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Abstract 11 

Animal movement, expressed through home ranges, can offer insights into spatial and habitat requirements. 12 

However, home range estimation methods vary, directly impacting conclusions. Recent technological 13 

advances in animal tracking (GPS and satellite tags), have enabled new methods for home range estimation, 14 

but so far have primarily targeted mammal and avian movement patterns. Most reptile home range studies 15 

only make use of two older estimation methods: Minimum Convex Polygons (MCP) and Kernel Density 16 

Estimators (KDE), particularly with the Least Squares Cross Validation (LSCV) and reference (href) 17 

bandwidth selection algorithms. The unique characteristics of reptile movement patterns (e.g. low 18 

movement frequency, long stop-over periods), prompt an investigation into whether newer movement-19 

based methods –such as dynamic Brownian Bridge Movement Models (dBBMMs)– are applicable to Very 20 

High Frequency (VHF) radio-telemetry tracking data. To assess home range estimation methods for reptile 21 

telemetry data, we simulated animal movement data for three archetypical reptile species: a highly mobile 22 

active hunter, an ambush predator with long-distance moves and long-term sheltering periods, and an 23 

ambush predator with short-distance moves and short-term sheltering periods. We compared traditionally 24 

used home range estimators, MCP and KDE, with dBBMMs, across eight feasible VHF field sampling 25 

regimes for reptiles, varying from one data point every four daylight hours, to once per month. Although 26 

originally designed for GPS tracking studies, we found that dBBMMs outperformed MCPs and KDE href 27 

across all tracking regimes, with only KDE LSCV  performing comparably at some higher-frequency 28 

sampling regimes. The performance of the LSCV algorithm significantly declined with lower-tracking-29 

frequency regimes, whereas dBBMMs error rates remained more stable. We recommend dBBMMs as a 30 

viable alternative to MCP and KDE methods for reptile VHF telemetry data: it works under contemporary 31 

tracking protocols and provides more stable estimates, improving comparisons across regimes, individuals 32 

and species. 33 
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1. Introduction 39 

Animal movement is an underlying process in many ecological systems, and there is a growing 40 

understanding of how individuals behave through space and time (Nathan et al., 2008; Gurarie et al., 2016). 41 

Movement is often conceptualized then presented as a home range, defined as the area animals move 42 

through during “normal” activities, including resource acquisition and reproduction (Burt, 1943; Powell 43 

2012). While the utility of the home range concept has been questioned in recent years (Kie et al., 2010; 44 

Powell & Mitchell, 2012), home range estimates continue to have a range of applications: identifying 45 

behavioural adaptations to predictable environmental features (Riotte-Lambert & Matthiopoulos, 2019) or 46 

inferring habitat use (Fisher, 2000; Dickson & Beier, 2002; Tikkanen et al., 2018; Marshall et al., 2019). 47 

Applying a home range approach to ecological research questions requires careful consideration (Péron, 48 

2019), as any conclusions drawn can be profoundly impacted by the natural history of the target species. 49 

Terrestrial reptiles —broadly lizards, snakes, and tortoises— have distinct natural histories from mammals 50 

(e.g. as ectotherms), resulting in distinct movement patterns. Many reptiles move less frequently than 51 

comparatively sized mammals (Hailey, 1989), but more importantly, many terrestrial reptiles spend 52 

prolonged periods stationary under shelter (one day to several weeks; Guarino, 2002; Bruton, McAlpine, 53 

Smith, & Franklin, 2014; Mata-Silva, DeSantis, Wagler, & Johnson, 2018). These inconsistent movement 54 

patterns severely impact inferences drawn from home range analyses.  55 

To properly inform desperately needed conservation actions (Gibbons et al., 2000; Roll et al., 2017), we 56 

must tailor our methodologies to the peculiarities of reptile movement (Péron, 2019) –otherwise we risk 57 

designing suboptimal solutions. We must assess the utility of newer methods designed for mammals, before 58 

applying them to reptiles (Silva, Crane, Suwanwaree, Strine, Goode, 2018). 59 

With the rise of Global Positioning System (GPS) animal tracking, researchers have developed new 60 

statistical approaches for calculating home ranges that take advantage of the high number of location fixes. 61 

