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ABSTRACT  

APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-

to-dU deamination on viral ssDNA. Within primates, A3s have evolved diversely via gene 

duplications and fusions. Human APOBEC3C (hA3C) efficiently restricts the replication of viral 

infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown 

reasons, it inhibits HIV-1Δvif weakly. In catarrhines (Old World monkeys and apes), the A3C 

loop 1 displays the conserved amino acid pair WE, while the corresponding consensus 

sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral 

sequence for the last common ancestor of A3C|D|F in primates. Here, we report that 

modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with ssDNA 

substrate, facilitating catalytic function, which resulted in a drastic increase in both 

deamination activity and the ability to restrict HIV-1 and LINE-1 replication. Conversely, the 

modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. The two 

series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed 

neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while 

strong evolutionary pressure selected for the RKWE modification in catarrhines A3C, 

possibly allowing for novel substrate specificity and function. 

 

Keywords: APOBEC3C, APOBEC3F, Sooty Mangabey monkey, cytidine deaminase, 

deamination-dependent virus restriction, human immunodeficiency virus (HIV), LINE-1, gene 

duplication, paralogs, evolution
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AUTHOR SUMMARY  

The restriction factors of the APOBEC3 (A3) family of cytidine deaminases inhibit 

the replication of Vif-deficient retroviruses mainly by mutating their viral genomes. While 

there are seven A3 proteins (A3A-A3H) found in humans only A3G and A3F potently 

inhibit HIV-1 replication. A3C in general and its retroviral restriction capacity have not been 

widely studied probably due to its weak anti-HIV-1 activity, however, it displays a strong 

antiviral effect against SIV. Understanding the role of A3C is important because it is highly 

expressed in CD4+ T cells, is upregulated upon HIV-1 infection, and is distributed cell-wide. In 

this study, we report that replacing two residues in loop 1 of A3C protein with conserved 

positively-charged amino acids enhance the substrate DNA binding, which markedly facilitates 

its deamination-dependent antiviral activity against HIV-1 as well as increasing the restriction 

of LINE-1 retroelements. Furthermore, our evolutionary analysis demonstrates that the 

pressure that caused the loss of potential loop 1 residues occurred only in A3C but not 

in primate homologues. Overall, our study highlights the possibility of A3C acting as 

a super restriction factor, however, this was likely evolutionarily selected against to achieve a 

balance between anti-viral/anti-LINE-1 activity and genotoxicity.  

 

INTRODUCTION 

The APOBEC3 (A3) family of single-stranded (ss) DNA cytidine deaminases builds an intrinsic 

immune defense against retroviruses, retrotransposons, and other viral pathogens [1-4]. 

There are seven human A3 proteins (A3s) that possess either one (A3A, A3C, and A3H) or two 

(A3B, A3D, A3F, and A3G) zinc (Z)-coordinating DNA cytosine deaminase motifs, HXE[X23-

28]PC[X2-4]C (where X indicates a non-conserved position) [5-7]. A3G was identified as a factor 

capable of restricting infection of HIV-1 lacking Vif (viral infectivity factor) protein in non-

permissive T cell lines whose biochemical properties and biological functions were extensively 

studied [3,8-11].  

The encapsidation of A3 into the viral particles is crucial for virus inhibition [12-17]. During 

reverse transcription, viral core-associated A3 enzymes can deaminate cytidines (dC) on the 
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retroviral ssDNA into uridines (dU). These base modifications in the minus DNA strand cause 

coding changes and premature stop codons in the plus-strand viral genome (dGdA 

hypermutation), which impair or suppress viral infectivity [2,9,18-21]. In addition to the 

mutagenic activity of the viral-incorporated A3 enzyme, deaminase-independent mechanisms 

of restriction were also manifested by impeding reverse transcription or inhibiting DNA 

integration [22-27]. To counteract A3 mediated inhibition, lentiviruses evolved the Vif protein, 

which physically interacts with A3s to target them for polyubiquitination and proteasomal 

degradation, and thereby depleting the cellular A3s [28-30]. These A3-Vif interactions are 

often species-specific [31-35]. 

A3D, A3F, A3G, and A3H were shown to restrict HIV-1 lacking vif (HIV-1Δvif) [2,35-39]. 

