity (LOH) (Aguilera and García-Muse, 83 

2013). Finally, the copying of the homologous template occurs at lower fidelity than is typical for 84 

replicative DNA polymerases, resulting in mutagenesis (McVey et al., 2016). For these reasons, 85 

the HR process must be tightly controlled, and spontaneous hyper-recombination in mitotic cells 86 

is a hallmark of genomic instability (Aguilera and García-Muse, 2013; Heyer, 2015). 87 

Pioneering mutagenesis-based screens led to the identification of hyper-recombination 88 

mutants (Aguilera and Klein, 1988; Keil and McWilliams, 1993). Subsequently, several 89 

systematic screens were performed with the yeast knockout (YKO) collection to identify genes 90 

whose deletion results in a spontaneous hyper-recombinant phenotype. In particular, Alvaro et al. 91 

screened an indirect phenotype, namely elevated spontaneous Rad52 focus formation in diploid 92 

cells, which led to the identification of hyper-recombinant as well as recombination-defective 93 

mutants (Alvaro et al., 2007). A second screen for elevated Rad52 foci in haploid cells identified 94 

additional candidate recombination genes (Styles et al., 2016), although the recombination rates 95 

of these were not assessed directly. A distinct screen of the YKO collection measured elevated 96 

spontaneous LOH events in diploid cells, which arise through recombination between 97 

homologous chromosomes or as a consequence of chromosome loss (Andersen et al., 2008). Here 98 

we describe two systematic genome-scale screens measuring spontaneous recombination in 99 

haploid cells, since the sister chromatid is generally a preferred template for mitotic 100 

recombination relative to the homologous chromosome, both in yeast and mammalian cells 101 

(Johnson and Jasin, 2000; Kadyk and Hartwell, 1992). We use a direct-repeat recombination 102 
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assay (Smith and Rothstein, 1999), because recombination between direct repeats can have a 103 

significant impact on the stability of mammalian genomes, where tandem and interspersed 104 

repeated elements, such as LINEs and SINEs, are very abundant (George and Alani, 2012; 105 

López-Flores and Garrido-Ramos, 2012).  106 

Recombination rate screens were performed both with the classical patch and replica-107 

plating method and with our recently developed high-throughput replica-pinning technique, 108 

which was designed for high-throughput screens involving low-frequency events (Novarina et al., 109 

2020). High-throughput replica-pinning is based on the concept that, by robotically pinning an 110 

array of yeast strains many times in parallel, several independent colonies per strain can be 111 

analysed at the same time, giving a semi-quantitative estimate of the rate at which a specific low-112 

frequency event occurs in each strain. We used both approaches to screen the YKO collection 113 

with the direct-repeat recombination assay. Bioinformatic analysis and direct comparison of the 114 

two screens confirmed the effectiveness of the high-throughput replica-pinning methodology. 115 

Together, we identified and validated 35 genes whose deletion results in elevated spontaneous 116 

direct-repeat recombination, many of which have homologs or functional counterparts in humans. 117 

 118 
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MATERIALS AND METHODS 120 

 121 

Yeast strains and growth conditions 122 

Standard yeast media and growth conditions were used (Sherman, 2002; Treco and Lundblad, 123 

2001). All yeast strains used in this study are derivatives of the BY4741 genetic background 124 

(Brachmann et al., 1998) and are listed in Supporting Information, Table S1. 125 

 126 

Patch and replica-plating screen 127 

To create a recombination assay strain compatible with Synthetic Genetic Array (SGA) 128 

methodology (Kuzmin et al., 2016), the leu2ΔEcoRI-URA3-leu2ΔBstEII direct repeat 129 

recombination reporter (Smith and Rothstein, 1999) was introduced into Y5518 by PCR of the 130 

LEU2 locus from W1479-11C, followed by transformation of Y5518 and selection on SD-ura. 131 

Correct integration was confirmed by PCR, and the resulting strain was designated JOY90. 132 

JOY90 was then crossed to the MATa yeast knockout (YKO) collection ((Giaever et al., 2002); 133 

gift of C. Boone, University of Toronto), using SGA methodology (Kuzmin et al., 2016). 134 

Following selection on SD-his-arginine-lysine-uracil+G418+ClonNat+canavanine+thialysine, the 135 

resulting strains have the genotype MATa xxx∆::kanMX mfa1Δ::MFA1pr-HIS3 136 

leu2∆EcoRI::URA3-HOcs::leu2∆BstEII his3∆1 ura3∆0 met15∆0 lyp1∆ can1∆::natMX, where 137 

xxx∆::kanMX indicates the YKO gene deletion in each resulting strain. 138 

Each YKO strain carrying the recombination reporter was streaked for single colonies on 139 

SD-ura. Single colonies were then streaked in a 1 cm x 1 cm patch on YPD, incubated at 30°C 140 

for 24 h, and then replica-plated to SD-leu to detect recombination events as papillae on the 141 

patch. RDY9 (wild-type) and RDY13 (elg1∆::kanMX; positive control) were included on each 142 

plate. The papillae on SD-leu were scored by visual inspection relative to the control strains, 143 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.11.943795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943795
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

yielding 195 positives (Table S2). The 195 positives were tested in a fluctuation test of 5 144 

independent cultures, and those with a recombination rate of at least 2x10
-5

 (approximately 145 

twofold greater than that of RDY9) were identified (43 strains; Table S2). Positives from the first 146 

fluctuation tests (except slm3∆ and pex13∆, where rates could not be determined due to the large 147 

numbers of ‘jackpot’ cultures where all colonies had a recombination event) were assayed 148 

further, again with 5 cultures per fluctuation test. Thirty-three gene deletion mutants displayed a 149 

statistically supported increase in recombination rate (Table S2, Figure 1D), using a one-sided 150 

Student’s t-test with a cutoff of p=0.05. 151 

 152 

Fluctuation tests of spontaneous recombination rates 153 

Fluctuation tests as designed by Luria and Delbrück (Luria and Delbrück, 1943) were performed 154 

by transferring entire single colonies from YPD plates to 4 ml of YPD liquid medium. Cultures 155 

were grown at 30°C to saturation. 100 µl of a 10
5
-fold dilution were plated on a fully 156 

supplemented SD plate and 200 µl of a 10
2
-fold dilution were plated on an SD-leu plate. Colonies 157 

were counted after incubation at 30°C for 3 days. The number of recombinant (leu+) colonies per 158 

10
7
 viable cells was calculated, and the median value was used to determine the recombination 159 

rate by the method of the median (Lea and Coulson, 1949).  160 

 161 

High-throughput replica pinning screen 162 

High-throughput manipulation of high-density yeast arrays was performed with the RoToR-HDA 163 

pinning robot (Singer Instruments). The MATa yeast deletion collection (EUROSCARF) was 164 

arrayed in 1536 format (each strain in quadruplicate). The leu2ΔEcoRI-URA3-leu2ΔBstEII 165 

marker to measure direct-repeat recombination (Smith and Rothstein, 1999) was introduced into 166 

the deletion collection through synthetic genetic array (SGA) methodology (Kuzmin et al., 2016) 167 
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using the JOY90 query strain. The procedure was performed twice in parallel to generate two sets 168 

of the yeast deletion collection containing the leu2 direct-repeat recombination reporter. Each 169 

plate of each set was then pinned onto six YPD+G418 plates (48 replicates per strain in total), 170 

incubated for one day at 30° and then scanned with a flatbed scanner. Subsequently, each plate 171 

was pinned onto SD-leu solid medium and incubated for two days at 30° to select recombination 172 

events. Finally, all plates were re-pinned on SD-leu solid medium and incubated for one day at 173 