However, GPS tracking currently has limited application in reptiles (see Schofield et al., 2007; Campbell 62 

et al., 2013; Rosenblatt et al., 2013; Smith, Hart, Mazzotti, Basille, & Romagosa, 2018) as their natural 63 

history poses several problems (Hebblewhite & Haydon, 2010; Wolfe, Fleming, & Bateman, 2018); e.g. 64 

weakened signal due to the surgical implantation or attachment of the tag, limited number of species which 65 

can be ethically attached due to body size (Smith et al., 2018), reduced fix rate and precision due to 66 

sheltering underground (Bruton et al., 2014, Wolfe et al., 2018). 67 

Given that traditional home range estimators –Minimum Convex Polygons (MCP) and Kernel Density 68 

Estimators (KDE)– present major limitations for telemetry-based reptile studies (see Row & Blouin-69 

Demers, 2006), it is important to investigate whether newer methods developed for GPS tracking data can 70 

be applied to reptile-targeted Very High Frequency (VHF) radio-telemetry  studies. Dynamic Brownian 71 

Bridge Movement Models (dBBMMs) are a technique intended for GPS telemetry, allowing for efficient 72 

and repeatable analysis of high-resolution data –particularly useful for animals with behaviourally distinct 73 
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movement patterns. The method creates a one-dimensional fix-frequency independent behavioural measure 74 

(Brownian motion variance; Kranstauber, Kays, LaPoint, Wikelski, & Safi, 2012) that have been employed 75 

to elucidate avian and mammal home range and movement patterns (e.g. Palm et al., 2015; Byrne, McCoy, 76 

Hinton, Chamberlain, & Collier, 2014; Lai, Bêty, & Berteaux, 2015; Buechley, McGrady, Çoban, & 77 

Şekercioğlu, 2018).  78 

Leveraging dBBMMs may benefit VHF studies (Silva et al., 2018; Walter, Onorato, & Fischer, 2015); and 79 

while multiple simulations studies have investigated how different methods interact with animal movement 80 

and home range delineation (e.g. Katajisto & Moilanen, 2006; Row & Blouin-Demers, 2006; Knight et al., 81 

2009; Cohen, Prebyl, Collier, & Chamberlain, 2018), none have targeted reptile-specific movement 82 

patterns. 83 

We assess home range estimates resulting from variable study designs common in the reptile spatial ecology 84 

literature: namely temporally low-resolution tracking regimes. We simulate movement data of three 85 

archetypal reptile species, thoroughly examining the most common home range estimators ―Minimum 86 

Convex Polygons (MCPs) and Kernel Density Estimators (KDEs). We next compare traditional estimators 87 

to a newer method: dynamic Brownian Bridge Movement Models (dBBMMs). Finally, we discuss the 88 

implications of home range estimator choice, and present guiding principles for reptile spatial ecology 89 

sampling designs. 90 

2. Materials and Methods 91 

2.1. SIMULATED ANIMAL MOVEMENT AND TRACKING DATA 92 

We used the SimData function in the momentuHMM package (McClintock & Michelot, 2018) to simulate 93 

movement data from a Hidden Markov Model (HMM). HMMs are time-series models where the movement 94 

pattern of an animal is assumed to depend on the underlying behavioural state of the animal (Langrock et 95 

al., 2014). We simulated data for 32 individuals from three archetype reptile species, to represent three 96 

main groups within reptile movement ecology: Species 1 corresponds to highly mobile (active hunters) 97 

with long-term shelter sites (e.g. monitor lizards, some skinks, and elapids like mambas and king cobras); 98 

Species 2 represents less mobile reptiles, capable of moving long distances but are ambush foragers, and 99 

will still shelter for long periods (e.g. pythons); finally, Species 3 represents smaller ambush predators, 100 

infrequently moving and sheltering for shorter periods (e.g. viperid snakes, some smaller lizard species).  101 