Recently, mutation signatures resulting from the catalytic activity of nuclear localized A3s 

(especially A3A, A3B, and likely A3H) were reported in several cancer types [40,41] (for 

reviews, see: [42-45]. However, the A3C, which is distributed in both cytoplasm and nucleus 

[46] seems not to be a causative agent of chromosomal DNA mutations. Human A3C is known 

to act as a potent inhibitor of Simian immunodeficiency virus from African green monkey 

(SIVagm) and SIVmac (from rhesus macaque), limits the infectivity of herpes simplex virus, 

certain human papillomaviruses, murine leukemia virus, Bet-deficient foamy virus, and 

hepatitis B virus and represses the replication of LINE-1 (L1) retrotransposons [46-56]. 

However, the restrictive role of A3C on HIV-1 is marginal and there are several contradictory 

findings regarding its viral packaging and cytidine deamination activity [39,47,57-59]. Notably, 

A3C is expressed ubiquitously in lymphoid cells [5,47,60,61]. mRNA expression levels of A3C 

were found to be higher in HIV-infected CD4+ T lymphocytes [39,47], and significantly elevated 

in elite controllers with respect to ART-suppressed individuals [62]. A3C was found to 

moderately deaminate HIV-1 DNA if expressed in target cells of the virus and rather increased 

viral diversity than caused restriction [60].  

The crystal structure of A3C and its HIV-1 Vif-binding interface were reported recently [63]. 

The study revealed several key residues in the hydrophobic V-shaped groove formed by the 

2 and 3 helices of A3C that facilitate Vif binding resulting in proteasome-mediated 

degradation of A3C [63]. We extended this finding and identified additional Vif interaction 
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sites in 4 helix of A3C [64]. Other than a previous study that predicted putative DNA substrate 

binding pockets [52], biochemical and structural aspects of A3C enzymatic activity and their 

relevance for antiviral activity are not well investigated to date [3,4].  

Recently, we have shown that increasing the catalytic activity of A3C by an S61P substitution 

(based on the structural homology found between A3C and A3F at their C-terminal domain, 

A3F-CTD) is not sufficient to inhibit HIV-1Δvif [65]. It is unclear why A3C can potently restrict 

SIVΔvif, but not HIV-1Δvif despite the fact that the wild-type human enzyme possesses 

reasonable catalytic activity and encapsidates efficiently into retroviral particles [65]. Here we 

set out to understand the function of A3C in the context of HIV-1 inhibition. We generated a 

synthetic open reading frame derived from sooty mangabey monkey genome (smm, 

Cercocebus atys (torquatus) lunulatus), encoding for an A3C-like protein (hereafter called 

smmA3C-like protein) capable of restricting HIV-1 to similar or higher extent than human A3G. 

This A3C-like protein was reported to be resistant to HIV-1 Vif-mediated depletion [64]. Using 

this smmA3C-like protein as a tool, here we dissect the structure-function of hA3C and identify 

the crucial regions of A3C that facilitate stronger inhibition of HIV-1.  

 

RESULTS 

Identification of an A3Z2 protein with enhanced antiviral activity 

To determine whether A3C from non-human primates can potently restrict HIV-1Δvif 

propagation, we produced HIV-1Δvif luciferase reporter virus particles with A3C (an A3Z2 

protein) from human, rhesus macaque, chimpanzee (cpz), African green monkey (agm), with 

human A3G (an A3Z2-Z1, double domain protein), or a synthetic smmA3C-like protein and 

tested their viral infectivity. Viral particles were pseudotyped with the glycoprotein of 

Vesicular stomatitis virus (VSV-G) and normalized by reverse transcriptase (RT) activity before 

infection. The luciferase enzyme activity of infected cells was quantified two days post 

infection. Figure 1A shows the level of relative infectivity of HIV-1Δvif in the presence of the 

tested A3C proteins and hA3G. Human, rhesus, chimpanzee, and African green monkey A3C 

proteins reduced the relative infectivity of HIV-1Δvif similarly by approximately 60 to 70%. 
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Conversely, smmA3C-like protein inhibited HIV-1Δvif replication by more than one order of 

magnitude (Fig. 1A). Human A3G served as a positive control. Expression of the A3s in viral 

vector-producing cells showed that expression levels of smmA3C-like protein and agmA3C 

were lower than those of A3Cs from human, rhesus, and cpz (Fig. 1B). Viral incorporation of 

smmA3C-like protein was found to be very similar to hA3G, but much less efficient compared 

to hA3C (Suppl. Fig. S1A). 

