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Abstract

Motivation: Principled computational approaches for tumor phylogeny reconstruction via
single cell sequencing (SCS) typically aim to identify the most likely perfect phylogeny tree
through combinatorial optimization or Bayesian inference. Because of the limitations of SCS
technologies, such as frequent allele dropout and variable sequence coverage, a noise reduc-
tion/elimination process may become necessary to infer a tumor phylogeny. Such noise reduction
processes may aim to correct for the most likely/parsimonious set of false negative/false positive
variant calls so as to construct a perfect phylogeny. Since these problems are NP-hard, available
principled approaches for tumor phylogeny reconstruction are limited in their ability to scale
up for handling emergent SCS datasets. In fact, even when the goal is to infer basic topological
features of the tumor phylogeny rather than reconstructing it entirely, available techniques may
be prohibitively slow. As a result, fast techniques to deduce, e.g. (i) whether the most likely
tree has a linear (chain) or branching topology, or (ii) whether a perfect phylogeny is feasible
from single-cell genotype matrix, without explicitly testing for the three gametes rule, are highly
desirable.
Results: In this paper we introduce deep-learning solutions to the above mentioned problems
for studying tumor evolution from SCS data. After training with sufficiently many examples:
(1) our fully connected neural network for differentiating linear vs branching topologies, can
improve the running time of the fastest combinatorial tumor phylogeny reconstruction methods
by a factor of ≥ 1000, while achieving an accuracy of ∼ 98% on simulated data including
100 cells and 100 mutations with realistic noise levels (leading to mostly false negatives) of
10− 15%; (2) similarly, our fully connected neural network for checking whether the input data
permits a perfect phylogeny, achieves an accuracy of ∼ 90% on simulated data including 10
cells and 10 mutations, with similar noise levels; (3) finally, our reinforcement learning approach
for tumor phylogeny reconstruction can actually eliminate noise and obtain the PP, when false
negative/false positive rate ≤ 2%, for a large fraction of evaluation data sets with varying
number of cells and mutations, even when trained with fixed size data sets of only 10 cells and
10 mutations - this may be useful for future clinical applications that would employ emerging
SCS technologies with lower noise levels.
Availability: https://github.com/algo-cancer/PhyloM
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1 Introduction

Cancer is an evolutionary disease characterized by progressive accumulation of somatic mutations
in tumor cells. Deciphering evolutionary history of a given tumor represents an important problem
in studies of cancer and can help us in better understanding of several clinically important aspects
of the tumor including progression, metastatic spread, the existence of divergent subclones evolving
simultaneously and many others.

Due to the importance of the problem, there has been rapid developments in the design of
principled computational methods for tumor phylogeny inference. Many of these methods use bulk
sequencing data where DNA from millions of tumor (and normal) cells are sequenced together.
Tree inference from this type of data is typically based on the use of cancer cell fraction of detected
variants - in particular single-nucleotide variants [36, 6, 11, 25, 28, 8, 12, 31, 27, 19], but also
copy number (e.g., [39]) and structural variants (e.g., [9, 29]). While being cost-effective, the low
resolution of bulk sequencing data is a limiting factor in tumor evolution modeling. In particular,
bulk sequencing data from a single tumor sample typically admits a linear topology [15] as an opti-
mal solution under common tree-scoring models. However, inferring whether the underlying tumor
includes divergent subclones which evolve through distinct branches of the tumor phylogeny repre-
sents an important step towards better understanding tumor progression and improving treatment
design.

Recent technological developments have enabled researchers to perform single-cell sequencing
(SCS) experiments, where DNA from an individual cell is extracted, amplified and sequenced. SCS
provides high-resolution data for studying tumor evolution at unprecedented detail, e.g., it offers
the possibility to identify branching topologies, or to solve the general problem of inferring the
complete history of tumor evolution. Early tools for inferring tumor evolutionary history from
SCS data include SCITE [20], OncoNEM [30] and SiFit [41] (and its improved version SiCloneFit
[40]), probabilistic methods for learning tumor phylogenies, as well as SPhyR [10] a combinatorial
optimization based approach, all under the infinite sites assumption (ISA), i.e. each mutational
gain can occur only once during the evolution of a tumor and is never lost (even though SiFit has
a provision for possible loss and concordant gain of mutations).

When both SCS and bulk sequencing data for a tumor sample are available, two of the latest
methods, namely B-SCITE [24] and PhISCS [26], can provide more accurate tumor phylogenies.
These methods can also be applied solely to single-cell data. B-SCITE is a probabilistic method
that integrates SCITE [20] and CITUP [25], whereas PhISCS is based on the use of combinatorial
optimization and has two distinct implementations: PhISCS-I uses integer-linear programming
while PhISCS-B formulates the same problem as a boolean constraint satisfaction program and
solves it via available methods for weighted max-SAT. Both approaches can also be applied to SCS
data only.