30° before scanning. Colony area measurement was performed using the ImageJ software 174 

package (Schneider et al., 2012) and the ScreenMill Colony Measurement Engine plugin 175 

(Dittmar et al., 2010), to assess colony circularity and size in pixels. Colony data was filtered to 176 

exclude artifacts by requiring a colony circularity score greater than 0.8. Colonies with a pixel 177 

area greater than 50% of the mean pixel area were scored for strains pinned to YPD+G418. 178 

Following replica-pinning to SD-leu, colonies were scored if the pixel area was greater than 10% 179 

of the mean pixel area for the same strain on YPD+G418. For each deletion strain, the ratio of 180 

recombinants (colonies on SD-leu) to total colonies (colonies on YPD+G418) is the 181 

recombination frequency (Table S3). Strains where fewer than 10 colonies grew on YPD+G418 182 

were removed from consideration, as were the 73 YKO collection strains carrying an additional 183 

msh3 mutation (Lehner et al., 2007). The final filtered data is presented in Table S4. 184 

 185 

Gene Ontology enrichment analysis and functional annotation 186 

GO term analysis was performed using the GO term finder tool (http://go.princeton.edu/) using a 187 

P-value cutoff of 0.01 and applying Bonferroni correction, querying biological process 188 

enrichment for each gene set. GO term enrichment results were further processed with REViGO 189 

(Supek et al., 2011) using the “Medium (0.7)” term similarity filter and simRel score as the 190 

semantic similarity measure. Terms with a frequency greater than 15% in the REViGO output 191 
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were eliminated as too general. Gene lists used for the GO enrichment analyses are in Table 1, 192 

and the lists of enriched GO terms obtained are provided in Table S6. Human orthologues in 193 

Table 3 were identified using YeastMine (https://yeastmine.yeastgenome.org/yeastmine; accessed 194 

June 25, 2019). Protein-protein interactions were identified using GeneMania 195 

(https://genemania.org/; (Warde-Farley et al., 2010)), inputting the 35 validated hyper-rec genes, 196 

and selecting only physical interactions, zero resultant genes, and equal weighting by network. 197 

Network edges were reduced to a single width and nodes were annotated manually using gene 198 

ontology from the Saccharomyces Genome Database (https://www.yeastgenome.org). Network 199 

annotations were made with the Python implementation of Spatial Analysis of Functional 200 

Enrichment (SAFE) (Baryshnikova, 2016); https://github.com/baryshnikova-lab/safepy). The 201 

yeast genetic interaction similarity network and its functional domain annotations were obtained 202 

from (Costanzo et al., 2016). The genetic interaction scores for YER188W, DFG16, VMA11, and 203 

ABZ2 were downloaded from the Cell Map (http://thecellmap.org/; accessed January 9, 2020),  204 

 205 

Statistical analysis 206 

Statistical analysis was performed in Excel or R (https://cran.r-project.org/).  207 

 208 

Data availability 209 

Strains are available upon request. A file containing supplemental tables is available at FigShare. 210 

Table S1 lists all the strains used in this study. Table S2 contains the fluctuation test data from the 211 

patch screen. Table S3 contains the raw high-throughput replica pinning screen data. Table S4 212 

contains the filtered pinning screen data. Table S5 contains the fluctuation test data from the 213 

pinning screen. Table S6 contains the GO term enrichment data. 214 

  215 
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RESULTS  216 

 217 

A genetic screen for elevated spontaneous direct-repeat recombination 218 

The leu2 direct-repeat recombination assay (Smith and Rothstein, 1999) can detect both intra-219 

chromosomal and sister chromatid recombination events (Figure 1A). Two nonfunctional leu2 220 

heteroalleles are separated by a 5.3 kb region containing the URA3 marker. Reconstitution of a 221 

functional LEU2 allele can occur either via sister chromatid recombination (gene conversion), 222 

which maintains the URA3 marker, or via intra-chromosomal SSA, with the concomitant deletion 223 

of the sequence between the direct repeats and subsequent loss of the URA3 marker (Symington 224 

et al., 2014). Both recombination events can be selected on media lacking leucine. We used this 225 

assay to systematically screen the yeast knockout (YKO) collection for genes whose deletion 226 

results in hyper-recombination between direct repeats (Figure 1B). We introduced the leu2 direct-227 

repeat recombination reporter into the YKO collection via synthetic genetic array (SGA) 228 

technology (Kuzmin et al., 2016). Each of the ~4500 obtained strains was then patched on non-229 

selective plates and replica-plated to plates lacking leucine to detect spontaneous recombination 230 

events as papillae on the replica-plated patches (Figure 1C). We included a wild-type control and 231 

a hyper-recombinant elg1∆ control (Bellaoui et al., 2003; Ben-Aroya et al., 2003) on every plate 232 

for reference. The recombination rates for 195 putative hyper-rec mutants identified by replica-233 

plating (Table S2) were measured by a fluctuation test. Strains with a recombination rate greater 234 

than 2x10
-5

 (approximately twofold of the wild-type rate; 38 strains) were assayed in triplicate (or 235 

more). Thirty-three gene deletion mutant strains with a statistically supported increase in direct-236 

repeat recombination rate relative to the wild-type control were identified (Figure 1D, Table S2, 237 

Table 1). The genes identified showed a high degree of enrichment for GO terms reflecting roles 238 

in DNA replication and repair (Figure 1E). 239 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.11.943795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943795
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 240 

A high-throughput screen for altered spontaneous direct-repeat recombination  241 

We recently developed a high-throughput replica-pinning method to detect low-frequency events, 242 

and validated the scheme in a genome-scale mutation frequency screen (Novarina et al., 2020). 243 

To complement the data obtained with the classical screening approach, and to test our new 244 

methodology independently of the replicative aging context in which it was developed, we 245 

applied it to detect changes in spontaneous direct-repeat recombination (Figure 2A). We again 246 

introduced the leu2 direct-repeat recombination reporter (Figure 1A) into the YKO collection. 247 

The collection was then amplified by parallel high-throughput replica-pinning to yield 48 248 

colonies per gene deletion strain. After one day of growth, all colonies were replica-pinned 249 