Each archetype had a unique set of state-dependent parameters and transition probabilities with the same 102 

three behaviour states: “sheltering” (state 1), “moving” (state 2), “resting” (state 3). The state-dependent 103 

data streams included step length (lt) and turning angle (θt), which we generated from Gamma and von 104 

Mises distributions, respectively. The simulations included a spatially correlated covariate for state 2, to 105 

reflect habitat preferences, while states 1 and 3 followed a cosinor function, to reflect cyclical patterns of 106 

long-term sheltering (state 1) and circadian rhythms (state 3). To simulate individual variation and 107 

movement in a heterogeneous landscape we generated a random neutral landscape with fractal Brownian 108 
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movement, using the NLMR package (Sciaini, Fritsch, Scherer, & Simpkins, 2018). For further details on 109 

these simulated species, as well as their specific step lengths, turning angles and transitional probabilities, 110 

see Appendix S1, Supporting Information.  111 

After creating the full simulated data set (regime 1), we generated six subsets of the data to represent various 112 

field sampling regimes (regime 2-7): four locations per day, two locations per day, one location per day, 113 

two locations per week, one location per week, and one location per month (Figure 1). For each subset, we 114 

assumed a consistent regularly scheduled sampling protocol limited to the species’ activity periods.  115 

 116 

Figure 1. Example two-month period showing how data is thinned to represent different tracking regimes. 117 

The autocorrelated nature of tracking data poses difficulties for home range estimators that assume 118 

independence between points, namely KDEs. Attempting to remove autocorrelation to fit these assumptions 119 

can reduce the biological relevance of the home range (De Solla et al., 1999), but advocated in reptile home 120 

range studies (Swihart & Slade, 1985; Worton, 1987).  121 

We investigated the temporal autocorrelation present in our simulated dataset to determine whether our 122 

coarser sampling regimes compiled with KDE independence assumptions. Other than less frequent 123 

tracking, autocorrelation may be reduced by removing repeated locations. This method is particularly 124 

relevant for reptiles that exhibit long term sheltering. We considered this special case –sampling regime 8– 125 

where only animal relocations are included in the home range estimation. For regime 8 we used the four 126 

location per day sampling regime, and then removed data points where the animal was stationary. 127 

We described the autocorrelation in the simulated data using the ctmm package’s variogram functionality 128 

(Calabrese, Fleming, & Gurarie, 2016; Fleming et al., 2017), and plotted the minimum number of days 129 

until the autocorrelation became insignificant with raincloud plot code from Allen, Poggiali, Whitaker, 130 

Marshall, & Kievit (2019). 131 

2.2. HOME RANGE ESTIMATORS 132 

2.2.1. Minimum convex polygon 133 

We calculated the Minimum Convex Polygon (MCP) for each simulated individual that created the smallest 134 

area convex polygon containing all animal locations. We used the 95% MCP, which removes outlying 135 
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points on the assumption that these represent exploratory movements and thus not part of the home range, 136 

as originally defined by Burt (1943). The MCP method has long been lauded as a way of maintaining 137 

comparability and historical consistency with previous studies (Jennrich & Turner, 1969), yet has well 138 

documented issues: extreme sensitivity to sampling size and tracking duration (Anderson, 1982), and 139 

overestimated boundary delineation (Robertson, Aebischer, Kenwards, Hanski, & Williams, 1998), with 140 

the inclusion of areas that the animals never use (Börger et al., 2006; Laver & Kelly, 2008). However, Row 141 

& Blouin-Demers (2006) argued that MCPs are preferable to kernel density estimators specifically for 142 

herpetofauna, and MCPs’ use persists for “comparisons” in reptile telemetry studies (Petersen, Goetz, 143 

Dreslik, Kleopfer, & Savitzky, 2019). An additional and considerable limitation of MCPs is that they do 144 

not create a probabilistic utilization distribution. 145 

2.2.2. Fixed kernel home range 146 

Fixed KDE home ranges rely on a smoothing parameter (bandwidth) to generate a utilization distribution. 147 