As summarized above, available methods for tumor phylogeny reconstruction, especially by the
use of SCS data have important limitations. First many of these methods all employ ISA (even
though some offer a provision for limited loss and concordant gain of mutations) and assume a
uniform noise level (false negative as well as a false positive rate) - both subject to change with
advances in our understanding of tumor evolution and SCS technology. More importantly, these
methods aim to infer the most likely tumor phylogeny, and for that eliminate noise (due to allele
dropout or low sequence coverage) with a maximum likelihood/parsimony approach. As such,
they all aim to solve an NP-hard problem from scratch, and thus cannot scale up to handle large
SCS datasets. Even when the goal is to infer basic topological features of the tumor phylogeny
rather than reconstructing it entirely, these methods cannot easily handle SCS data involving a
few hundred mutations and cells. As a result, fast techniques for inferring key features of a tumor
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phylogeny, e.g. those that can discriminate linear from branching topologies, especially for SCS data
sets with high noise levels (as per the current practice) are in high demand. Similarly, it is desirable
to quickly infer whether any noise elimination is necessary for constructing a perfect phylogeny.
Finally each of these tools have required a great deal of human effort in algorithmic design and
implementation, as each technological advance in data generation necessitated the development
of completely novel methodologies. It is thus highly desirable to have a general computational
approach that can adopt to technological change, simply through training it with new data, without
the need for explicit objective or noise profile modeling.

It may be possible to address these limitations via a data-driven, machine learning approach that
considers a general set of functions and choose one that best fits a training dataset - which could be
simulated or obtained through real world measurements. Such an approach could not only reduce
the inaccuracies in noise profile modeling but also identify implicit underlying patterns in the data
or problem towards developing more realistic objectives. Recent advances in deep learning have
demonstrated remarkable generalization of formulations for solving many problems (e.g., mastery
over games such as Chess, Go[34], and Poker, or handling natural language tasks via BERT [7]
and most recently RoBERTa [23]) and it is possible that a single deep learning architecture may
succeed in inferring distinct properties of tumor phylogenies when properly trained on sufficient
number of datasets.

In recent years, many computing applications have experienced a shift to data-driven ap-
proaches, from deciphering handwritten text (e.g., [5] for digit recognition) to natural language
processing (NLP), e.g., [7, 23]. Problems with poorly understood/formulated objectives such as
those in structural biology (e.g. AlphaFold [33] for inferring the 3D structure of a protein sequence)
seem to benefit considerably from deep learning methods. However we are not aware of any data
driven approach for tumor phylogeny inference.

In this work we offer the first data-driven tumor phylogeny reconstruction methods to address
the limitations of existing strategies. We have used SCS data with deep neural networks and
reinforcement learning to infer topological features of a tumor phylogeny, as well as the most likely
evolutionary history of a tumor. In order to achieve this we had to overcome several distinct
challenges: (1) The neural network should ideally be designed so as to handle varying number of
cells and mutations. Alternatively, for models with fixed sized inputs, it is desirable to use our
domain knowledge to prepare the data in a manner that will facilitate success in predictions.

(2) Given the use of neural networks, one needs a large number of samples for proper training.
Unfortunately, the number of publicly available tumor SCS datasets are not sufficiently large to
train deep learning models, thus we needed to produce a large number of simulated SCS data. (3)
Errors/noise in SCS data add further complexity to the problem and the proposed deep learning
framework had to be evaluated in terms of noise tolerance. (4) The chosen architecture also
expects a specific type of supervision which we must be able to compute. In order to perform noise
reduction/elimination in the input genotype matrix (see below for a formal definition) extracted
from SCS data, it is possible to offer supervision in the form of a dataset of noisy inputs along with
their denoised versions. An alternative and cheaper supervision is offered by a feedback mechanism
for determining whether a candidate output of the neural network is successfully denoised. A
third alternative is given by a cost function that indirectly helps supervise a reinforcement learning
process.

Inspired by novel deep learning approaches to combinatorial problems such as the reinforce policy
gradient algorithm [38] for the traveling salesperson (TSP) and the knapSack problems [2], and, to
a limited degree the NeuroSAT approach [32] for the satisfiability (SAT) problem using a single
bit supervision, we established a computational framework to successfully address all the above
challenges as follows. (i) We employed a Reinforcement Learning approach to train a denoising
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model without a need for the ground truth. The cost function we used is novel and problem
specific. (See Section 5). (ii) We devised a novel method to transform the input matrix (obtained
from noisy SCS data) to feed to the neural network. This method incorporates the noise rates as well
as coordinates and values of entries in the given matrix (See section 5.1). This representation also
supports training and testing instances of different sizes and encourages robustness to permutation
of rows and columns. (iii) We also present an example for incorporating domain knowledge to
improve the performance of a machine learning model: this was achieved by sorting the columns
of the input genotype matrix in a preprocessing step. (See Section 4.) (iv) Finally we introduced
a new method to construct simulated input data with a given number of mutations and cells. This
method along with the simulation tools from previous work allows us to construct unbiased datasets
to train our models.