(twice, in series) to media lacking leucine to select for recombination events. Recombination 250 

frequencies (a proxy for the spontaneous recombination rate) were calculated for each strain of 251 

the collection (Figure 2B, Table S3, Table S4). As a reference, recombination frequencies for the 252 

wild type (46%) and for a recombination-deficient rad54∆ strain (21%) obtained in a pilot 253 

replica-pinning experiment of 3000 colonies are indicated. In the screen itself, where 48 colonies 254 

were assessed, the wild type (his3∆::kanMX) had a recombination frequency of 56%. Notably, a 255 

group of strains from the YKO collection carry an additional mutation in the mismatch repair 256 

gene MSH3 (Lehner et al., 2007). Given the elevated spontaneous recombination rates of several 257 

mismatch repair-deficient strains (Figure 1D), we suspected that these msh3 strains would display 258 

increased recombination frequencies, independently of the identity of the intended gene deletion. 259 

Indeed, the distribution of recombination frequencies for msh3 strains (median: 74%) is shifted 260 

toward higher values compared to the overall distribution of the YKO collection (median: 60%) 261 

(Figure 2B). The 73 msh3 strains were excluded from further analysis. 262 
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To explore the overall quality of the high-throughput replica-pinning screen and to 263 

determine a cutoff in an unbiased manner, we performed Cutoff Linked to Interaction Knowledge 264 

(CLIK) analysis (Dittmar et al., 2013). The CLIK algorithm identified an enrichment of highly 265 

interacting genes at the top and at the bottom of our gene list (ranked according to recombination 266 

frequency), confirming the overall high quality of our screen, and indicating that we were able to 267 

detect both hyper- and hypo-recombinogenic mutants (Figure 2C). The cutoff indicated by CLIK 268 

corresponds to a recombination frequency of 87% for the hyper-recombination strains (75 genes; 269 

Table 1), and of 33% for the recombination-deficient strains (122 genes; Table 2). 270 

 271 

Hyper-recombination genes. We assessed the functions of the 75 hyper-recombination genes 272 

identified by our high-throughput screen (Figure 2D). As with the genes identified in the patch 273 

screen, the genes identified in the pinning screen were enriched for DNA replication and repair 274 

functions. Most importantly, at the very top of our hyper-recombination gene list (with 96% to 275 

100% recombination), 11 out of 13 genes were identified in the patch screen and validated by 276 

fluctuation analysis (Table S2). We tested the two additional genes, CSM1 and NUP170, by 277 

fluctuation analysis, and found that both had a statistically supported increase in recombination 278 

rate (Figure 2E and Table S5). Eighteen validated hyper-recombination genes from the patch 279 

screen were not identified in the pinning screen, and so are false negatives. Although we have not 280 

validated the weaker hits from the pinning screen (those with recombination frequencies between 281 

87% and 96%), four genes in this range were validated as part of the patch screen (APN1, RMI1, 282 

YLR235C, and RNH201), 9 caused elevated levels of Rad52 foci when deleted (APN1, NFI1, 283 

RMI1, POL32, RNH201, DDC1, HST3, MFT1, and YJR124C) (Alvaro et al., 2007; Styles et al., 284 

2016), and 3 are annotated as ‘mitotic recombination increased’ (RMI1, DDC1, and HST3; 285 
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Saccharomyces Genome Database). Together these data suggest that additional bona fide hyper-286 

recombination genes were identified in the pinning screen.  287 

 288 

Hypo-recombination genes. By contrast to the replica-plating screen, the pinning screen detected 289 

mutants with reduced recombination frequency, with 122 genes identified (Table 2). The genes 290 

identified were functionally diverse, with no gene ontology (GO) processes enriched. Only 19 291 

nonessential genes are annotated as having reduced recombination as either null or hypomorphic 292 

alleles in the Saccharomyces genome database (SGD; accessed January 11, 2020 via YeastMine). 293 

Of these, three genes (RAD52, LRP1, and THP1) were detected in the pinning screen. In addition, 294 

other members of the RAD52 epistasis group important for effective homologous recombination 295 

(RAD50, RAD54 and RAD55) displayed a recombination frequency lower than 33%, and RAD51 296 

was just above the cutoff (Table S3). Thus, our high-throughput replica-pinning approach detects 297 

mutants with very low recombination frequencies. More generally, this observation suggests that 298 

if the pinning procedure is properly calibrated, a high-throughput replica-pinning screen is able 299 

not only to detect mutants with increased rates of a specific low-frequency event (in this case 300 

direct-repeat recombination), but also mutants with reduced rates of the same low-frequency 301 

event. 302 

 303 

Validated hyper-recombination genes identified in both screens. We compared the genes 304 

identified in the pinning screen with those identified in the patch screen, revealing 15 genes that 305 

were identified in both screens, a statistically supported enrichment (Figure 3A; hypergeometric p 306 

= 1.2x10
-21

). Combining the results of the two screens, we validated 35 genes whose deletion 307 

results in elevated spontaneous direct-repeat recombination (Table 3). Analysis of the group of 35 308 

hyper-rec genes revealed 68 pairwise protein-protein interactions (Figure 3B), with many cases 309 
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where several (if not all) members of the particular protein complex were identified. We found 310 

that 29 of the hyper-rec genes had at least one human orthologue (Table 3), indicating a high 311 

degree of conservation across the 35 validated genes. To assess the functional properties of the 35 312 

gene hyper-rec set, we applied spatial analysis of functional enrichment (SAFE) (Baryshnikova, 313 

2016) to determine if any regions of the functional genetic interaction similarity yeast cell map 314 

(Costanzo et al., 2016) are over-represented for the hyper-rec gene set (Figure 3C). We found a 315 

statistically supported over-representation of the hyper-rec genes in the DNA replication and 316 

repair neighbourhood of the genetic interaction cell map, highlighting the importance of accurate 317 

DNA synthesis in suppressing recombination. Finally, we compared the validated hyper-rec 318 

genes to relevant functional genomic instability datasets (Saccharomyces Genome Database 319 

annotation, (Alvaro et al., 2007; Hendry et al., 2015; Stirling et al., 2011; Styles et al., 2016); 320 

Figure 3D). Eight of our hyper-rec genes (HTA2, MSH6, YER188W, ABZ2, PMS1, MSH2, 321 

DFG16, and VMA11) were not identified in these datasets, indicating that our screens identified 322 

uncharacterized recombination genes. HTA2, MSH6, PMS1, MSH2 have recombination 323 

phenotypes reported (see Discussion). Thus, we identify four genes without a characterized role 324 

in preventing recombination: YER188W, ABZ2, DFG16, and VMA11. 325 

 326 

To infer gene function for the four genes lacking a characterized role in suppressing 327 

recombination, we again applied SAFE analysis (Baryshnikova, 2016) to annotate the functional 328 

genetic interaction similarity yeast cell map (Costanzo et al., 2016) to identify any regions that 329 

are enriched for genetic interactions with each of the four genes (Figure 4). Of particular interest, 330 

the mitochondrial functional neighbourhood is enriched for negative genetic interactions with 331 