Bandwidth selection for KDE can dramatically influence home range estimation (Seaman et al., 1999), and 148 

thus we included two bandwidth selection algorithms, reference bandwidth (href) and Least-Squares Cross-149 

Validation (LSCV), for our comparisons. Both bandwidth selection methods are frequently used in reptile 150 

VHF studies, but potentially flawed for herpetofauna (Row & Blouin-Demer, 2006). The href method tends 151 

to overestimate home ranges while LSCV tends to underestimate (Hemson et al., 2005). In general, fixed 152 

KDE home ranges are not accurate when using autocorrelated data regardless of bandwidth selection 153 

function (Noonan et al., 2018). 154 

2.2.3. Dynamic Brownian Bridge Movement Model 155 

Dynamic Brownian Bridge Movement Models (dBBMMs) provide utilization distributions based on animal 156 

movement paths. The method accounts for temporal autocorrelation, so it requires all locations to be time 157 

stamped. In addition, dBBMMs incorporate error associated with each triangulated location, which we kept 158 

consistent across species and regimes (at 5 metres) for the following reasons: (1) neither MPCs nor KDEs 159 

account for location error, so the evaluation of the impact of this metric would be solely on one method and 160 

not effective for comparison purposes; (2) location error associated with VHF telemetry is extremely 161 

variable, dependent on macro and micro-habitat characteristics as well as tracking protocols (which we are 162 

not assessing); and (3) we wanted to account for cases where GPS error can be greater than step length (e.g. 163 

viperids, small lizards). The dBBMM method also allows calculation of Brownian motion variance (σ2m), 164 

which can help researchers determine how movement trajectories can occur due to a species’ behaviour 165 

and activity (Kranstauber et al., 2012). Motion variance can help detect breeding and foraging behaviour 166 

in reptiles, even with VHF telemetry data (Silva et al., 2018). 167 

2.3 METHOD COMPARISON 168 

To compare the error generated from each home range estimator, we calculated the overlap with the 169 

theoretical “true home range” for each individual. We generated an individual’s “true home range” by 170 

creating a buffer around all the simulated movement points with a width of two-times the step length 171 
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intersect from each simulated species’ movement state (40-m for Species 1, 20-m for Species 2, 10-m for 172 

Species 3). This provided a conservative home range estimate (excluding the impact of habitat), but more 173 

generous and biologically sensible than only using simulated movement pathways. For each home range, 174 

we calculated the omission (Type I, false positive) and commission (Type II error, false negative), using 175 

the 95% contours for MCP, KDE and dBBMMs. We used the 95% contours, as this is the standard level 176 

used in most home range estimates. We then calculated the F-measure [2/(recall-1+precision-1)], which 177 

provides a balanced metric of Type I and Type II errors and is insensitive to true negative rates (Sofaer, 178 

Hoeting, & Jarnevich, 2019). 179 

We explored the relationship between methods, regimes, and F-measures using a Bayesian generalized 180 

linear mixed model with the brms package (Bürkner, 2017). We specified a model set for each species, with 181 

F-measure as our response variable following a beta distribution (as it is bound between 0 and 1), with 182 

individual as a random effect to account for individual variation and a varying slope for the effect of method. 183 

We excluded regime 8 (four locations a day, relocations only) as this sampling regime was not systematic. 184 

We ran models with six Markov Chain Monte Carlo (MCMC) chains, each with 6,000 iterations (1,000 185 

burn‐in iterations, thin = 1), and we set Δ to 0.99. We fitted each model with half-Cauchy weakly 186 

informative priors (Lemoine, 2019). We checked model convergence by inspecting trace plots and �̂� values 187 