Results. We study two major problems. First, given a noisy SCS dataset in the form of a
genotype matrix, we consider the problem of inferring whether the tumor phylogeny topology is
linear or branching, i.e. contains at least one branch or not. The method we devised for this
problem succeeds to learn and differentiate the two topology types in ∼ 98% of randomly chosen
noisy genotype matrices of size 100× 100. The trained model runs at least 1000 times faster than
the fastest available baseline techniques (see Table 6.2), which need to first denoise the input and
then examine the tree. The trained model is noise tolerant, scalable, and can analyze real datasets
(see Section 6.2). Moreover, having an efficient prediction function allows us to systematically study
the relationship between the amount and type of noise in the input and the information preserved
in the data to enable correct prediction.

For the more general problem of fully reconstructing the full tumor phylogeny, we introduce
a Reinforcement Learning based approach, which finds a solution for, e.g. 92% of the randomly
generated genotype matrices of size 10× 10. Furthermore, our trained model on genotype matrices
of size 10× 10 successfully solves a notable proportion of larger genotype matrices, demonstrating
the generalizability of our approach.

We also describe results on the decision version of this problem, i.e., whether a given matrix is
noise free and thus admits a perfect phylogeny, or does not satisfy the so called three-gametes rule.
Our deep learning approach for this binary classification problem offers notably more accurate
results in comparison to support vector machines. Crucially, sorting the columns of the input
genotype matrix according to their binary representation as a preprocessing step further improves
the accuracy of the trained models by 13-27% (See Table 2).

2 Preliminaries

Given a positive integer z, let [z] denote {1, 2, . . . , z}. For a given matrix M , we denote by |M |0 the
number of nonzero entries in M . For any boolean proposition P we use Iverson bracket notation
as

[P] =

{
1 if P is true

0 otherwise.
(1)

Let the binary genotype matrix that represents the ground truth for the evolution of a tumor be
denoted A : {0, 1}n,m; here n and m correspond to the number of cells and mutations in the input
SCS data respectively. Let ai,j for i ∈ [n]∧j ∈ [m] denote an entry of A, for which ai,j = 1 indicates
the presence of mutation j in cell i, and ai,j = 0 indicates its absence. It is often not possible to
infer A from SCS data perfectly. Instead, suppose we are given A′, an approximate/noisy version
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of A, obtained through SCS data processing, where a′i,j for i ∈ [n] ∧ j ∈ [m] denotes whether cell i
is inferred to include mutation j.

Matrix A′ is said to represent a perfect phylogeny (PP) if it satisfies the three-gametes rule, i.e.

∀i, j, k ∈ [n] ∧ g,h ∈ [m],

∣∣∣∣∣∣
a′i,g a′i,h
a′j,g a′j,h
a′k,g a′k,h

∣∣∣∣∣∣ 6=
∣∣∣∣∣∣
0 1
1 0
1 1

∣∣∣∣∣∣ .
Notice that the rows and columns in the definition above can be in any order. In case of an

equality, the column-triplet (i, j, k) and row-pair (g,h) is said to have a conflict or a three-gametes
violation.

We used the simulator described in [17] to generate PP matrices representing instances of A.
To obtain instances of A′, we added noise to A by choosing to flip each entry independently with
a probability depending on the value of the entry - with predefined false positive (α) and false
negative (β) rates. To ensure correctness of the labels, we check each generated matrix to verify
that the values flipped generated at least one conflict and otherwise remove the matrix from the
dataset.

Assuming an independent and identically distributed (i.i.d.) noise process explained above, the
conditional probability that a (likely PP) matrix B (with entries denoted by bi,j) generates A′ is:

P (A′|A = B,α,β) = αN10 · βN01 · (1− α)N00 · (1− β)N11 (2)

where Npq for any p, q ∈ {0, 1} is defined as

Npq =
∑

(i,j)∈[n]×[m]

[bi,j = q] ∧ [a′i,j = p]. (3)

Throughout the paper we refer to this probability as the likelihood of B, for any (potentially
PP) matrix B that is the result of a specified denoising process on A′.

2.1 Branching Inference

As mentioned in Section 1, the problem of inferring whether a tumor contains divergent subclones
evolving through distinct branches of its phylogeny has potential applications in improving treat-
ment design. Given a binary genotype matrix A′ as the input, we consider here the problem of
inferring whether the most likely denoised version of A′ implies a chain (i.e. linear) or a branching
topology.

Let us start with an important observation. We say that a binary matrix Cn×m has the staircase
property, if ∀i, j ∈ [n−1]× [m−1], ci,j ≤ ci+1,j and ci,j ≤ ci,j+1. In other words, no entry in C with
value one is a right-neighbor or above-neighbor of another entry with value zero value. Observe
that a (denoised) genotype matrix C implies a linear topology, i.e. has the no-branching property,
if there exists a permutation on rows and permutation of columns of C such that the resulting
matrix has staircase property.