YER188W (Figure 4), suggesting that deletion of YER188W confers sensitivity to mitochondrial 332 

dysfunction. Analysis of DFG16 revealed enrichments for positive interactions in the RIM 333 
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signaling neighbourhood, which is expected (Barwell et al., 2005), but also for negative 334 

interactions in the DNA replication region of the map (Figure 4), indicating that DFG16 is 335 

important for fitness when DNA replication is compromised. Analysis of VMA11 revealed 336 

enrichment in the vesicle trafficking neighbourhood, typical of vacuolar ATPase subunit genes, 337 

and analysis of ABZ2 revealed little (Figure 4). We conclude that functional analysis suggests 338 

mechanisms by which loss of YER188W (oxidative stress) or DFG16 (genome integrity) results 339 

in hyper-recombination. 340 

 341 

DISCUSSION 342 

Here we briefly discuss the functions of the genes and complexes identified in the screens and 343 

subsequently validated by fluctuation analysis. 344 

Mismatch repair: MLH1, MSH2, MSH6 and PMS1 are evolutionary conserved genes involved in 345 

mismatch repair (MMR), a pathway that detects and corrects nucleotide mismatches in double-346 

strand DNA (Spies and Fishel, 2015). An anti-recombinogenic role for these four MMR genes in 347 

yeast has been previously described: specifically, MMR proteins are important to prevent 348 

homeologous recombination and SSA between slightly divergent sequences, via mismatch 349 

recognition and heteroduplex rejection (Datta et al., 1996; Nicholson et al., 2000; Spies and 350 

Fishel, 2015; Sugawara et al., 2004). The role for MMR in preventing homeologous 351 

recombination is conserved also in mammalian cells (de Wind et al., 1995; Elliott and Jasin, 352 

2001; Spies and Fishel, 2015). It is worth noting that the presence of sequence differences 353 

between the two leu2 alleles in the leu2 direct-repeat assay is essential to genetically detect 354 

recombination events. Therefore, it is reasonable that this assay should detect genes involved in 355 

suppressing homeologous recombination. 356 

 357 
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Sgs1-Top3-Rmi1 complex: The evolutionary conserved helicase-topoisomerase complex Sgs1-358 

Top3-Rmi1 is involved in DSB resection and in dissolution of recombination intermediates 359 

(Symington et al., 2014). Consistent with previous observations (Chang et al., 2005), our screen 360 

identified all three members of the complex, together with YLR235C, a dubious ORF that 361 

overlaps the TOP3 gene. The Sgs1-Top3-Rmi1 complex dissolves double Holliday junction 362 

structures to prevent crossover formation (Cejka et al., 2010). The same role has been reported 363 

for BLM helicase, the human Sgs1 homolog mutated in the genome stability disorder Bloom 364 

syndrome (Wu et al., 2006; Yang et al., 2010). Furthermore, several genetic studies indicate that 365 

the anti-recombinogenic activity of Sgs1-Top3-Rmi1 cooperates with MMR proteins in 366 

heteroduplex rejection to prevent homeologous recombination (Chakraborty et al., 2016; 367 

Goldfarb and Alani, 2005; Myung et al., 2001; Spell and Jinks-Robertson, 2004; Sugawara et al., 368 

2004). 369 

 370 

MGS1: In our screen we also identified MGS1, the homolog of the WRN-interacting protein 371 

WRNIP1. Mgs1 displays DNA-dependent ATPase and DNA strand annealing activities. Deletion 372 

of MGS1 causes hyper-recombination, including elevated direct-repeat recombination (Hishida et 373 

al., 2001). It seems that Mgs1 promotes faithful DNA replication by regulating Polδ, and 374 

promoting replication fork restart after stalling (Branzei et al., 2002; Saugar et al., 2012). The 375 

absence of Mgs1 could result in increased replication fork collapse, leading to the formation of 376 

recombinogenic DSBs (Branzei et al., 2002). Similar roles have been suggested for WRNIP1 in 377 

mammalian cells (Leuzzi et al., 2016; Tsurimoto et al., 2005). 378 

 379 

RNase H2 complex: RNH201 encodes the evolutionary conserved catalytic subunit of RNase H2, 380 

while the two non-catalytic subunits are encoded by RNH202 and RNH203 genes. This enzyme 381 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.11.943795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943795
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

cleaves the RNA moiety in RNA-DNA hybrids originating from Okazaki fragments, co-382 

transcriptional R-loops, and ribonucleotide incorporation by replicative polymerases (Cerritelli 383 

and Crouch, 2009). Deletion of any of the three subunits in yeast inactivates the whole complex. 384 

Human RNase H2 genes are mutated in Aicardi-Goutières syndrome, a severe neurological 385 

disorder (Crow et al., 2006). Inactivation of yeast RNase H2 causes elevated LOH, ectopic 386 

recombination and direct-repeat recombination (Conover et al., 2015; Potenski et al., 2014), 387 

mostly dependent on Top1 activity. What is the recombinogenic intermediate accumulated in the 388 

absence of RNase H2? It has been suggested that Top1-dependent cleavage at the ribonucleotide 389 

site creates a nick that can be further converted into a recombinogenic DSB (Potenski et al., 390 

2014). Recent genetic studies indicate that, while in the case of LOH events hyper-recombination 391 

is caused by Top1-dependent processing of single ribonucleotides incorporated by leading strand 392 

polymerases and/or by accumulation of recombinogenic R-loops (Conover et al., 2015; Cornelio 393 

et al., 2017; Keskin et al., 2014; O’Connell et al., 2015), elevated direct-repeat recombination 394 

results instead from Top1-dependent cleavage of stretches of ribonucleotides, resulting from 395 

defective R-loop removal or Okazaki fragment processing in the absence of RNase H2 (Epshtein 396 

et al., 2016). In line with this model, we also detected elevated direct-repeat recombination rate in 397 

the absence of the Thp2 member of the THO complex, which functions at the interface between 398 

transcription and mRNA export to prevent R-loop accumulation (Chavez et al., 2000; Huertas 399 

and Aguilera, 2003), DST1, which encodes a transcription elongation factor and is anti-400 

recombinogenic (Owiti et al., 2017), and the flap endonuclease encoded by RAD27, which is 401 

involved in Okazaki fragment processing (Balakrishnan and Bambara, 2013) (Table 3). 402 

Furthermore, deletion of the dubious ORF YDL162C, also identified in our screen, likely affects 403 

the expression level of neighbouring CDC9, an essential gene encoding DNA Ligase I, involved 404 

in Okazaki fragment processing and ligation after ribonucleotide removal from DNA. Together, 405 
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available data suggest that different modes leading to accumulation of RNA-DNA hybrids or 406 

unprocessed Okazaki fragments result in hyper-recombination. 407 

 408 

Fork protection complex: Tof1 and Csm3 (Timeless and Tipin in human cells) form the fork 409 

protection complex (FPC), involved in stabilization of replication forks, maintenance of sister 410 

chromatid cohesion and DNA replication checkpoint signaling (Bando et al., 2009; Chou and 411 

Elledge, 2006; Katou et al., 2003; Leman et al., 2010; Mayer et al., 2004; Mohanty et al., 2006; 412 

Noguchi et al., 2004, 2003; Xu et al., 2004). Recently, Tof1 and Csm3 were implicated in 413 

restricting fork rotation genome-wide during replication; they perform this role independently of 414 

their interacting partner Mrc1, which we did not identify in our screen (Schalbetter et al., 2015). 415 