The smmA3C-like construct was originally described to express A3C of smm [64]. However, 

using alignments of primate A3Z2 and related A3 proteins, we later found that the generated 

open reading frame consists of exons encoded by genes of smmA3C and smmA3F. In the 

smmA3C-like construct, the first “exon” (encoding for amino acids 1MNPQIR6) and last “exon” 

(encoding for amino acids 153FKYC to EILE190) were derived from smmA3C (smmA3C exon 1 

and exon 4) while the second “exon” (encoding for amino acids 7NPMK to FRNQ58) and third 

“exon” (encoding for amino acids 59VDPE to VDPE151) in smmA3C-like were of smmA3F origin 

(smmA3F C-terminal domain, CTD, exon 5 and exon 6) (Suppl. Fig. S2). Poor annotation of the 

smm genome and the high sequence similarity let us fuse these exons that were derived from 

smmA3C and smmA3F during the amplification step. To compare smmA3C-like to the wild-

type proteins, we cloned the genuine smmA3C and smmA3F-CTD and tested their activity. We 

found that only the smmA3C-like protein and not smmA3C protein showed enhanced cytidine 

deaminase activity (Suppl. Fig. S3). The smmA3F-CTD construct failed to express detectable 

levels of protein in transfected cells (Suppl. Fig. S3). 

To study G-to-A mutations on the plus-strand of viral DNA triggered by A3 in vivo activity, we 

routinely used a method called “3D-PCR” [65,66]. DNA sequences in which the cytosines were 

deaminated by A3 activity contain less GC base pairs than non-edited DNA, resulting in a lower 

melting temperature than the original, non-edited DNA. Therefore, successful amplification at 

lower denaturation temperatures (Td) (83.5 - 87.6°C) by 3D-PCR is indicating the presence of 

A3-edited sequences. Because restriction of HIV-1Δvif by smmA3C-like protein was similar or 

slightly stronger than restriction by hA3G (Fig. 1A), we analyzed the DNA editing capacity of 

these A3s during infection by 3D-PCR on the viral genome. 3D-PCR amplification with samples 

of cells infected with HIV-1Δvif viruses encapsidating hA3C, rhA3C, cpzA3C, or agmA3C yielded 

amplicons until Td 86.3°C, whereas the activity of smmA3C-like protein on the same substrate 
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allowed to produce amplicons at lower Td, 84.2°C. In control reactions using virions produced 

in the presence of hA3G, PCR amplification of viral DNA was detectable at lower Td (85.2°C 

and weakly at 84.2°C) (Fig. 1C). Importantly, using the vector control sample (no A3), PCR 

amplicons could be amplified only at higher Td (87.6°C). In our previous study, we elaborately 

compared the hypermutation load and patterns induced by A3C, A3G, and A3F in retroviruses 

and found that in HIV-1Δvif, the GA mutation rate induced by hA3C and A3C.S61P (Suppl. 

Fig. S4, an A3C mutant with enhanced deamination activity against SIVagmΔvif) was about 6%, 

whereas A3G and A3F triggered mutation rate was above 15% [65]. To study the effect of 

smmA3C-like protein in HIV-1Δvif, PCR products generated on smmA3C-like protein-edited 

samples formed at 84.2°C were cloned and independent clones were sequenced. smmA3C-

like protein caused hypermutation in HIV-1Δvif with a rate of 17.16% and predominantly 

favored the expected GA dinucleotide context (Suppl. Fig. S5). In addition, we have applied 

qualitative in vitro cytidine deamination assays using A3 proteins isolated from HIV-1Δvif and 

SIVagmΔvif viral particles [67,68]. This PCR-based assay depends on the sequence change 

caused by A3 converting a dCdU in an 80-nucleotide (nt) ssDNA substrate harboring the 