Given C, we define binary function Sing(C) : {0, 1}n,m → {0, 1} to have value 1 if C has the
no-branching property, i.e. implies a linear topology, and 0 otherwise. Our goal for the branching
topology problem, as will be described in Section 3, is to train a machine learning approach to
compute a function f(C) : {0, 1}n,m → {0, 1} which agrees with Sing(C) on as many potential
input matrices much as possible.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2020. ; https://doi.org/10.1101/2020.02.07.938852doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938852
http://creativecommons.org/licenses/by-nc/4.0/


2.2 Noise Inference and Elimination Problems

The problem of denoising the binary matrix obtained from SCS data so as to obtain a PP is well
studied in the literature [4, 26, 20, 24]. We consider two variants of this problem below: (1) The
decision version, which we call the noise inference problem problem, can help investigate whether
neural network models can successfully check whether the three-gametes rule is satisfied by the
input matrix. (2) The general denoising problem, which we call the noise elimination problem
problem, considers a noisy input matrix A′ and considering the noise parameters, outputs a matrix
B with the goal of maximizing the likelihood of B, i.e. P (A′|A = B,α,β).

noise inference problem. The objective here is to decide whether the input A′ is conflict-free. Let
the function Icf(A′) : {0, 1}n,m → {0, 1} have value 1 if A′ contains at least one conflict, and 0 if it
is conflict-free. Given a family of functions, our goal is to pick function f(A′) : {0, 1}n,m → {0, 1}
that approximates Icf with the highest possible accuracy, where the accuracy of f is defined as the
proportion of potential input matrices A′ where f(A′) = Icf(A′).

noise elimination problem. Given the input A′, and noise parameters α and β, the objective here
is to compute an output matrix B with the highest likelihood. The noise elimination problemis
the most computationally challenging problem considered in this paper since it cannot be easily
formulated as a classification, regression or clustering problem which are better suited for deep
learning approaches. More importantly the problem is NP-hard [4] and available principled solvers
deploy sophisticated methods such as MILP, CSP, MCMC towards its solution for practical in-
stances [4, 26, 20, 24]. Finally, since the problem is computationally intractable, it is not possible
to construct large matrices with known optimal solutions to be used for training a neural network.
This issue alone makes it impossible to use several successful machine learning techniques for our
purposes.

3 Solutions to the Branching Inference Problem

Training Dataset. For this problem, we first generate a set of PP matrices A with Sing(A) = 0,
i.e. have a branching tree topology, through the procedure explained in Section 2. In order to
generate a second, complementary set of PP matrices, for each matrix A from the first set, we
describe below how a new random matrix AL can be constructed with the same number of ones,
but Sing(AL) = 1, i.e. satisfies the no-branching property. This not only guarantees the the union
of these two sets have a balanced number of instances of branching and non-branching topologies,
but also eliminates any artificial distinguishing features (e.g., based the number of ones in the
matrix).

Briefly, given a matrix A with l ones, in order to generate AL as described above, we produce
a random non-decreasing sequence of n positive integers that add up to l (n is the number of rows
in A). For the ith value of this sequence, say k, we set the rightmost k entries of the ith row of AL,
i.e. AL[i,m − k + 1..m] to one and AL[i,m − k] to zero, satisfying the staircase property. This is
followed by a random permutation of rows and columns of the matrix to finalize AL, ensuring that
AL is a PP with the same number of ones with A, but is topologically different.

We combined the two sets of matrices and used them for training without adding noise. However
we evaluated the trained model on both noisy and noise-free inputs.

Network Structure. A two-layer fully connected artificial neural network is used with either
10 or 100 hidden neurons. The input layer corresponds to an arbitrary-size batch of vectors with
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length n ·m. We used tanh as the activation function. To avoid overfitting, a drop-out rate of 0.9
was used. Note that the architecture had a moderate level of sensitivity to the hyperparameter
settings (i.e. the number of neurons and the drop-out rate).

4 Solutions to the Noise Inference Problem

In order to solve the decision version of the noise inference problem, we formulated it as a classifi-
cation task through supervised learning.

Training Dataset. We generated a set of PP matrices A, i.e., Icf(A) = 0 as described in Section
2. In addition, for each matrix A we obtained its noisy version A′ with predetermined noise
parameters α and β so that Icf(A′) = 1. The combined set of matrices A and A′ form a balanced
binary dataset of noisy and noise-free matrices as required for classification purposes.

For some of our experiments we preprocessed each input matrix as per [16] by sorting its
columns based on the binary number each represents (read from top to bottom). E.g. this would

move column
[
0
1
1

]
to the left of column

[
1
0
0

]
as (011)2 = 3 < (100)2 = 4. Sorting columns was shown

to help checking whether a matrix forms a PP or not in non-ML settings [16]. We show that it also
helps ML strategies (see Section 6).

Network Structure. For this problem we use a two-layer fully connected network with 100
neurons in each layer. The input layer corresponds to an arbitrary-size batch of vectors with length
n ·m. The Sigmoid function was used as the activation function for both layers. We used a drop-out
rate of 0.2 for each layer for preventing our network from overfitting.

5 Solutions to the Noise Elimination Problem

This section presents our approach for solving the noise elimination problem and thus contains our
major contributions from a methodological standpoint.

