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Abstract 
Antibody structure is largely conserved, except for a complementarity-determining region 

featuring six variable loops.  Five of these loops adopt canonical folds which can typically be 

predicted with existing methods, while the remaining loop (CDR H3) remains a challenge due to 

its highly diverse set of observed conformations.  In recent years, deep neural networks have 

proven to be effective at capturing the complex patterns of protein structure.  This work 

proposes DeepH3, a deep residual neural network that learns to predict inter-residue distances 

and orientations from antibody heavy and light chain sequence. The output of DeepH3 is a set 

of probability distributions over distances and orientation angles between pairs of residues.  

These distributions are converted to geometric potentials and used to discriminate between 

decoy structures produced by RosettaAntibody.  When evaluated on the Rosetta Antibody 

Benchmark dataset of 49 targets, DeepH3-predicted potentials identified better, same, and 

worse structures (measured by root-mean-squared distance [RMSD] from the experimental 

CDR H3 loop structure) than the standard Rosetta energy function for 30, 13, and 6 targets, 

respectively, and improved the average RMSD of predictions by 21.3% (0.48 Å).  Analysis of 
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individual geometric potentials revealed that inter-residue orientations were more effective 

than inter-residue distances for discriminating near-native CDR H3 loop structures. 

 

Introduction 
The adaptive immune system of vertebrates is responsible for coordinating highly specific 

responses to pathogens.  In such a response, B cells of the adaptive immune system secrete 

antibodies to bind and neutralize some antigen.  The central role of antibodies in adaptive 

immunity makes them attractive for the development of new therapeutics.  However, rational 

design of antibodies is hindered by the difficulty of experimental determination of 

macromolecular structures in a high-throughput manner.  Advances in computational modeling 

of antibody structures provides an alternative to experiments, but computations are not yet 

sufficiently accurate and reliable. 

 Antibody structure consists of two sets of heavy and light chains that form a highly 

conserved framework region (Fc) and two variable regions responsible for antigen binding (Fv).  

The structural conservation of the Fc is functionally significant, enabling the recognition of 

different antibody isotypes by their receptors, and the Fc lends well to homology modeling.  

The Fv contains several segments of sequence hypervariability that provide the structural 

diversity necessary to bind a variety of antigens.  This diversity is largely focused in six β-strand 

loops known as the complementarity determining regions (CDRs).  Five of these loops (L1-L3, 

H1, H2) typically fold into one of several canonical conformations [1] that are predicted well by 

existing methods [2].  However, the third CDR loop of the heavy chain (H3) is observed in a 

diverse set of conformations and remains a challenge to model [3-9]. 

 Application of deep learning techniques has yielded significant advances in the 

prediction of protein structure in recent years.  At CASP13, AlphaFold [10] and RaptorX [11] 

demonstrated that inter-residue distances could be accurately learned from sequence and 

coevolutionary features.  Both approaches used deep residual network architectures with 

dilated convolutions to predict inter-residue distances, which provide a more complete 

structural description than contacts alone.  trRosetta built on this progress by expanding 

beyond distances to predict a set of inter-residue orientations [12].  This rich set of inter-
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residue geometries allows trRosetta to outperform leading approaches on the CASP13 dataset, 

even with a shallower network [12]. 

 This work expands on the progress in general protein structure prediction by applying 

similar techniques to a challenging problem in antibody structure prediction.  Specifically, we 

propose DeepH3, a deep residual network that learns to predict inter-residue distances and 

orientations from antibody heavy and light chain sequence alone.  We show that when 

compared to the Rosetta energy function, DeepH3-predicted geometric potentials can more 

accurately identify near-native CDR H3 loop structures. 

 

Methods 

Overview 

DeepH3 is a deep residual network that learns to predict inter-residue distances and 

orientations from antibody heavy and light chain sequences.  The architecture of DeepH3 draws 

inspiration from RaptorX [11, 13], which performed well on general protein structure prediction 

at CASP13.  The outputs of DeepH3 are converted into geometric potentials in order to better 

discriminate between CDR H3 loop structure decoys generated using a standard homology 

modeling approach [14]. 