A3C-specific TTCA motif. Catalytic deamination of dCdU by A3C is then followed by a PCR 

that replaces dU by dT generating an MseI restriction site. The efficiency of MseI digestion 

was monitored by using a similar 80-nt substrate containing dU instead of dC in the 

recognition site. As expected, hA3C and hA3C.S61P, encapsidated into the HIV-1Δvif particles, 

did not yield a considerable product resulting from ssDNA cytidine deamination [65], however, 

smmA3C-like protein formed high amounts of deamination products (Fig. 1D). Using smmA3C-

like protein, the deamination products were observed even after transfection of 10-fold 

smaller amounts of expression plasmid during virus production. In contrast, A3C and A3C.S61P 

proteins isolated from SIVagmΔvif particles but not from HIV-1Δvif particles produced the 

expected deamination products, whereas smmA3C-like protein exhibited the strongest 

catalytic activity, regardless of the source (Fig. 1D). Taken together, we conclude that 

smmA3C-like protein inhibits HIV-1 by cytidine deamination causing hypermutation of the 

viral DNA.  
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Identification of the regulatory domain of smmA3C-like protein that mediates HIV-1 

restriction 

Amino acid sequence identity and similarity between hA3C and smmA3C-like protein reach 

77.9% and 90%, respectively (Suppl. Fig. S4A). To facilitate the identification of distinct 

determinants of smmA3C-like protein that confer HIV-1 inhibition, ten different 

hA3C/smmA3C-like chimeras were constructed [64] (Fig. 2A). We first tested the anti-HIV-

1Δvif activity of these A3C chimeras. Viral particles containing different chimeric proteins were 

produced and their infectivity was tested. As shown in Fig. 2B, chimeras C2, C4, and C8 strongly 

reduced the infectivity of HIV-1Δvif. Especially, chimera C2 (hA3C harboring a swap of 36 

residues of the smmA3C-like protein at the N-terminal end) inhibited HIV-1Δvif replication by 

about two orders of magnitude. On the contrary, chimeras C6 and C9 reduced viral infectivity 

by 72% relative to vector control (Fig. 2B). 

Next, we determined the intracellular expression and virion incorporation efficiency of the 

chimeras by immunoblotting. Chimeras C2, C3, C5, C7, and C9, which contain residues 37 to 

76 of hA3C (Fig. 2A), were more highly expressed than C1, C4, C6, and C10 (Fig. 2C). 

Specifically, chimera C2 displayed higher protein levels than hA3C while C10 was below the 

detection threshold. Chimeras, C2, C4, C6, C7, and C9 were found to be encapsidated in HIV-

1Δvif (Fig. 2C, viral lysate). In particular, C3 and C5 were less efficiently packaged into viral 

particles although they were present at higher intracellular expression levels. Conversely, C6 

produced less protein but its viral incorporation was higher than that of C3 or C5. In addition, 

we analyzed the in vitro cytidine deaminase activity of these chimeras as described above (Fig. 

2D). Here we used lysates of transfected HEK293T cells to readily evaluate the catalytic activity 

of the chimeric A3Cs. As demonstrated in Fig. 2D, only the amounts of deamination products 

predominantly generated by C2 and C4 were similar to those produced by smmA3C-like 

protein.  

Taken together, chimeras C2 and C4 strongly restricted HIV-1Δvif and are characterized by 

corresponding in vitro deamination activity. C6, by contrast, lost any antiviral and deamination 

activity, suggesting that the N-terminal region of smmA3C-like protein is crucially involved in 

the antiviral mechanism. We speculate that residues in C2 and C4 that are absent in C6 
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complemented the restriction activity of these chimeras. Due to its superior antiviral activity 

we mainly focused on chimera C2 in our following experiments. 

 

Synergistic effects of residues in the RKYG motif of chimera C2 and smmA3C-like protein 

govern their potent antiviral activity  

To identify the specific residues in C2 that are essential for its anti-HIV-1 activity, we targeted 

two N-terminal motifs of C2, namely 13DPHIFYFH20 (shortly “DHIH”) and 24LRKAYG29 (named 

“RKYG”) as presented in the sequence alignments of Suppl. Fig. S4A, and generated more 

variants of C2 by swapping one, two, or four amino acids with the analogous residues of hA3C 

as presented in Fig. 3A. First, we cloned the C2 variants C2.DH-YG (YGTQ motif of helix 1) and 

C2.RKYG-WEND (WEND motif of loop 1, see A3C alignment and ribbon diagram Suppl. Fig. S4) 

and tested their anti-HIV-1 and deamination activity. This pilot experiment revealed that loop 

1 motif RKYG but not 1 helix motif DHIH in C2 is essential for its activity (data not shown). 