In the absence of Tof1 or Csm3, excessive fork rotation can cause spontaneous DNA damage, in 416 

the form of recombinogenic ssDNA and DSBs (Chou and Elledge, 2006; Schalbetter et al., 2015; 417 

Sommariva et al., 2005; Urtishak et al., 2009). Indeed, depletion of Tof1 and Csm3 orthologues 418 

results in accumulation of recombination intermediates in fission yeast and mouse cells (Noguchi 419 

et al., 2004, 2003; Sommariva et al., 2005; Urtishak et al., 2009). 420 

 421 

RRM3: The RRM3 gene, encoding a 5 to 3 DNA helicase, was initially identified because its 422 

absence causes hyper-recombination between endogenous tandem-repeated sequences (such as 423 

the rDNA locus and the CUP1 genes) (Keil and McWilliams, 1993). The Rrm3 helicase travels 424 

with the replication fork and facilitates replication through genomic sites containing protein-DNA 425 

complexes that, in its absence, cause replication fork stalling and breakage. Such Rrm3-426 

dependent sites include the rDNA, telomeres, tRNA genes, inactive replication origins, 427 

centromeres, and the silent mating-type loci (Azvolinsky et al., 2006; Ivessa et al., 2003, 2000; 428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.11.943795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943795
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Schmidt and Kolodner, 2004; Torres et al., 2004). Intriguingly, a tRNA gene is located about 350 429 

bp upstream the chromosomal location of the leu2 direct-repeat recombination marker. Increased 430 

replication fork pausing in the absence of Rrm3 could cause recombinogenic DSBs, explaining 431 

the elevated direct-repeat recombination we observe in the rrm3∆ strain. 432 

 433 

Oxidative stress response genes: YAP1 and SKN7 encode two transcription factors important for 434 

the activation of the cellular response to oxidative stress (Morano et al., 2012). The glutathione 435 

peroxidase encoded by HYR1 has a major role in activating Yap1 in response to oxidative stress 436 

(Delaunay et al., 2002). TSA1 is a Yap1 and Skn7 target and encodes a peroxiredoxin that 437 

scavenges endogenous hydrogen peroxide (Wong et al., 2004). Deletion of TSA1 causes hyper-438 

recombination between inverted repeats (Huang and Kolodner, 2005), and oxidative stress 439 

response genes (including TSA1, SKN7 and YAP1) are synthetic sick or lethal with HR mutants 440 

(Pan et al., 2006; Yi et al., 2016). A likely explanation for the elevated direct-repeat 441 

recombination we measured in strains defective for the oxidative stress response, therefore, is that 442 

oxidative DNA damage generates replication blocking lesions and/or replication-associated 443 

DSBs, both of which are processed by the HR pathway (Huang and Kolodner, 2005). An 444 

alternative explanation could be that extensive oxidative DNA damage results in the saturation of 445 

the mismatch-binding step of MMR, compromising MMR-dependent heteroduplex rejection, 446 

resulting in increased homeologous recombination (Hum and Jinks-Robertson, 2018; Spies and 447 

Fishel, 2015). 448 

 449 

Other DNA Repair genes: APN1 encodes the main apurinic/apyrimidinic (AP) endonuclease 450 

involved in yeast base excision repair (BER). Removal of endogenous alkylating damage can 451 

generate abasic sites, which are mostly processed by Apn1 (Boiteux and Guillet, 2004; Popoff et 452 
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al., 1990; Xiao and Samson, 1993). In the absence of APN1, abasic sites accumulate, which can 453 

hamper DNA replication. The recombination pathway is involved in the repair and/or bypass of 454 

these abasic sites, as suggested by the genetic interactions between the BER and the HR 455 

pathways (Boiteux and Guillet, 2004; Swanson et al., 1999; Vance and Wilson, 2001). The APN1 456 

gene is adjacent to RAD27, and therefore it is also possible that the hyper-recombination 457 

phenotype of apn1∆ is due to a “neighbouring-gene effect” on RAD27, as was reported in the 458 

case of telomere length alteration (Ben-Shitrit et al., 2012).  459 

 HTA2, which encodes one copy of histone H2A, is of course important for appropriate 460 

nucleosome assembly. Reducing histone levels by deleting one H3-H4 gene pair or by partial 461 

depletion of H4 increases recombination (Clemente-Ruiz and Prado, 2009; Liang et al., 2012; 462 

Prado and Aguilera, 2005), and it is likely that reducing HTA2 gene dosage also does so. Since 463 

histone depletion results in diverse chromatin defects, the exact mechanisms by which 464 

recombination is induced are elusive. 465 

RAD4 encodes a key factor of nucleotide excision repair (NER), and is involved in direct 466 

recognition and binding of DNA damage (Prakash and Prakash, 2000), while RAD6 is a key gene 467 

controlling the post replication repair (PRR) DNA damage tolerance pathway (Ulrich, 2005). 468 

Genetic studies suggest that BER, NER, PRR and HR can redundantly process spontaneous DNA 469 

lesions, and inactivation of one pathway shifts the burden on the others. This mechanism could 470 

explain why deletion of RAD4 or RAD6 causes a modest increase in spontaneous direct-repeat 471 

recombination (Swanson et al., 1999). 472 

CSM1 encodes a nucleolar protein that serves as a kinetochore organizer to promote 473 

chromosome segregation in meiosis, and is involved in localization and silencing of rDNA and 474 

telomeres in mitotic cells (Poon and Mekhail, 2011). Interestingly, Csm1 is important to inhibit 475 

homologous recombination at the rDNA locus and other repeated sequences (Burrack et al., 476 
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2013; Huang et al., 2006; Mekhail et al., 2008). The nuclear pore complex has an intimate 477 

connection to recombination, in that some DSBs move to and are likely repaired at the NPC 478 

(Freudenreich and Su, 2016). The NPC gene NUP170 has not been directly implicated in DSB 479 

repair, but is important for chromosome segregation (Kerscher et al., 2001).  480 

 481 

The unknowns (YER188W, ABZ2, DFG16, and VMA11): Unexpectedly, the top hyper-rec gene 482 

identified in our screen is VMA11, which encodes a subunit of the evolutionarily conserved 483 

vacuolar H
+
-ATPase (V-ATPase), important for vacuole acidification and cellular pH regulation 484 

(Hirata et al., 1997; Kane, 2006; Umemoto et al., 1991). VMA11 involvement in genome 485 

maintenance is suggested by the sensitivity of a vma11∆ strain to several genotoxic agents, 486 

namely doxorubicin, ionizing radiation, cisplatin and oxidative stress (Thorpe et al., 2004; Xia et 487 

al., 2007). V-ATPase defects in yeast result in endogenous oxidative stress and defective Fe/S 488 

cluster biogenesis as a consequence of mitochondrial depolarization (Hughes and Gottschling, 489 