 

Antibody Structure Datasets 

Benchmark Dataset.  The Rosetta antibody benchmark dataset consists of 49 Fv structures with 

CDR H3 loop lengths ranging from 9 to 20 residues [14, 15].  These structures were selected 

from the PyIgClassify database [16] based on their quality, with each having resolution of 2.5 Å 

or better, a maximum R value of 0.2, and a maximum B factor of 80.0 Å2 for every atom [14, 

15].  The diversity of the set is enhanced by ensuring that no two structures share a common 

CDR H3 loop sequence, but limited by restriction to structures from humans and mice [14, 15]. 

 

Training Dataset.  The training dataset for this work was extracted from SAbDab, a curated 

database of all antibody structures in the Protein Data Bank [17].  We enforced thresholds of 
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99% sequence identity and 3.0 Å resolution to produce a balanced, high-quality dataset.  This 

high sequence identity cutoff was chosen due to the high conservation of sequence 

characteristic of antibodies.  In cases where multiple chains existed for the same structure, only 

the first chain in the PDB file was used.  Finally, any structures present in the Rosetta antibody 

benchmark dataset were removed.  These steps resulted in 1,462 structures, of which a random 

95% were used for model training and 5% were used for validation.  This small validation set 

was found to be sufficient to control for overfitting.  Note that testing is carried out on an 

independent benchmark sharing no structures with the training/validation sets. 

 

Learning Inter-Residue Geometries from Antibody Sequence 

Input Features.  Unlike most comparable networks, DeepH3 relies only on amino acid sequence 

as input.  For general protein structure prediction, current methods typically utilize some 

combination of multiple sequence alignments, sequence profiles, co-evolutionary data, 

secondary structures, etc. [10-13, 18].  While these additional input features provide rich 

information for general protein structure predictions, the highly conserved antibody structure 

should render these features less useful, and we omit them.  DeepH3 takes as input a one-hot 

encoded sequence formed by concatenating the target heavy and light chains.  A chain 

delimiter is added to the last position in the heavy chain, resulting in an input of dimension 

Lx21, where L is the cumulative length of the heavy and light chain sequences. 

 

Inter-Residue Geometries.  In addition to inter-residue distances, DeepH3 is also trained to 

predict the set of dihedral and planar angles previously proposed for trRosetta [12].  For two 

residues i and j, the relative orientation is defined by six parameters (d, ω, θij, θji, φij, and φji, 

Figure 1A-B, adapted from [12]).  The distance (d) is defined using Cβ atoms or for glycine 

residues, Cα.  Distances were discretized into 26 bins, with 24 in the range of [4, 16 Å] and two 

additional bins for all distances below 4 Å or above 16 Å.  The dihedral angle ω is formed by 

atoms Cαi, Cβi, Cβj, and Cαj, and the dihedral angle θij is formed by atoms Ni, Cαi, Cβi, and Cβj.  Both 

dihedral angles were discretized into 26 equal-sized bins in the range of [-180, 180°].  The 

planar angle φij is formed by atoms Cαi, Cβi, and Cβj.  Planar angles were discretized into 26 
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equal-sized bins in the range of [0, 180°].  Orientation angles were not calculated for glycine 

residues, due to the absence of the Cβ atom. 

 

Network Architecture.  DeepH3 applies a series of 1D and 2D convolutions to the 

aforementioned sequence input feature to predict four inter-residue geometries, as 

diagrammed in Figure 1C.  The first 1D convolution (kernel size of 17) projects the Lx21 input 

features up to an Lx32 tensor.  Next, the Lx32 tensor passes through a set of three 1D residual 

blocks (two 1D convolutions with kernel size of 17), which maintain dimensionality.  Following 

the 1D residual blocks, the sequential channels are transformed to pairwise by redundantly 

expanding the Lx32 tensor to dimension LxLx32 and concatenating with the transpose, resulting 

in a LxLx64 tensor.  This tensor passes through 25 2D residual blocks (two 2D convolutions with 

kernel size of 5x5) that maintain dimensionality.  Dilation of the 2D convolutions cycles through 

 
Figure 1.  Architecture of DeepH3 deep residual neural network.  (A) Illustration of the distance d and 

dihedral ω for two residues. (B) Illustration of the dihedrals θ12 and θ21 and planar angles φ12 and φ21 for 

two residues. (C) Architecture diagram of residual neural network to learn inter-residue geometries from 

concatenated antibody Fv chain sequences. 
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values of 1, 2, 4, 8, and 16 every five blocks (five cycles in total).  Next, the network branches 

into four paths, which each apply a 2D convolution (kernel size of 5x5) to project down to 

dimension LxLx26 (for 26 output bins).  Symmetry is enforced for the d and ω branches after 

the final convolution by summing the resulting tensor with its transpose.  The four resulting 

LxLx26 tensors are converted to pairwise probability distributions for each output using the 

softmax function.  DeepH3 was implemented using PyTorch [19] and is freely available at 

https://github.com/Graylab/deepH3-distances-orientations. 