Hence, we constructed the mutants C2.R25W, K26E, Y28N, and G29D (Fig. 3A) and tested 

them for catalytic and antiviral activity. Since the in vitro deaminase activity of the chimeras 

C1 to C10 correlated with their antiviral activity (Fig. 2B and 2D), we expressed these variants 

of C2 in HEK293T cells and performed in vitro deamination assays. The results of the 

deamination assay clearly demonstrated that the DH motif in C2 is not relevant for its potent 

catalytic activity as the C2.DH-YG acted similar to C2 (Fig. 3B), but mutation of the RKYG motif 

in the RKYG-WEND variant resulted in a loss of deamination activity (Fig. 3B). Interestingly, 

none of the single amino acid changes in RKYG (C2.R25W, K26E, Y28N, and G29D) resulted in 

the loss-of-function of C2, albeit the catalytic activities of R25W and K26E were partially 

reduced (Fig. 3B). Consistent with the data obtained from the in vitro assay, the chimeric 

C2.RKYG-WEND variant failed to restrict the infectivity of HIV-1Δvif, while C2 and its point 

mutants strongly inhibited the virus (Fig. 3C). Immunoblot analysis of cell and viral lysates 

further confirmed that cellular expression and viral encapsidation of these variants were 

comparable (Fig. 3D). Finally, to test the in vivo DNA editing capacity, we did 3D-PCR analysis 

using C2, C2.DH-YG, and C2.RKYG-WEND variants. As presented in Fig. 3E, only HIV-1Δvif 

particles produced in the presence of A3C chimera C2 and its mutant C2.DH-YG harbored viral 
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DNA that was detected by PCR products at low-denaturation temperature and C2.RKYG-

WEND behaved similarly to the vector control (Fig. 3E). Likewise, replacing RKYG with WEND 

in the smmA3C-like protein inhibited its antiviral activity (Figs. 4A and 4B) and deamination 

activity of HIV-1 genomes (Fig. 4C) as did the active site mutant E68A. 

 

The WE-RK mutation in loop 1 of hA3C determines its strong deaminase-dependent antiviral 

function 

Mutational changes of the RKYG motif to WEND residues in loop 1 of C2 and smmA3C-like 

protein resulted in complete loss of enzymatic functions and anti-HIV-1 activities (Figs. 3C and 

4A). To identify the residues in hA3C that are critically required for the deaminase-dependent 

antiviral activity against HIV-1Δvif, we modified the loop 1 of hA3C with 25WE26>>25RK26 and 

28ND29>>28YG29 residues and compared their antiviral capacity (please see A3C alignment and 

ribbon diagram Suppl. Fig. S4). As controls, we included additional mutants such as a 

catalytically inactive Zn2+-coordinating C97 mutant, A3C.C97S [52], and the variants A3C.S61P 

[65] and A3C.S188I [69] (Suppl. Fig. S4A) exhibiting enhanced deaminase activity. Compared 

to wild-type hA3C, WE-RK greatly enhanced inhibition of HIV-1Δvif, and the ND-YG variant 

behaved like wild-type A3C, while S61P and S188I have demonstrated only marginally 

increased HIV-1Δvif restriction (Fig. 5A). Importantly, mutant A3C.C97S did not inhibit HIV-

1Δvif (Fig. 5A).  

Next, we generated active site mutants to analyze if the antiviral activity of A3C.WE-RK is 

deamination-dependent. To achieve this, we introduced a C97S mutation in each of these 

constructs. Additionally, we compared the ancillary effect of mutants such as S61P [65] and 

S188I [69] by introducing these mutations in the WE-RK variant of A3C. As expected, the 

inhibitory activities of A3C.WE-RK, A3C.WE-RK.S61P, and A3C.WE-RK.S61P.S188I against HIV-

1Δvif were abolished by active site ablating mutation C97S, indicating the importance of the 

enzymatic activity of A3C (Fig. 5B). Introducing either the single mutation S61P or the double 

mutation S61P.S188I did not considerably change the action of A3C.WE-RK (Fig. 5B). 