(Bürkner, 2017), assessed model fit visually via posterior predictive diagnostic plots, and evaluated model 188 

performance using leave-one-out cross-validation (Vehtari et al., 2017) and Bayesian R2. For further details 189 

on model selection and validation, see Appendix S2, Supporting Information.  190 

We compared the special case of regime 8 (similar to regime 2 but only relocation points) to the original 191 

regime 2 in its own Bayesian model set; this allowed us to evaluate the impact of removing stationary 192 

locations as a method of reducing data autocorrelation. Additionally, for this special case we only compared 193 

the best performing KDE bandwidth (LSCV) and dBBMMs. 194 

All datasets and R code to reproduce analyses is available at Zenodo repository platform 195 

(DOI:10.5281/zenodo.3660796). We wrote code for R (v.3.5.2, R Core Team), using R studio (v.1.2.1335, 196 

R Studio Team). 197 

3. Results 198 

3.1. SIMULATED ANIMAL MOVEMENT AND TRACKING DATA 199 

The complete dataset for each simulated individual consisted of n = 17,521 data points for a full year, with 200 

30-minute time steps (regime 1). Each regime progressively lowered the available data (nreg 2 = 1,460 data 201 

points, neg 3 = 730, nreg 4 = 365, nreg 5 = 104, nreg 6 = 52, nreg 7 = 12), while regime 8 varied for each species 202 

and individual due to the variability in sheltering and resting behaviour (nspecies 1 = 5,189 ± 204 data points 203 

(mean ± SD); nspecies 2 = 3,501 ± 1,099; nspecies 3 = 3,873 ± 573). Visual validation of movement patterns 204 

matched with reported patterns in the literature (e.g. Parent & Weatherhead, 2000; Reed & Douglas, 2002; 205 
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Wasko & Sasa, 2009; Hart et al., 2015; Smith et al., 2018; Silva et al., 2018; Marshall et al., 2019), and the 206 

predicted patterns of the three archetypes (Figure 2).  207 

 208 

Figure 2. Example two-month period illustrating how step distance (m) and its frequency differs between 209 

our three species archetypes.  210 

As expected, all simulated species and individual datasets showed strong autocorrelated structure. Time 211 

until insignificant autocorrelation far exceeded even the coarsest tracking regime tested (regime 7, i.e. 212 

1/month), indicating that all tracking regimes breach the assumption of independence required for KDE 213 

methods (Figure 3). 214 
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 215 

Figure 3. Minimum number of sampling days until the autocorrelation becomes insignificant and data 216 

points can be considered independent. 217 

3.2. METHOD COMPARISON: OMISSION VS. COMMISSION 218 

Overall, coarser tracking regimes lead to greater % error when compared to true home ranges. However, 219 

the balance between omission and commission is inconsistent and varies between home range estimation 220 

methods (Figure 4). There is also a general trend towards commission error when estimating home ranges 221 

because omission error is bounded between 0 and 100%.  222 
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 223 

Figure 4. Percentage error from the true home range using 95% contours. A) Commission error represented 224 

by positive values B) omission error represented by negative values. Error bars represent standard error of 225 

means across species (3) and individuals (96). Note the different scales for error, as omission error cannot 226 

exceed 100% of the true home range area. 227 

3.2.1. Minimum convex polygon 228 

Minimum convex polygons were the only method that showed a constant offset between omission and 229 

commission, as one increases the other decreases nearly 1:1. In addition, MCPs were the only method that 230 

decreased their commission error as tracking regime became temporally coarser. At frequent tracking 231 

regimes, MCPs only introduced minimal omission error, but their starkest failure is in their simple shape 232 

leading to the greatest commission error at highest resolution tracking regime (Figure 4, 5).  233 

3.2.2. Fixed kernel home range 234 

The fixed kernel home range using href smoothing factor was by far the worst estimator for commission 235 

error. At low resolution tracking regimes, the >400% overestimation leads to near complete loss of home 236 

range edge fidelity (Figure 4). Due to this heavy emphasis on generous home range estimation KDE href 237 

produced negligible omission error (Figure 5).  238 
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By comparison KDE LSCV produced consistently lower commission error at higher resolution tracking 239 

regimes, but once the regime was once a week or coarser LSCV commission error spikes (up to 300% 240 

overestimation). LSCV consistently performed worse in terms of omission error when applied to tracking 241 

regimes with multiple tracks per day. Additionally, the LSCV algorithm frequently failed to converge 242 