 

Training.  Categorical cross-entropy loss was calculated for each output tensor and the 

resulting losses were summed with equal weight before backpropagation.  The Adam optimizer 

was used with an initial learning rate of 0.01 and reduction of learning rate upon plateauing of 

total loss.  Dropout was used after the last 2D residual block, with entire channels being zeroed 

out at 20% probability.   The network was trained using 95% of antibody dataset described 

above (1,388 structures) for 30 epochs.  Each epoch utilized the entire training dataset, with a 

batch size of 4.  Training lasted about 35 hours using one NVIDIA Tesla K80 GPU on the 

Maryland Advanced Research Computing Center (MARCC). 

 

Network Predictions as Geometric Potentials 

Implementation.  To test the effectiveness of predicted geometric potentials in CDR H3 loop 

structure prediction, we collected Marze et al.’s RosettaAntibody set of 2,800 decoy structures 

for each of 49 antibody targets [14].  Marze et al. generated these structures by homology 

modeling, with decoys for each target assuming various heavy/light-chain orientations and non-

H3 CDR loop conformations.  Subsequently, we applied DeepH3 to each sequence in the 

benchmark dataset to produce pairwise probability distributions for the four output 

geometries.  Distributions for pairs of residues that did not include a member of the CDR H3 

loop were discarded.  Additionally, pairs of residues for which the maximum probability bin of 

the distance output was greater than 12 Å were discarded to focus on local interactions that are 

likely to carry biophysical meaning.  We also disregarded those predicted distributions that 

were not informative enough, chosen as those with a maximum probability below 10%.  The 



remaining distributions were converted to potentials by taking the negative natural log of each 

output bin probability.  Continuous, differentiable Rosetta constraints (AtomPair for d, 

Dihedral for ω and θ, and Angle for φ) were created for each potential using the built-in 

spline function.  These constraint functions were applied to the decoy structures produced by 

RosettaAntibody to calculate a new DeepH3 energy term for each structure. 

 

Discrimination Score.  The discrimination score is a common metric for measuring the success 

of structure prediction calculations by assessing whether the minimum energy structures are 

near-native, with a lower value being indicative of a more successful prediction [15].  In order 

to compare between different energy schemes, we first scale the scores for all decoy structures 

such that the 95th percentile energy has a value of 0.0 and the 5th percentile energy has a value 

of 1.0.  The discrimination score is then calculated as [20]: 

𝐷 = # min
',)*+,(')/[1,2]

𝐸' − min
',)*+,(')/[2,6]

𝐸'
2/{8,8.:,;,;.:,<,=,>}

 

where r is the RMSD cutoff in Å, Ei is the scaled energy for the i-th decoy structure, and the 

discrimination score, D, is the sum of the energy differences for the best scoring decoys above 

and below each RMSD cutoff. 

 

Results 

DeepH3 Accurately Predicts Inter-Residue Geometries 

To evaluate the accuracy of DeepH3’s predictions, we applied our model to the entire Rosetta 

antibody benchmark dataset (not seen during training or validation).  For residue pairs involving 

a CDR H3 loop residue, the predicted values for each geometry are plotted against 

experimental structure values in Figure 2.  DeepH3 displays effective learning across all outputs; 

the Pearson correlation coefficients (r) for d and φ were 0.87 and 0.79, respectively, and the 

circular correlation coefficients (rc) for dihedrals ω and θ were 0.52 and 0.88, respectively. 