Immunoblot analysis of cell and viral lysates demonstrated that hA3C and all mutants (except 

A3C.WE-RK.S61P.S188I.C97S mutant) expressed a comparable level of protein (Fig. 5C). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

11 

 

However, viral incorporation of A3C.C97S, A3C.WE-RK.C97S, A3C.WE-RK.S61P.C97S, and WE-

RK.S61P.S188I.C97S was slightly decreased relative to that of wild-type and mutant proteins 

that do not contain the C97S mutation (Fig. 5C). Moreover, we confirmed the effects of these 

mutants on HIV-1Δvif propagation by 3D-PCR (Fig. 5D) and deamination assay in vitro (Fig. 5E). 

In both assays, we found that the C97S mutation destroys the function of all A3C variants. 

Thus, we conclude that the loop 1-mediated enhanced activity of hA3C.WE-RK is dependent 

on catalytic deamination.  

 

The RK-WE mutation in loop 1 moderately reduces the antiviral activity of hA3F 

The residues 25RK26 in loop 1 of smmA3C-like protein are derived from exon 5 of A3F gene in 

which exon 5 to 7 encoding A3F-CTD and conserved in primate A3F proteins (Suppl. Fig. S2). 

Various loops within A3F-CTD were recently investigated with respect to their role in substrate 

binding and enzyme function [70] but it was not possible to unravel the antiviral activity of 

A3F-CTD, mainly due to difficulties in expressing this domain in human cells as found earlier 

[65,71]. hA3C and hA3F-CTD display 77% sequence similarity, reflecting a common 

evolutionary origin [6]. Importantly, the antiviral activity of hA3F is mediated by its CTD 

[72,73]. To test the impact of RK residues in loop 1 of the hA3F-CTD, we compared the antiviral 

activity of hA3F with A3F.RK-WE against HIV-1Δvif. hA3F and hA3F.RK-WE expressed similar 

amounts of protein and were equally encapsidated in HIV-1 particles (Fig. 6A). However, 

A3F.RK-WE exhibited an about two-fold decreased capacity to inhibit HIV-1Δvif compared with 

wild-type A3F (Fig. 6B). Consequently, A3F.RK-WE showed decreased mutation efficiency 

compared with wild-type A3F (Figs. 6C and 6D), which was consistent with data presented in 

a recent report [70]. Thus, we conclude that loop 1 with its residues RK in CTD of A3F is 

important for hA3F’s enzymatic function.  

 

Inhibition of LINE-1 retrotransposition by A3C variants  

Since A3C and A3F restrict endogenous LINE-1 (L1) retrotransposition activity by 40-75% and 

66-85% [46,56,74,75], respectively, we set out to elucidate how the WE and the RK residues 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

in loop 1 of both hA3C and hA3F, respectively, affect the L1 inhibiting activity. To this end, we 

quantified the L1-inhibiting effect of human wild-type A3A, A3C, and A3F proteins and their 

mutants hA3C.WE-RK, hA3C.WE-RK.S61P, and hA3F.RK-WE by applying a dual-luciferase 

retrotransposition reporter assay [76]. In this cell culture-based assay, the firefly luciferase 

gene is used as the reporter for L1 retrotransposition and the Renilla luciferase gene is 

encoded on the same plasmid for transfection normalization (Fig. 7A). Consistent with 

previous reports, overexpression of hA3A, hA3C, and hA3F resulted in inhibition of L1 reporter 

retrotransposition by approximately 94%, 68%, and 56%, respectively (Fig. 7B). The mutant 

hA3C.WE-RK displayed an increased L1-restricting effect (from 56% to ~96%), and the 

introduction of the additional mutation hA3C.WE-RK.S61P did not further increase the ability 

of the enzyme to restrict L1 mobilization (Fig. 7B). Notably, hA3F and the mutant hA3F.RK-WE 

exhibited a comparable level of L1 restriction, indicating that regions other than loop 1 of A3F-

CTD and, probably, the NTD (N-terminal domain) of hA3F are involved in L1 restriction (Fig. 

7B). Immunoblot analysis of cell lysates of co-transfected HeLa-HA cells demonstrated 

comparable expression of the L1 reporter and HA-tagged A3- and A3 mutant proteins (Suppl. 

Fig. S7). These findings indicate that the WE-RK mutation in hA3C enhances its L1 inhibiting 

activity. Based on the observed antiviral activity and the L1 restricting effect of hA3C.WE-RK 

on L1, we hypothesize that the introduction of these positively charged residues in hA3C 

significantly fosters its interaction with nucleic acids, which was recently reported to mediate 

its L1 inhibiting activity [56]. 