(68.5% of all LSCV home ranges failed). Only regime 7 converged consistently; the inclusion of more data 243 

exacerbated convergence failure (regime 1-4, 100%; regime 5, 43.8%; regime 6, 33.3%). Using only 244 

relocations reduced convergence failures (regime 8, 2.08%) compared to its closest parallel regime (regime 245 

2,100%). 246 

For both KDE methods, omission and commission error variability (displayed as SE on Figure 4) increased 247 

as tracking regime became coarser. 248 

3.2.3. Dynamic Brownian bridge movement model 249 

Overall dBBMMs performed best. The method produced low commission error levels, matching KDE 250 

LSCV performance (Figure 4). Unlike LSCV, dBBMMs commission error remained more stable and lower 251 

when applied to coarser tracking regimes. Only MCPs produced a comparative level of commission error 252 

at the coarsest tracking regimes, but dBBMMs kept some semblance of shape fidelity and connectivity 253 

(Figure 5). Unlike other methods, dBBMM error remained low and balanced between omission and 254 

commission, never exceeding 75%.  255 

 256 
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Figure 5. An example of how method and regime can interact to produce different levels of false negative, 257 

false positive against the true home range. All contours shown are produced from the 95% utilization 258 

distribution. 259 

3.2.4. Special case of regime 8 260 

Tracking regime 8 (four locations per day, relocations only) cannot be directly compared to the other 261 

regimes as the structure of the tracking is different. A fairer comparison is between regime 8 and 2 (four 262 

locations per day). Similar to all other regimes, regime 8 fails to remove autocorrelation to insignificance 263 

(Figure 3); however, it did improve the performance of KDE LSCV estimation despite still breaching the 264 

fundamental independence assumption (Figure 5, 6). The removal of repeated stationary points prevented 265 

the LSCV smoothing from grouping too tightly to point concentrations (i.e. long-term shelter sites), 266 

ultimately countering the tendency towards omission error for LSCV. However, on average, dBBMMs 267 

performed very similarly and balanced the omission and commission well (Figure 4). The dBBMMs had 268 

the added advantage of assuming serial dependence of points and, unlike LSCV, perform well when 269 

provided high quantities of data.  270 

 271 

Figure 6. Comparison between the error rates produced by the KDE LSCV and dBBMM 95% contour 272 

ranges when using data from sampling regime 2 (four locations per day) and regime 8 (four locations per 273 

day, relocations only). 274 

3.3. METHOD COMPARISON: F-MEASURES 275 

The Bayesian models converged and performed well for all three species, with  �̂� values ≃ 1.00 (Appendix 276 

S2, Supporting Information), and R2 values indicating considerable predictive power (Species 1: Bayesian 277 

R2 = 0.960, 95% CrI: 0.958–0.962; Species 2: Bayesian R2 = 0.946, CrI: 0.755–0.786; Species 3: Bayesian 278 

R2 = 0.905, CrI: 0.897–0.911). Overall, our best models showed an interaction effect of methods and 279 

regimes on F-measures; all species had a non-zero positive relationship between F-measures and regimes, 280 
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with higher estimates for dBBMM and KDE LSCV, while both MCP and KDE href showed considerably 281 

worse F-measures. However, Species 1 home range estimations were associated with lower F-measures, 282 

suggesting that the home ranges of species with high movement and long periods of sheltering are harder 283 

to model than those with more stable movement patterns. 284 

 285 

Figure 7. Model results that aimed to predict F-measures using method, regime, and individual ID by 286 

species. Tracking regime 1-7 are shown left to right with lowering levels of opacity. Fitted draws were 287 

taken only from the first 5000 samples. 288 

4. Discussion 289 

Many published terrestrial reptile spatial ecology papers reuse the same two methods: Minimum Convex 290 