2012; Milgrom et al., 2007; Veatch et al., 2009). Of note, several DNA replication and repair 490 

factors are Fe/S cluster proteins (Veatch et al., 2009; Zhang, 2014). Therefore, the hyper-491 

recombination phenotype of vma11∆ could be due to increased spontaneous DNA damage, 492 

caused by elevated endogenous oxidative stress and/or by defective DNA replication and repair 493 

as a consequence of compromised Fe/S cluster biogenesis. However, VMA11 was not detected in 494 

screens for increased Rad52 foci (Alvaro et al., 2007; Styles et al., 2016), or in a screen for 495 

increased DNA damage checkpoint activation (Hendry et al., 2015), suggesting that spontaneous 496 

DNA damage might not accumulate to high levels in vma11∆. 497 

 ABZ2 encodes an enzyme involved in folate biosynthesis (Botet et al., 2007). Folate 498 

deficiency and the resulting compromise of nucleotide synthesis could promote recombination, 499 

although yeast culture media are rich in folate, and the ABZ2 genetic interaction profile reveals 500 
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no similarity to nucleotide biosynthesis genes (Usaj et al., 2017). DFG16 encodes a predicted 501 

transmembrane protein involved in pH sensing (Barwell et al., 2005). Interestingly, SAFE 502 

analysis indicates a role for DFG16 in DNA replication and/or DNA repair, in addition to the 503 

expected role in pH signaling. There is currently little insight into the function of YER188W. 504 

SAFE analysis indicates a possible role in mitochondrial function, however a protein product of 505 

YER188W has not been detected to date in either mass spectrometry or GFP fusion protein 506 

analyses (Breker et al., 2014; Ho et al., 2018; Huh et al., 2003). 507 

 508 
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FIGURE LEGENDS 938 

 939 

Figure 1. A genome-wide patching and replica plating screen for mutants with increased 940 

direct-repeat recombination. 941 

(A) The leu2 direct-repeat recombination assay. Spontaneous recombination between two leu2 942 

heteroalleles, either through gene conversion or intra-chromosomal single strand annealing 943 

(SSA), yields a functional LEU2 gene. (B) Schematic representation of the screen based on 944 

patching and replica plating. The leu2 direct-repeat recombination cassette was introduced into 945 

the yeast deletion collection (YKO) by crossing the collection with a query strain containing the 946 

cassette. Haploid strains containing each gene deletion and the recombination cassette were 947 

isolated using SGA methodology. Each strain was patched on rich medium and replica-plated to 948 

selective medium, where hyper-recombinant mutants form papillae on the surface of the patch. 949 

Recombination rates were measured for positives from the patch assay using fluctuation tests. (C) 950 

Example plates from the patch assay. Each plate bears a negative control (wild type) and a 951 

positive control (elg1∆). Two positive hits from the screen (rad4∆, ydl162c∆) are shown. (D) 952 

Recombination rates are plotted for the validated positives from the patch screen, alongside the 953 

wild-type strain. Each data point is from an independent fluctuation test, with n≥3 for each strain. 954 

The vertical bars indicate the mean recombination rate for each strain. (E) The top 10 statistically 955 

supported GO terms enriched in the hits from the patch assay screen are shown, with the -fold 956 

enrichment for each term. 957 

 958 

Figure 2. A high-throughput replica-pinning screen for genes controlling direct-repeat 959 

recombination. 960 
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(A) Schematic representation of the screen based on high-throughput replica-pinning. The leu2 961 

direct-repeat recombination cassette was introduced into the yeast deletion collection as in Figure 962 

1B. The resulting strains were amplified by parallel high-throughput replica pinning and 963 

subsequently replica-pinned to media lacking leucine to select for recombination events. 964 

Recombination frequencies were calculated for each strain of the YKO collection. (B) 965 

Recombination frequency distribution for the YKO collection (MSH3 strains) and for the msh3 966 

strains in the collection. Recombination frequencies for a wild-type and for a recombination-967 

defective rad54∆ strain derived from a pilot experiment are indicated by the dashed lines. (C) 968 

Interaction densities determined by CLIK analysis are plotted as a two-dimensional heatmap. The 969 

cutoffs established by CLIK analysis for hyper-recombination (hyper-rec) and recombination-970 

defective (hypo-rec) genes are shown in the insets. (D) The statistically supported GO terms 971 

enriched in the hits from the pinning assay screen are shown, with the enrichment for each term. 972 

(E) Recombination rates from fluctuation tests of csm1∆ and nup170∆ are plotted. Each data 973 

point is from an independent fluctuation test, with n=3 for each strain. The vertical bars indicate 974 

the mean recombination rate for each strain and the wild-type data from Figure 1D are plotted for 975 

comparison. 976 

 977 

Figure 3. Functional analysis of validated hyper-rec genes. 978 

(A) The overlap of the hyper-rec genes for the two screens is plotted as a Venn diagram. The 15 979 

genes identified in both screens are indicated. (B) A protein-protein interaction network for the 980 

proteins encoded by the 35 validated hyper-rec genes is shown. Nodes represent the proteins, and 981 

are colored to indicate function. Edges indicate a physical interaction as annotated in the 982 

GeneMania database. (C) Spatial analysis of functional enrichment. On the left, the yeast genetic 983 

interaction similarity network is annotated with GO biological process terms to identify major 984 
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functional domains (Costanzo et al. 2016). 11 of the 17 domains are labeled and delineated by 985 

coloured outlines. On the right, the network is annotated with the 35 validated hyper-rec genes. 986 

The overlay indicates the functional domains annotated on the left. Only nodes with statistically 987 

supported enrichments (SAFE score > 0.08, p < 0.05) are coloured. (D) The 35 validated hyper-988 

rec genes are compared with existing Saccharomyces Genome Database annotations and genome 989 

instability datasets that measured Rad52 focus formation (Alvaro et al., 2007; Styles et al., 2016), 990 

RNR3 induction (Hendry et al., 2015), or chromosome instability (CIN; (Stirling et al., 2011)). A 991 

green bar indicates that the gene has the given annotation or was detected in the indicated screen. 992 

 993 

Figure 4. Spatial analysis of functional enrichment for four hyper-rec genes. The genetic 994 

interactions of each of the indicated genes was tested for enrichments in the functional 995 

neighbourhoods of the yeast genetic interaction similarity network. The overlay indicates a subset 996 

of functional domains as annotated on Figure 3C. Nodes with statistically supported enrichments 997 