5.1 Input Format

Recall that input to this problem is given as a binary matrix A′. We transform A′ to a new matrix
A′′ as shown below, before feeding it to the neural network. Each row of A′′ corresponds to exactly
one of the entries of A′. The first two columns of a given row in A′′ respectively represent the row
and the column of the corresponding entry in A′. The third column represents the noise level and
depends on the actual value of the entry - which is represented in the last column. In the simplest
case, the value of the third column is either α - if the entry has value one, or is β - if the entry has
value zero. In the more general case the user can specify a distinct false positive or false negative
rate for each entry of the input matrix A′. As depicted below, this transformation is key to our
ability for training the neural network with matrices of varying shapes/dimensions:
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a′0,0 a′0,1 . . . a′0,j . . . a′0,m
...

...
. . .

...
. . .

...
a′i,0 a′i,1 . . . a′i,j . . . a′i,m
...

...
. . .

...
. . .

...
a′n,0 a′n,1 . . . a′n,j . . . a′n,m


A′n×m

→



0 0 f(a′0,0) a′0,0
0 1 f(a′0,1) a′0,1
...

...
...

...
i j f(a′i,j) a′i,j
...

...
...

...
n m f(a′n,m) a′n,m


A′′n·m×4

where,

f(a′i,j) =

{
α if a′i,j = 1

β if a′i,j = 0.
(4)

Note that the values of α and β can be estimated through the SCS data [21]. For example, β
has been observed to be as high as 0.3 while α ≈ 2× 10−4.

5.2 Method

Our approach is similar to the model-free policy-based Reinforcement Learning algorithm in [2],
which was developed to solve TSP and knapsack problems. This framework requires a cost function
to be defined on the space of potential outputs of the network. In the training phase, the opti-
mization algorithm tries to minimize this cost function. Notice that this will be the only source of
supervision we provide to our model for training purposes. Importantly, we do not need to know or
calculate through alternative methods the ground truth A, which is more expensive to figure out
in comparison to calculating our cost function as described below.

The cost function we came up with is defined for a given input matrix A′ and a potential output
matrix X, with entries xi,j , and has two terms. The first term, NumberOfConflicts corresponds to
the number of (3× 2) submatrices violating the three-gametes rule. As such it will have value 0 if
A′ forms a PP: ∑

c1∈[m],c2∈[m],c1 6=c2

( ∑
r1∈[n]

[[xr1,c1 ,xr1,c2 ] = [0, 1]]·

∑
r2∈[n]

[[xr2,c1 ,xr2,c2 ] = [1, 0]]·

∑
r3∈[n]

[[xr3,c1 ,xr3,c2 ] = [1, 1]]
) (5)

In addition to the NumberOfConflicts, we use the negative log-likelihood of X as the second
term of the cost function, i.e. Cost(X) : {0, 1}n,m → R+ is

Cost(X) = NumberOfConflicts− γ · ln(P (A′|X = A,α,β)). (6)

where γ is a hyper-parameter for establishing a trade-off between the two terms. Recall that
likelihood P (A′|X = A,α,β) is calculated using Equation 2. This cost function is aimed to capture
the objective of our optimization problem, since among all matrices with NumberOfConflicts = 0,
our goal is to compute the one with the highest likelihood.

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2020. ; https://doi.org/10.1101/2020.02.07.938852doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938852
http://creativecommons.org/licenses/by-nc/4.0/


The core architecture we use here, within the Reinforcement Learning framework, is a pointer
network [2]. Figure1 shows the components of the pointer network and the flow of information
(when it is used for evaluation - there are additional connections used for training) - as summarized
below.

The embedding layer embeds the input array of shape (n · m) × 4 into an array of shape
(n ·m)× d, where d is the embedding length used in the network. The encoder consists of q layers
of convolution [13]. Each one of the (n·m) rows (with length d) of the embedded array goes through
the q convolution layers, to produce a length d vector placed in the buffer as a new row. In our
experiments, the values of d and q were set to 8 and 2, respectively. The decoder is a long short-
term memory (LSTM) [18] layer and the attention layer [1] is a network of fixed size. Together
they compute the output of the neural network. Specifically, the attention layer iteratively learns
a real valued score function on d dimensional vectors. In each iteration, this function is applied to
each row of the buffer to obtain its score, which is then used to pick a single row from the buffer
(corresponding to a row of the input to be flipped), to be fed to the LSTM. The output of the
LSTM is another vector of length d which is used to update its memory and is then fed to the
attention layer, to be used to update the score function. The cost function we described earlier is
employed both in updating the LSTM as well as the score function of the attention layer. Note that
the score function is not trivially applied only to the rows of the buffer that have not been picked
earlier. Those that have been picked are automatically assigned a fixed low score. A soft-max
function is then used on these scores to get a probability distribution over the rows of the buffer.
In the next iteration, the row to be fed to LSTM is sampled according to this distribution.