Polygon (MCP), and Kernel Density Estimation (KDE), or variants. Both MCPs and KDEs produced high 291 

error rates and failed to properly reflect simulated reptile home ranges. While originally intended for GPS 292 

telemetry, we found that dBBMMs perform well across a range of lower fix rates sampling regimes, and 293 

for our three archetypical reptile species. 294 
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4.1. CHOICE OF FIX FREQUENCY AND ESTIMATOR IMPACTS ESTIMATIONS 295 

The data resampling throughout different tracking regimes led to a 91.7–99.9% data loss from our starting 296 

point at 30-minute time steps: removing non-relocations (regime 8) still reduced data points by 70.4–80.0%. 297 

Seamen et al., (1999) suggested a minimum of 30-50 locations and both regimes 6 (n = 52) and 7 (n = 12) 298 

failed to meet this criteria. A more stringent criteria (Girard et al., 2002) recommending 300 locations also 299 

excludes regime 5 (n = 104). Based on this fact alone, many reptile studies likely fail to meet KDE 300 

requirements.  301 

The use of MCP and KDE href produced large false positive errors, which if carried forward are liable to 302 

impact habitat and space-use inferences (Fieberg, 2007; Nilsen et al., 2008). By comparison, both KDE 303 

LSCV and dBBMM estimations fared better, although LSCV failed to produce F-measures comparable to 304 

dBBMMs under low-resolution tracking regimes. Thus, dBBMMs can improve upon both traditional MCP 305 

and fixed KDE methods. As a fix-frequency independent method (Kranstauber et al., 2012), dBBMMs 306 

performed most consistently across sampling regimes with the lowest error rates, even in low-resolution 307 

datasets. To match dBBMM performance at the sparsest regimes (n = 12) KDEs required four times the 308 

data. Maximizing performance under low-resolution regimes is critical for VHF studies because the data 309 

are time, effort, and cost intensive (Recio et al., 2011). 310 

Furthermore, dBBMMs require no a priori knowledge of an animal's movements (necessary to identify the 311 

correct smoothing bandwidth for KDEs), and can be put to use with current telemetry practices or to re-312 

analyse previously collected VHF data. The dBBMM method is easily compatible with low-resolution data 313 

from herpetofauna spatial ecology studies still reliant on VHF. As gains from long-term high-resolution 314 

tracking methods (GPS) still remain elusive for herpetofauna (Price-Rees, Brown, & Shine, 2013; Wolfe et 315 

al., 2018), improving analytic methods represents a cheap, immediate alternative. 316 

At high resolutions the KDE LSCV came closest to performing comparably with dBBMMs despite critical 317 

flaws beyond failing the initial point independence assumption. Under higher resolution tracking regimes, 318 

the LSCV algorithm fails to converge making the smoothing parameter estimate unusable (supporting 319 

findings from Hemson et al., 2015).  High site fidelity in reptiles leads to unstable KDE LSCV because 320 

non-convergence issues are compounded by large numbers of identical locations or very tight clusters (i.e. 321 

site fidelity). We did not simulate any site fidelity which could inflate LSCV performance. Hemson et al., 322 

(2015) suggest ignoring site fidelity in simulation studies leads to inappropriate conclusions advocating 323 

KDE LSCV (e.g. Worton, 1995; Seaman & Powell, 1996; Seaman et al., 1999). Even with optimal 324 

conditions for LSCV, dBBMMs performed similarly or better. 325 

Removing non-relocations (regime 8) improved KDE LSCV while hindering dBBMMs. However, this fix 326 

compromises the biological relevance of home range estimates (see De Solla, Bonduriansky, & Brooks, 327 

1999) as the autocorrelated nature of animal movement is inherently biologically relevant (Cushman, Chase 328 