 

 

 



Geometric Potentials Effectively Discriminate Between Loop Structures 

DeepH3 predictions were converted to geometric potentials (see Methods) and applied to 

RosettaAntibody generated structure decoys to evaluate the effectiveness of DeepH3 energy 

for identifying near-native structures.  When the best-scoring structures (top 1) by Rosetta 

energy and DeepH3 energy were compared, DeepH3 selected better-, same-, and worse-RMSD 

structures for 30, 13, and 6 out of 49 targets, respectively, with an average RMSD improvement 

of 0.48 Å (Figure 3A).  When the set of five best-scoring structures (top 5) by Rosetta energy 

and DeepH3 energy were considered, DeepH3 energy identified a better-, same-, and worse -

RMSD structures for 26, 17, and 6 out of 49 targets, respectively, with an average RMSD 

improvement of 0.40 Å (Figure 3B).  We also compared the ability of Rosetta energy and 

DeepH3 energy to discriminate between decoys for each benchmark target (Figure 3C).  The 

mean discrimination scores for Rosetta energy and DeepH3 energy across the benchmark were 

 
Figure 2.  Accuracy of predicted inter-residue geometries.  Pearson correlation coefficients (for d and φ) 

and circular correlation coefficients (for ω and θ) are calculated between DeepH3 predictions and 

experimental values. 
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-2.51 and -21.10, respectively, indicating that both methods were successful in general.  When 

individual targets are considered, DeepH3 energy was successful in discriminating between 

decoys for 43 out of 49 targets, while Rosetta energy was successful for only 26 out of 49 

targets.  

 To provide a better understanding of how predicted geometric potentials improve 

discrimination between CDR H3 structures, we provide two case studies: anti-cytochrome C 

oxidase (mouse antibody with an eleven-residue CDR H3 loop, PDB ID: 1MQK) and 

sonepcizumab (humanized mouse antibody with a fourteen-residue CDR H3 loop, PDB ID: 3I9G) 

[15].  Figures 4A and 4C show energy funnels for anti-cytochrome C oxidase and sonepcizumab, 

respectively, with the discrimination score calculated for each.  For anti-cytochrome C oxidase, 

Rosetta energy displays little ability to discriminate with structures ranging from 1 to 4 Å RMSD 

(D = 3.39).  DeepH3 energy, however, earns a highly negative discrimination score (D = -28.68), 

indicating an ability to easily distinguish the near-native structures.  The best-scoring 1mqk 

decoy structures as selected by Rosetta energy (orange, 3.20 Å RMSD) and DeepH3 energy 

 
Figure 3.  Effectiveness of predicted inter-residue geometries.  (A-B) Comparison of the quality of 

structures selected by Rosetta energy and DeepH3 energy (using all geometric potentials).  The quality of 

structures is considered the same if the difference in RMSD is within ±0.25 Å, indicated with dashed lines.  

(A) DeepH3 energy selected better-, same-, and worse-RMSD structures for 30, 13, and 6 out of 49 

targets, respectively, when the best-scoring structures were compared (top 1).  (B) When the set of five 

best-scoring structures were considered (top 5), DeepH3 energy identified better-, same-, and worse-

RMSD structures for 26, 17, and 6 out of 49 targets, respectively.  (C) Comparison of the discrimination 

scores for Rosetta energy and DeepH3 energy. 

 

A B C



(violet, 1.07 Å RMSD) are shown in Figure 4B.  For sonepcizumab, Rosetta energy is generally 

successful in discriminating between decoys (D = -1.59), but again with minor energetic 

differences across a wide range of RMSD values.  DeepH3 energy appears to converge to an 

alternative loop conformation around 2.5 Å RMSD, resulting in a poor discrimination score (D = 

0.66).  Figure 4D shows the best-scoring sonepcizumab decoy structures as selected by Rosetta 

energy (orange, 1.03 Å RMSD) and DeepH3 energy (violet, 2.16 Å RMSD). 

 

 

 

 
Figure 4.  Results for two Rosetta antibody benchmark targets.  (A) Plots of Rosetta energy and DeepH3 

energy vs distance from the experimental structure for 2,800 decoy structures for anti-cytochrome C 

oxidase.  The five best-scoring structures in each funnel plot are indicated in red.  Five relaxed native 

structures are plotted as orange triangles.  (B) Experimental structure of anti-cytochrome C oxidase 

(green) with best-scoring structures by Rosetta energy (orange, 3.20 Å RMSD) and DeepH3 energy (violet, 

1.07 Å RMSD).  (C) Plots of energy vs distance from the experimental structure for sonepcizumab.  (D) 