This neural architecture is used to decide and evaluate a set of proposed flips through the
cost function. More specifically, the buffer row selected by the attention mechanism at iteration
is considered to be the proposed flip location. We combine all the proposed flips to A′ to get the
output matrix B. Then the value of Cost(B) is calculated and used as a feedback for the network.
Since the architecture is trained via policy gradients, the total cost function is sufficient as the
feedback signal, and the learned policy, implicit in the network and attention mechanism, will
attempt to minimize the cost of the output B.

6 Experiments

In this section we discuss our experimental setup and our results. The codes for the construction
of datasets using [17] and running the training and evaluation for all of the networks described in
Sections 3, 4, and 5 are available at https://github.com/algo-cancer/PhyloM.

6.1 Experimental Setup

All experiments presented here were performed using deep learning (DL) nodes in Carbonate, a
computation cluster at Indiana University [35]. The specifications of these nodes, along with the
version numbers of the packages used, are provided in the README.md file of our repository to
ensure reproducibility of our results.

We note that the accuracy values in Figures 2, 4, and 5 are higher for the evaluation phase than
the training phase. This reflects the fact that the error during training was measured in a noisy
manner using dropout, which is necessarily worse than the true error rate of the network.
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LSTM
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Figure 1: The architecture of the network used for the noise elimination problem. The roles for
the inner-components of the network including embedding layer, encoder, decoder and attention
mechanism interacting with the buffer, are explained in the text. In each training epoch, a batch
of input matrices is fed to the network. Each input matrix A′n×m in a batch, is preprocessed to an
(n ·m)× 4 matrix as described in Section 5.1. The output of the attention layer, right before final
output layer, is a function that forms a distribution over the n ·m entries of the input matrix A′

(after having been processed through the embedding layer and the encoder). The attention layer
iteratively forms the final output of the network which is a set of entries of A′ to flip.

6.2 Branching Inference

Recall the no branching problem, where the goal is to identify whether the tumor phylogeny has a
linear or a branching topology.

Learning curves. In the first set of experiments for this problem, we split the dataset to training
and evaluation sets with a ratio of 9 to 1. We designed several experiments with different settings
and all of them show success in predictions. We include results for three settings in Figure 2: (a,b)
a dataset of 2000 matrices of size 100× 100 and a hidden layer of size 10, (c,d) same data set, now
with a hidden layer of size 100, and (e,f) a dataset of 10000 matrices of size 500× 500 and hidden
layer of size 100. In each of these experiments we run the training process for 200 epochs. Note
that the model distinguishes up to 98% of randomly chosen instances of size 100× 100 correctly -
see for panel (c).

Comparison of Running Time for the no branching problem. We performed an experiment
to compare the running time between our approach and a baseline for the no branching problem.
The baseline first tries to denoise the input matrix and then detect if the resulting tree has a linear
structure. For the denoising phase, we use the ILP-based method from [26]. We note that unlike
our approach, the baseline’s running time is affected by the presence of noise. Especially, there
is an approximately monotonic relation between the baseline’s running time and the amount of
introduced noise.
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To show superiority of our approach, we choose the worst running time among 50 runs for
each input regarding our approach, while we consider only the best cases for the baseline which
correspond to the inputs without noise. The superiority of our approach in running time is observed
to be at least 1000 times (See Table 6.2).
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Figure 2: The accuracy (left column) and binary cross entropy loss (right column) plots correspond-
ing to the no branching problem and the architecture described in Section 3. We used a dataset of
2000 matrices with dimension 100× 100 and hidden layer of size 10 in (a, b), the same the dataset
as in (a) and (b) with hidden size 100 in (c, d), and a dataset of 10000 matrices with dimension
500× 500 and hidden layer of size 100 in (e, f).

Input Dimensions 100× 100 500× 500

Time: Our approach 0.0372 sec 0.0537 sec

Time: PhISCS > 80 sec > 3772 sec

Table 1: A comparison of the running times between our approach and the baseline for the
no branching problem. For our approach, we tested 50 noisy cases (α = 0.002, β = 0.2) for
both matrix sizes, and report the maximum running time we observed. For the baseline, we report
the best case running time for noise free input matrices (adding noise increases the running time
substantially). All times are in seconds.

Evaluation of noise-tolerance for the no branching problem. In another experiment, we
tested the noise tolerance of our model, on three different values for β/α (the false negative to
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false positive rate ratio). For each value, we plotted the percentage of inputs whose topologies are
correctly distinguished as a function of the false negative rate β as shown in Figure 3. Especially
when the false positive value is relatively low (β/α = 10) the accuracy of the model remains close
to perfect across all (realistic) values of the false negative rate β.