 

The positively charged residues R25 and K26 in A3C-C2 form salt-bridges with the backbone 

of the ssDNA  

The structural model of hA3C variant C2 binding to ssDNA, which is based on the ssDNA-bound 

crystal structure of A3A, shows a cytidine residue in the active center of hA3C-C2 (Fig. 8A). 

However, the ssDNA fragment, which was co-crystallized with hA3A, is too short to interact 

with residues 25, 26, 28, and 29, which differ between hA3C WT and the C2 variant. Hence, 

this binding mode model cannot explain why C2 has a higher cytidine deaminase activity than 

hA3C WT. To assess the binding to a longer ssDNA fragment, we generated a complex model 

of ssDNA bound to the NTD of rhesus macaque A3G (rhA3G) [77], similar to the ssDNA-bound 
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A3F-CTD model built previously [78], and aligned the crystal structure of hA3C WT and the 

model of C2 to this complex (Figs. 8B, 8C, and 8D). The positively charged residues R25 and 

K26 in C2 form salt-bridges with the backbone of the ssDNA (Fig. 8D) in contrast to hA3C WT 

(Fig. 8C). Additionally, Y28 of C2 can form π-π-stacking interactions with the aromatic DNA 

bases (Fig. 8D). Thus, these three residues can form stronger interactions with ssDNA in C2 

than their counterparts in hA3C. This finding may explain the enhanced cytidine deaminase 

activity of C2 compared to hA3C. 

Furthermore, we performed five replicas of molecular dynamics (MD) simulations of 2 µs 

length each for hA3C, C2, and hA3C.S61P.S188I to assess the structural impact of the 

substitutions. The root mean square fluctuations (RMSF), which describe atomic mobilities 

during the MD simulations, show distinct differences between the variants in the putative 

DNA-binding regions of the proteins: the RMSF of C2 and hA3C.S61P.S188I are up to 2 Å larger 

compared to hA3C WT in the regions carrying the substitutions (residues 21-32 for C2 and 

residues 55-67 for hA3C.S61P.S188I) (Suppl. Fig. S8). This effect is specifically related to the 

respective substitutions, as no change in RMSF occurs for a variant in a region where it is 

identical to A3C WT. The increased movement of ssDNA-binding residues might improve the 

sliding of C2 and hA3C.S61P.S188I along the ssDNA, owing to more transient interactions with 

the ssDNA backbone. Conversely, the RMSF of loop 7 is up to 1 Å lower in both the C2 and 

hA3C.S61P.S188I variants compared to the hA3C WT (Suppl. Fig. S8). 

 

WE-RK mutation in the loop 1 of hA3C enhances the interaction with ssDNA  

To validate our structural modeling analysis (Fig. 8), and to address if the interaction of hA3C 

and hA3C.WE-RK with the substrate ssDNA was differentially affected, we performed 

electrophoretic mobility shift assays (EMSA) using hA3C-GST (A3C fused to glutathione S-

transferase, GST) and hA3C.WE-RK-GST purified from HEK293T cells (Fig. 9A). As a probe, we 

used a biotin-labeled ssDNA oligonucleotide that harbors a TTCA motif in its central region 

[65,79]. Because hA3C-GST is known to form a stable DNA-protein complex when the protein 

concentration reaches ≥ 20 nM ([65] and data not shown), we decreased the amount of A3C 

and its mutant protein to specifically test their inherent DNA binding capacity. In a titration 
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experiment with concentrations ranging from 2 to 8 nM in steps of 2 nM of hA3C-GST and 

hA3C.WE-RK-GST purified protein, we detected a clear trend in the formation of DNA–protein 

complexes for hA3C-GST and hA3C.WE-RK-GST (Fig. 9B). Intriguingly, DNA-protein complexes 

of hA3C.WE-RK-GST started appearing at the lowest protein concentration used (2 nM), while 

hA3C-GST-DNA complexes were detected at protein concentration ≥ 6 nM. The top-shifted 

complexes were formed only with hA3C.WE-RK-GST and not with hA3C-GST. To confirm the 

specificity of the DNA–protein complexes, we competed for the reaction with unlabeled DNA 

carrying the same nucleotide sequence as the used probe in 500-fold excess relative to that 

probe. The addition of the competitor DNA to the sample containing the maximum (8 nM) 

amount of A3C protein, efficiently disrupted the protein-DNA complex formation. Together, 

data from structural modeling and EMSA experiments allowed us to conclude that the two 

amino acid-change in loop 1 of A3C boosts the ssDNA binding capacity of A3C. Importantly, 

the GST moiety did not affect the binding ([65] and data not shown). 