Experimental structure of sonepcizumab (green) with best-scoring structures by Rosetta energy (orange, 

1.03 Å RMSD) and DeepH3 energy (violet, 2.16 Å RMSD). 
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Orientation Potentials are More Effective than Distance Potentials 

We also evaluated the utility of individual geometric potentials for selecting low-RMSD decoys 

(Table 1) Notably, when DeepH3 distance potentials alone were used, performance was only 

moderately better than Rosetta energy.  When the best-scoring structures by Rosetta energy 

and distance potentials were compared, distance potentials selected better-, same-, and worse-

RMSD structures for 25, 13, and 11 out of 49 targets, respectively, with an average RMSD 

improvement of 0.34 Å.  When the set of five best-scoring structures by Rosetta energy and 

distance potentials were considered, DeepH3 energy identified a better-, same-, and worse -

RMSD structures for 20, 19, and 10 out of 49 targets, respectively, with an average RMSD 

improvement of 0.23 Å.  Individual orientation potentials were more effective at selecting low-

RMSD decoys than distance, even matching or outperforming the total DeepH3 energy by some 

metrics.  We also calculated discrimination scores for each geometric potential (Table 2).  

Distance potentials display the weakest performance among geometric potentials but still show 

significant improvement over Rosetta energy, with 40 out of 49 simulations being successful 

and a mean discrimination score of -14.08.  All three orientation potentials produced more 

successful simulations and lower mean discrimination scores than distance potentials. 

 

 

Table 1.  Performance of geometric potentials vs Rosetta energy function for selecting low-RMSD 

antibody decoys.  Top-1 metrics compare the RMSD of the best-scoring structure by Rosetta energy 

against that of a given combination of DeepH3 potentials.  Top-5 metrics compare the lowest-RMSD 

structure among the five best-scoring structures selected by Rosetta energy and that of a given 

DeepH3 potential.  The average difference in RMSD between the structures selected by a given 

DeepH3 potential and Rosetta energy is reported as ΔRMSD (Å). 

 Top 1 Top 5 
Energy Terms Better Same Worse ΔRMSD Better Same Worse ΔRMSD 

d 25 13 11 -0.34 20 19 10 -0.23 
ω 30 11 8 -0.43 28 14 7 -0.39 
θ 31 11 7 -0.50 26 17 6 -0.39 
φ 29 14 6 -0.46 26 17 6 -0.41 

d + ω + θ + φ 30 13 6 -0.48 26 17 6 -0.40 

 



Discussion 

The results here suggest that the significant advances by deep learning approaches in general 

protein structure can also be realized in subproblems in structural modeling.  Specifically, we 

demonstrate that a deep residual network can effectively capture the local inter-residue 

interactions that define antibody CDR H3 loop structure.  DeepH3 achieves these results 

without co-evolutionary data, while using significantly fewer residual blocks (3 1D + 25 2D 

blocks) than similar networks, such as AlphaFold (220 2D blocks) [10], RaptorX (6 1D + 60 2D 

blocks), and trRosetta (61 2D blocks).  Fewer blocks may suffice because we limited our focus to 

antibodies, which are highly conserved, rather than the entire universe of protein structures.  In 

the future, similar specialized networks could achieve enhanced performance in other 

challenging domains of protein structure prediction.  

 Breakdown of DeepH3 energy into individual geometric potentials revealed that inter-

residue orientations were significantly more effective for scoring CDR H3 loop structure than 

distances.  This finding was surprising, given the improvements that distances alone have 

enabled in general protein structure prediction.  It is possible that while accurate distance 

predictions are effective at placing residues globally, the attention to local interactions 

necessary for CDR H3 loop modeling is better captured by inter-residue orientations.  While this 

work only utilized predicted inter-residue geometries to discriminate between CDR H3 loop 

structures, we expect that a similar approach would yield improvement in the generation of 

structures as well. 

 

Table 2.  Discrimination score metrics for Rosetta energy and DeepH3 potentials.  Negative discrimination 

scores, D, are considered successful and positive are considered unsuccessful. 

Energy Terms Successful Unsuccessful Mean D 

Rosetta Energy 29 20 -2.5 
d 40 9 -14.1 
ω 44 5 -15.1 
θ 43 6 -28.1 
φ 45 4 -17.9 

d + ω + θ + φ 43 6 -21.1 
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