Notice that the speedup shown in Section 6.2 enabled us to run an extensive number of exper-
iments to obtain the data points in Figure 3. The plots in this figure suggest a new understanding
of relationship between the amount of preserved information that could be captured by our neural
network in the presence of different noise levels. For example, for settings where false negative
and false positive rates are equal, a false negative rate of ≤ 0.15 preserves the deduced topological
outlook fairly consistently. The drop in accuracy after this point seems more steep.
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Figure 3: The evaluation of noise tolerance for our model for the no branching problem. In each
panel, the y-axis (accuracy) represents the fraction of instances classified correctly from 500 ran-
domly chosen instances, not seen during training, with equal number of instances from each topology
type (See Section 3). The trained model consists of two layers with size 100 and 0.9 drop out rate.
This model was trained using 2000 matrices of size 100 × 100 with no noise for 200 epochs. The
three panels differ in the ratio of false negative to false positive rates: (a) α = β, (b) α = β/2 and
(c) α = β/10. Note that the noise tolerance of the method gets more robust as the relative value
of α decreases.

6.3 Noise Inference

We trained and evaluated our proposed neural network for the noise inference problem introduced
in Section 4, on multiple datasets. We consider two sizes for the input matrices: 10 × 10 and
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25 × 25. For each size, we experimented with two distinct datasets that differed with respect
to the amount of noise introduced. Notice that in the context of this problem, unlike both the
no branching problem and the noise elimination problem, the lower the noise level, the harder the
decision problem becomes. In order to assess the full capabilities of our model, we used lower values
for α and β than typical false positive and false negative rates observed in real SCS datasets.

In Figure 4, panels a and b show accuracy and binary cross entropy loss[3] for training and
evaluation datasets, respectively comprised of 2M and 2K matrices, each of size 10 × 10, where
half of each set is noisy with α = 0.002 and β = 0.1 (with the remaining half being PP). Panels
c and d show results for α = 4 × 10−4 and β = 0.02 (again accompanied by equal number of PP
matrices, both in training and evaluation). We observe an accuracy of 90% in the dataset with a
higher noise level. We confirm that differentiating noisy matrices from those representing PP gets
harder as the noise level decreases.
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Figure 4: The accuracy and loss plots for the noise inference problem using the neural network
described in Section 4. The datasets in these experiments include matrices of size 10× 10. The
colors of the plots correspond to whether column-wise sorted or unsorted datasets were used - as
well as whether the plot corresponds to the training phase or evaluation. We use α = 0.002 and
β = 0.1 in panels (a) and (b) and α = 4 × 10−4 and β = 0.02 in panels (c) and (d). Note that
panels (a) and (c) depict accuracy whereas panels (b) and (d) depict binary cross entropy loss.

Results for matrices of size 25×25 are given in Figure 5. We used α = 3.2×10−4 and β = 0.016
in panels a and b and α = 4× 10−4 and β = 0.02 in panels c and d.

As mentioned in Section 2.2, sorting the (binary values represented by the) columns of the
input genotype matrix as a preprocessing step is expected to improve the prediction accuracy. As
summarized in Table 2 this is confirmed by the results in Figure 4 and Figure 5.
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Figure 5: The accuracy and loss plots for the noise inference problem using the architecture
described in Section 4 on 25× 25 matrices. The plots for column-wise sorted and unsorted genotype
matrices as well as those for training and evaluation phases are depicted in distinct colors. The noise
settings for this figure are α = 3.2× 10−4 and β = 0.016 for panels (a) and (b), and α = 6.4× 10−5

and β = 0.0032 for panels (c) and (d). Note that panels (a) and (c) depict accuracy, while panels
(b) and (d) depict binary cross entropy loss.

Dim. α β Unsorted Acc. Sorted Acc. Figure

10 0.002 0.1 72 90 Fig. 4 (a)

10 4× 10−4 0.02 60 81 Fig. 4 (b)

25 3.2× 10−4 0.016 50 77 Fig. 5 (a)

25 6.4× 10−5 0.0032 52 65 Fig. 5 (b)

Table 2: The impact of the preprocessing the input genotype matrix by sorting its columns described
in Section 4, on the accuracy for the noise inference problem. The input matrices were square
matrices with sizes 10 × 10 or 25 × 25 (first column). The accuracy figures for unsorted (fourth
column) and column-sorted genotype matrices (fifth column) are reported as percentages.

In order to evaluate the relative advantage of neural networks against other machine learning
techniques for the noise inference problem we explored the use of support vector machines (SVM)
[3] for the same task. Figure 6 shows the training and evaluation accuracy for (column-sorted)
10 × 10 matrices using SVM. The x-axis in this figure represents the training sample size. Since
SVM is not memory efficient, the maximum number of input instances that can be used in training
is limited by our computational resources. That is why, the training procedure is stopped before
the accuracy plot has converged. We use radial basis function (RBF) [3] as the kernel in all of our
experiments with SVM. RBF is the most commonly used kernel in practice. In our experiments it
consistently showed better performance than other kernels (e.g., polynomial).

Observe that the accuracy of the neural network model on the evaluation data is notably higher
than that for SVM. E.g. the final evaluation accuracy values in Figure 4 vs. Figure 6 is 90% vs
73% in the first setting and 81% vs 64% in the second.
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Figure 6: The training and evaluation accuracy in the noise inference problem for SVM. All matrices
for this experiment are of size 10×10 and are column-sorted. The x-axis corresponds to the training
sample size. (a) Training and evaluation accuracy for α = 0.002 and β = 0.1 (for the noisy matrices).
(b) Training and evaluation accuracy for α = 4× 10−4 and β = 0.02 (for the noisy matrices).