& Griffin, 2005). The loss of stationary data points harms inferences drawn upon species that shelter for 329 

long periods. Explorations using real GPS data show consistent problems with KDE LSCV omission error, 330 

leading to severe undersmoothing, and frequent convergence failures (Hemson et al., 2005). Jones, Marron, 331 
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& Sheather (1996) found that LSCV smoothed utilization distributions had unacceptable variability, that 332 

can undermine comparisons between individuals, populations or studies. 333 

Archetypal species movement characteristics influenced our range estimates (MCP, KDE and dBBMM). 334 

The active hunter (Species 1), with its sporadic long-distance moves, had lower F-measures and higher 335 

error rates than the ambush predators (Species 2 and 3). When comparisons between species are required, 336 

researchers should explore how regime and estimation method effect comparisons. Ideally, researchers 337 

should be able to access original data from previous studies. We encourage greater use of open data 338 

repositories in reptile studies (e.g. Movebank). To date, reptile data on Movebank is lacking (11 species, 339 

10 testudines and 1 serpentes). Without readily available data, researchers cannot confidently compare 340 

between species.  341 

4.2. CAVEATS 342 

Herpetofauna and VHF tracking studies can be plagued with uncertainty due to inhospitable terrain and 343 

associated costs. Failures to detect animals during tracking are inevitable, and we did not assess how the 344 

frequency of missed or inconsistent tracks affects each method. Our results indicate that non-symmetrical 345 

tracking regimes (e.g. tracks performed on Tuesdays and Thursdays) still appear to work well with 346 

dBBMMs. Ultimately, accuracy of home range estimation will be dependent on resources, tracking 347 

frequency and study duration (Mitchell, White, & Arnold, 2019). All directly impact the viability of 348 

answering research questions. A clearly defined research question (Fieberg & Börger, 2012) enables 349 

researchers to identify potential trade-offs in context. 350 

While dBBMMs provide a more direct modelling approach for movements –a critical component of 351 

assessing habitat use (Van Moorter, Rolandsen, Basille, & Gaillard, 2016)– there is scope for more 352 

advanced methods when more is known about a species’ movement patterns. dBBMMs provide an instant 353 

option for estimating movement pathways of herpetofauna because they require no a priori knowledge. In 354 

cases where more data are available, researchers can look at methods that integrate more about the 355 

landscape, such as dBBMM with covariates (Kranstauber, 2019), or behaviour (Michelot & Blackwell, 356 

2019). The more advanced methods may require data at higher resolution than is feasibly collectable by 357 

VHF. 358 

4.3. RECOMMENDATIONS AND CONCLUSIONS 359 

Researchers must consider tracking regime during study design. There are practical considerations of cost, 360 

time and ethics, but they must be paired with how the tracking regime will directly impact estimations and, 361 

ultimately, the ability to answer research questions. There will always be spatial uncertainty. Tracking 362 

regime should minimize spatial uncertainty with reference to the research question and targeted behaviours 363 

(Fleming et al., 2014; Schlägel & Lewis, 2016; Bastille-Rousseau et al., 2017). Direct consideration of how 364 

biology and movement impact home range will improve inferences drawn from telemetry studies.  365 
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The insights into reptile ecology can be invaluable despite data collection costs, and data utility should be 366 

maximized. Better home range estimators are an inexpensive way of optimizing returns from tracking data 367 

compared to technological advances or increasing field work. Reptile movement is peculiar: we revealed 368 

the impact of long-term sheltering (essentially a zero-inflated movement dataset) on home range 369 

estimations, which introduced error by under- and over-smoothing with traditional estimators. Inferences 370 

based on traditional estimators have likely led to biases in reptile studies. Carrying these biases forward can 371 

lead to misallocation of resources.   372 

Our study concurs with previous studies e.g. Signer et al. (2015) stating problems with both MCP and 373 

KDEs. Despite known problems researchers continue to justify use of MCPs and KDEs to maintain 374 

comparability with previous studies. We find this deeply flawed in cases where tracking regime or estimator 375 

differ which produce dramatically different error rates. However, we also demonstrate the stability of 376 

dBBMMs and their suitability for comparisons. The information provided here can help optimise reptile 377 

spatial ecology by yielding more accurate and reproducible home range estimations.  378 
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