(Neighbourhood enrichment p < 0.05) are coloured, black for negative genetic interactions and 998 

red for positive genetic interactions. 999 

 1000 

 1001 
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Figure 1. A genome-wide patching and replica plating screen for mutants with increased 
direct-repeat recombination. (A) The leu2 direct-repeat recombination assay. Spontaneous 
recombination between two leu2 heteroalleles, either through gene conversion or intra-
chromosomal single strand annealing (SSA), yields a functional LEU2 gene. (B) Schematic 
representation of the screen based on patching and replica plating. The leu2 direct-repeat 
recombination cassette was introduced into the yeast deletion collection (YKO) by crossing the 
collection with a query strain containing the cassette. Haploid strains containing each gene deletion 
and the recombination cassette were isolated using SGA methodology. Each strain was patched on 
rich medium and replica-plated to selective medium, where hyper-recombinant mutants form 
papillae on the surface of the patch. Recombination rates were measured for positives from the 
patch assay using fluctuation tests. (C) Example plates from the patch assay. Each plate bears a 
negative control (wild type) and a positive control (elg1∆). Two positive hits from the screen (rad4∆, 
ydl162c∆) are shown. (D) Recombination rates are plotted for the validated positives from the patch 
screen, alongside the wild-type strain. Each data point is from an independent fluctuation test, with 
n≥3 for each strain. The vertical bars indicate the mean recombination rate for each strain. (E) The 
top 10 statistically supported GO terms enriched in the hits from the patch assay screen are shown, 
with the -fold enrichment for each term.
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Figure 2. A high-throughput replica-pinning screen for genes controlling direct-repeat 
recombination. (A) Schematic representation of the screen based on high-throughput replica-
pinning. The leu2 direct-repeat recombination cassette was introduced into the yeast deletion 
collection as in Figure 1B. The resulting strains were amplified by parallel high-throughput replica 
pinning and subsequently replica-pinned to media lacking leucine to select for recombination 
events. Recombination frequencies were calculated for each strain of the YKO collection. 
(B) Recombination frequency distribution for the YKO collection (MSH3 strains) and for the msh3 
strains in the collection. Recombination frequencies for a wild-type and for a recombination-
defective rad54∆ strain derived from a pilot experiment are indicated by the dashed lines. 
(C) Interaction densities determined by CLIK analysis are plotted as a two-dimensional heatmap. 
The cutoffs established by CLIK analysis for hyper-recombination (hyper-rec) and recombination-
defective (hypo-rec) genes are shown in the insets. (D) The statistically supported GO terms 
enriched in the hits from the pinning assay screen are shown, with the enrichment for each term. 
(E) Recombination rates from fluctuation tests of csm1∆ and nup170∆ are plotted. Each data point 
is from an independent fluctuation test, with n=3 for each strain. The vertical bars indicate the 
mean recombination rate for each strain and the wild-type data from Figure 1D are plotted for 
comparison.
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Figure 3. Functional analysis of validated hyper-rec genes. (A) The overlap of the hyper-rec 
genes for the two screens is plotted as a Venn diagram. The 15 genes identified in both screens are 
indicated. (B) A protein-protein interaction network for the proteins encoded by the 35 validated 
hyper-rec genes is shown. Nodes represent the proteins, and are colored to indicate function. Edges 
indicate a physical interaction as annotated in the GeneMania database. (C) Spatial analysis of 
functional enrichment. On the left, the yeast genetic interaction similarity network is annotated with 
GO biological process terms to identify major functional domains (Costanzo et al., 2016). 11 of the 
17 domains are labeled and delineated by coloured outlines. On the right, the network is annotated 
with the 35 validated hyper-rec genes. The overlay indicates the functional domains annotated on the 
left. Only nodes with statistically supported enrichments (SAFE score > 0.08, p < 0.05) are coloured. 
(D) The 35 validated hyper-rec genes are compared with existing Saccharomyces Genome Database 
annotations and genome instability datasets that measured Rad52 focus formation (Alvaro et al., 2007; 
Styles et al., 2016), RNR3 induction (Hendry et al., 2015), or chromosome instability (CIN; (Stirling et 
al., 2011)). A green bar indicates that the gene has the given annotation or was detected in the 
indicated screen.
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Figure 4. Spatial analysis of functional enrichment for four hyper-rec genes. The genetic
interactions of each of the indicated genes was tested for enrichments in the functional
neighbourhoods of the yeast genetic interaction similarity network. The overlay indicates a subset
of functional domains as annotated on Figure 3C. Nodes with statistically supported enrichments 
(Neighbourhood enrichment p < 0.05) are coloured, black for negative genetic interactions and red 
for positive genetic interactions.
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Table 1. Hyper-recombination genes from the patch assay and pinning assay screens. 

Patch Assay 
 

Pinning Assay Hyper-Rec 

Gene 
name 

Mean 
recombination 

rate
a
 

Standard 
deviation 

p-value
b
 

 
Gene 
name 

Recombinant 
colonies (%) 

Gene 
name 

Recombinant 
colonies (%) 

WT 1.14E-05 2.84E-06 
  

CSM1 100 RNH201 90 

TSA1 1.23E-04 3.64E-05 7.76E-05 
 

ELG1 100 YGL159W 90 

VMA11 1.19E-04 7.62E-06 1.27E-08 
 

MSH2 100 YJL043W 90 

RAD27 9.39E-05 2.59E-05 1.26E-04 
 

RAD27 100 YLR279W 90 

RMI1 7.50E-05 6.85E-06 2.65E-07 
 

RRM3 100 YOR082C 90 

TOP3 6.15E-05 3.80E-06 1.13E-07 
 

SGS1 100 ARP8 88 

SKN7 5.80E-05 6.85E-06 2.20E-06 
 

TSA1 100 BIO3 88 

APN1 5.75E-05 2.97E-05 3.79E-03 
 

DST1 98 COX7 88 

ELG1 5.09E-05 1.30E-05 1.73E-04 
 

RNH202 98 DCS2 88 

MLH1 4.86E-05 1.15E-05 3.43E-05 
 

RNH203 98 DDC1 88 

RNH203 4.68E-05 6.79E-06 1.31E-05 
 

MLH1 96 FUS2 88 

YLR235C 4.52E-05 2.57E-06 6.11E-07 
 

NUP170 96 HST3 88 

TOF1 4.39E-05 1.40E-05 9.45E-04 
 

PMS1 96 KIP1 88 

YAP1 4.22E-05 5.04E-06 8.67E-06 
 

ALE1 94 MFT1 88 

RNH202 3.96E-05 1.38E-05 1.96E-03 
 

APN1 94 MNT2 88 

RNH201 3.86E-05 6.08E-06 1.91E-06 
 

NFI1 94 MRPL51 88 

SGS1 3.75E-05 1.42E-05 2.25E-03 
 

YGR117C 94 NIT3 88 

YDL162C 3.34E-05 9.73E-06 1.38E-03 
 

YML020W 94 PCL10 88 

PMS1 3.33E-05 1.28E-05 3.46E-03 
 

YMR166C 94 PET123 88 

HYR1 3.16E-05 1.74E-05 1.85E-02 
 

YOR072W 94 PHM8 88 

MGS1 3.10E-05 3.83E-06 6.14E-05 
 

RPL23a 94 REC114 88 

MSH2 3.09E-05 1.34E-06 1.55E-06 
 

DIA2 92 RGS2 88 

DST1 3.07E-05 6.56E-06 1.15E-04 
 

EFT1 92 SCO1 88 

YER188W 2.99E-05 1.27E-05 9.90E-03 
 

MDM1 92 SPR1 88 
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CSM3 2.64E-05 3.65E-06 2.78E-04 
 

MSN4 92 TOM5 88 

HTA2 2.60E-05 6.24E-06 1.87E-03 
 

PNS1 92 ULS1 88 

RAD4 2.35E-05 2.46E-06 1.73E-03 
 

RMI1 92 YDL009C 88 

MSH6 2.34E-05 1.02E-05 1.68E-02 
 

RRT14 92 YEL020C 88 

RAD6 2.22E-05 7.25E-06 7.23E-03 
 

SAC3 92 YGL042C 88 

RRM3 2.16E-05 8.30E-06 1.54E-02 
 

YDR230W 92 YJL017W 88 

CHL4 2.14E-05 5.86E-06 9.36E-03 
 

YLR235C 92 YJR018W 88 

THP2 1.94E-05 2.95E-06 2.52E-03 
 

YNL122C 92 YJR124C 88 

DFG16 1.80E-05 4.48E-06 2.44E-02 
 

YTA7 92 YKL091C 88 

ABZ2 1.66E-05 3.93E-06 4.25E-02 
 

FSH1 90 YKL162C 88 

     
GET3 90 YNL179C 88 

     
KGD2 90 YOR309C 88 

     
MID2 90 YOR333C 88 

     
POL32 90 

  

 

a
 Recombination rate from Table S2 

b
 p-values from one-sided Student's t-test 
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Table 2. Hypo-recombination genes from the pinning assay screen. 