6.4 Noise Elimination

We train the network shown in Figure 1 using the Reinforcement Learning framework described in
Section 5 on matrices of size 10 × 10. We constructed an evaluation dataset of 100 matrices with
the α and β values identical to that of the training dataset. We made sure that the training and
evaluation datasets had no overlaps. Our trained model computed a noise-free output for 92% of
the evaluation matrices.

We represent by r1 and r2 the number of flips made by the model on the noisy input matrix A′

respectively from 1 to 0 and 0 to 1, to produce a noise-free output matrix B. Also, we represent
by o1 and o2, the number of flips from 0 to 1 and respectively 1 to 0 we introduced to a ground
truth PP matrix A to produce A′. Figure 7 shows the histogram of r1 − o1 (left side) and r2 − o2
(right side) for the 92 instances of the problem for which our model produced a noise-free matrix.
Importantly, in the majority of cases, r1 ≤ o1 and r2 ≤ o2, indicating that the number of flips used
by our approach is at most that of the number of flips introduced as noise (in some of the cases,
there are solutions that result in a PP with fewer flips than that added as noise).
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Figure 7: The difference between the number of flips made by our approach and the flips introduced
as noise (to the ground truth, for obtaining the input genotype matrices) for each flip type (1 to 0
on the left, and 0 to 1 in the right) in the noise elimination problem.
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We introduce a few definitions to quantify how well our approach’s distribution of flip types
compare to those flips introduced as noise. Let ratiorl = r2/(r1 + r2) and ratiooriginal = o2/(o1 + o2).
The plot in Figure 8 represents ratiorl in the x-axis and ratiooriginal in the y-axis. Observe that most
of the evaluation cases are on the line ratiorl = ratiooriginal.
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Figure 8: A quantified vizualization of how flips made by our approach correspond to those added
as noise for the noise elimination problem. The plot compares the ratiorl with ratiooriginal for matrices
of size 10× 10. Each blue dot is annotated by the number of respective evaluation cases. The red
dotted line represents ratiorl = ratiooriginal. The closeness of the majority of blue dots to the red
doted line implies the recovery of the ratio of introduced flip types by our approach.

Finally, we evaluated how well our trained models generalize to input matrices with varying
dimensionality. In Figure 9 we used a model trained on 10× 10 matrices for this purpose. Observe
that this trained model can solve a notable fraction of matrices with larger dimensionality. As
expected, our success rate decreases when the dimensionality increases.

6.5 Application to real data

We also applied our methods to two real datasets for which previous phylogenetic analyses reported
highly concordant trees of tumor evolution. The first dataset consists of 16 single cells from a
Triple Negative Breast Cancer (TNBC) patient. Originally it was made available in [37] and here
we focused on the analysis of 18 mutations previously used in [24]. Evolutionary history of these
mutations was first (indirectly) reported in the original study and the same results were later
obtained by the use of B-SCITE [24]. As shown in [24], the reported tree has high support from
both single-cell and bulk data.

Second, we analyzed an Acute Lymphoblastic Leukemia (ALL) Patient 6 dataset from [14],
where 146 single cells were sequenced and 10 mutations reported. Similar to TNBC dataset, the
evolutionary history of these mutations was thoroughly studied in the original study and later in
[22].
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Figure 9: The evaluation of generalizability across different values for matrix dimensions in the
noise elimination problem. The model was trained on 10× 10 matrices and was evaluated on larger
matrices. The number of solved instances for each matrix dimension relative to that corresponding
to 10× 10 matrices can be thought as a measure of generalizability.

In order to apply our approach for the no branching problem on these datasets, we trained two
separate models with the same architecture described in Section 3. The dimensions of the input
was set to 16× 18 for the first dataset and 146× 10 for the second dataset.

In the training phase, only simulated instances (described in Section 3) were used. Note that
one of drawbacks for the model based on feed-forward neural network without any recurrent layer,
described in Section 3, is that input dimensions are fixed. One can use padding or copying tech-
niques to adjust the dimensions to any number of dimensions that a pre-trained model requires,
as long as the number of dimensions of the input are smaller than that required by the model.
However, this may have an adverse impact in the accuracy; training with the same number of
dimensions typically leads to better results.

According to our models, the tree corresponding to the first dataset has at least one additional
branch, i.e., does not satisfy the no-branching property (defined in Section 2.1, with probability
0.97. This probability is only 0.21 for the second dataset, implying a non-branching topology.
These results are consistent with previously reported trees for these datasets [14, 37, 24, 22]. Small
but non-zero branching probability of 0.21 for the ALL patient can be explained by the evidence
for recurrent mutation in gene SUSD2 presented in [22], which may potentially be due to a local
branching event (involving only two mutations at the leaf level).
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