Pinning Assay Hypo-Rec 

Gene name 
Recombinant 
colonies (%) 

Gene name 
Recombinant 
colonies (%) 

Gene name 
Recombinant 
colonies (%) 

Gene name 
Recombinant 
colonies (%) 

YCL021W-A 0.0 SIP3 17.2 HST4 27.1 AIM39 31.3 

YEL045C 0.0 BEM1 18.8 PHO85 27.1 CIK1 31.3 

GLY1 0.0 BUB3 18.8 PRM4 27.1 HOL1 31.3 

HIS5 0.0 OPI3 18.8 RIM1 27.1 MET22 31.3 

RAD52 2.1 YER038W-A 18.9 UBP15 27.1 SWH1 31.3 

GCN4 2.9 ARG7 19.1 VMA21 27.1 RNR4 31.3 

CYS4 3.1 LIN1 19.6 YBR075W 27.1 RPN4 31.3 

POS5 3.1 OPY2 20.0 AAT2 27.5 RPS18B 31.3 

REC104 4.2 HEF3 20.0 RAD50 27.8 TSL1 31.3 

YHR080C 4.2 DAL81 20.9 ARG2 28.1 VPS60 31.3 

ATP15 4.8 YLR361C-A 21.3 IRE1 28.2 VTH1 31.3 

YPR099C 4.9 RPL22A 21.6 PDR16 28.2 YKE2 31.3 

YOR302W 5.3 RSM7 21.7 RNR1 28.2 YNR040W 31.3 

ACO2 6.4 CCR4 22.2 YKR023W 28.6 NUP84 31.6 

MDM20 6.4 LOC1 22.2 ATP1 29.2 BOI1 31.7 

MDM10 6.9 AHC1 22.9 FIT2 29.2 URA2 31.7 

NPL3 7.1 CIN1 22.9 HSP42 29.2 RTC3 31.8 

HIS7 7.7 VRP1 22.9 RAD54 29.2 THP1 31.8 

FUN12 8.3 YEL014C 22.9 RAD55 29.2 BUD20 32.1 

BDF1 11.1 CDC40 23.1 SNO1 29.2 RPS16A 32.6 

YNL011C 12.5 MDM34 23.4 SPE2 29.2 
  

SWI6 12.8 OST4 23.5 SPT21 29.2 
  

URA1 13.2 YOL013W-B 24.0 TCD1 29.2 
  

YGR272C 13.2 YCK1 24.3 TPM1 29.2 
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BUD19 13.3 KNH1 25.0 YDR157W 29.2 
  

UGO1 13.3 SHE4 25.0 YDR535C 29.2 
  

YBL065W 14.6 SNF6 25.0 YNL097C-A 29.2 
  

SWI3 14.8 YDL187C 25.0 YME1 29.6 
  

BRE4 15.2 LRP1 25.7 NGG1 30.3 
  

YGR139W 15.6 ACM1 25.9 POP2 30.4 
  

PMD1 15.8 VCX1 26.7 ATP11 30.8 
  

YHL041W 15.8 BUB1 26.8 RPL37B 31.0 
  

ERG28 16.7 CCW12 27.1 HFI1 31.0 
  

SLX5 16.7 HAM1 27.1 YML013C-A 31.1 
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Table 3. Validated hyper-recombination genes from the patch assay and pinning assay screens. 

Gene 
name 

Description Human orthologue(s) 

HTA2 Histone H2A H2A 

NUP170 Subunit of inner ring of nuclear pore complex NUP155 

CSM1 Nucleolar protein that mediates homolog segregation during meiosis I 
 

YDL162C Dubious open reading frame; overlaps the CDC9 promoter LIG1 

MSH6 Protein required for mismatch repair in mitosis and meiosis MSH6 

CHL4 Outer kinetochore protein required for chromosome stability CENPN 

RNH202 Ribonuclease H2 subunit RNASEH2B 

RAD4 Protein that recognizes and binds damaged DNA during NER XPC 

YER188W Putative protein of unknown function 
 

DST1 General transcription elongation factor TFIIS TCEA1, TCEA2, TCEA3 

RAD6 Ubiquitin-conjugating enzyme UBE2A, UBE2B 

RRM3 DNA helicase involved in rDNA replication and Ty1 transposition PIF1 

THP2 Subunit of the THO and TREX complexes 
 

SKN7 Nuclear response regulator and transcription factor HSF1, HSF2, HSF4, HSF5 

HYR1 Thiol peroxidase GPX1, GPX2, GPX3, GPX4, GPX5, GPX6, GPX7 

RAD27 5' to 3' exonuclease, 5' flap endonuclease FEN1 

APN1 Major apurinic/apyrimidinic endonuclease APE1 
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RNH203 Ribonuclease H2 subunit RNASEH2C 

TOP3 DNA Topoisomerase III TOP3A 

YLR235C Dubious open reading frame; overlaps the TOP3 gene TOP3A 

YAP1 Basic leucine zipper transcription factor 
 

TSA1 Thioredoxin peroxidase PRDX1, PRDX2, PRDX3, PRDX4 

CSM3 Replication fork associated factor TIPIN 

MLH1 Protein required for mismatch repair in mitosis and meiosis MLH1 

SGS1 RecQ family nucleolar DNA helicase BLM 

ABZ2 Aminodeoxychorismate lyase (4-amino-4-deoxychorismate lyase) 
 

RNH201 Ribonuclease H2 catalytic subunit RNASEH2A 

PMS1 ATP-binding protein required for mismatch repair PMS1 

MGS1 Protein with DNA-dependent ATPase and ssDNA annealing activities WRNIP1 

TOF1 Subunit of a replication-pausing checkpoint complex TIMELESS 

MSH2 Protein that binds to DNA mismatches MSH2 

DFG16 Probable multiple transmembrane protein 
 

ELG1 Subunit of an alternative replication factor C complex ATAD5 

RMI1 Subunit of the RecQ (Sgs1) - Topo III (Top3) complex RMI1 

VMA11 Vacuolar ATPase V0 domain subunit c' ATP6VOC 
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