 

Evolution of A3Z2 loop 1 regions in primates  

We performed a phylogenetic reconstruction for the A3Z2 domains in primates, using the 

A3Z2 sequences in the northern tree shrew as outgroup. Because in primates A3D and the A3F 

contain two Z2 domains, we analyzed at the A3Z2 domain level (N- and C- terminal Z2) (Fig. 

10A). Our results show that the A3Z2 domains underwent independent duplication in the two 

sister taxa, tree shrews and primates: the three A3Z2 tree shrew sequences constitute a clear 

outgroup to all primate A3Z2 sequences. We identified a sharp clustering of the A3D-NTD and 

A3F-NTD on the one hand and of A3C, A3D-CTD, and A3F-CTD on the other hand. As to New 

World monkeys (Platyrrhini), we could only confidently retrieve A3C sequences from the 

white-faced sapajou Cebus capucinus and from the Ma's night monkey Aotus nancymaae. 

These sequences from A3C New World monkeys were basal to all Catarrhini (Old World 

monkeys and apes) A3C, A3D-CTD and A3F-CTD sequences, suggesting that the two gene 

duplications leading to the extant organization of A3C, A3D, and A3F occurred after the 

Platyrrhini/Catarrhini split 43.2 Mya (41.0 - 45.7 Mya) and before the 

Cercopithecoidea/Hominoidea split 29.44 Mya (27.95 - 31.35 Mya). The results show a tangled 
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distribution within the A3D-NTD and A3F-NTD clade, and within the A3D-CTD and A3F-CTD 

clade. These confusing relationships are more obvious when comparing an unconstrained Z2 

tree with a tree in which monophyly of the large six clades identified was enforced. 

Conversely, Catarrhini A3C sequences form a monophyletic taxon, and this A3C gene tree 

essentially adheres to the corresponding species tree (Fig. 10B). Focusing on the nodes that 

we could identify with confidence, we performed ancestral phylogenetic inference of the most 

likely amino acid sequence for the A3 loop 1 as well as consensus analysis of the extant 

sequences. Our results recover the well-conserved aromatic stacking stretch F[FY]FXF 

characteristic of all A3s. In the A3C, A3D-CTD, and A3F-CTD clade, we identified a motif with 

divergent evolution flanked by conserved small hydrophobic amino acids. The most likely 

ancestral form is the amino acid motif LRKA, which is also the form present in extant New 

World monkeys A3C and the most common in extant A3F-CTD; in the extant A3D-CTD the Arg 

residue is less conserved in L[RLQ][KT]A; and strikingly, in the ancestor of Catarrhini A3C, this 

motif changed to LWEA. Only subsequently, and exclusively in the Chlorocebus lineage, this 

change was partly reverted to LREA by a transition TGG>CGG. This reversion should have 

occurred after the divergence within Cercopithecinae, around 13.7 Mya (10.7 - 16.6 Mya). 

 

DISCUSSION 

Compared to the studies conducted over the past decade on the potent HIV-1 restriction 

factors A3G and A3F, investigations on A3C are very limited. Only a few recent studies have 

addressed the catalytic activity and substrate binding capacity of A3C [65,69,80]. While the 

previously characterized hA3C mutants S61P and S188I boost the catalytic activity of the 

enzyme to a certain level, none of these mutations are decisive because they do not reduce 

the HIV-1Δvif infectivity to any level accomplished by A3G nor do they directly partake in 

catalytic activity [65,69,80]. Because our repeated attempts to express A3F-CTD in human cells 

were not successful ([65] and Suppl. Fig. S3), we assayed A3C proteins from different Old 

World monkey species. Due to the high level of nucleotide sequence identity between the A3 

paralogs in the sooty mangabey monkey genome, we unintentionally generated the smmA3C-

like protein with superior anti-HIV-1 and enzymatic activity. We have identified the key role 
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of two positively-charged residues in loop 1 of the smmA3C-like protein (and of the hA3F-

CTD), namely R25 and K26 in the RKYG motif. Replacing RKYG of A3C chimera C2 or smmA3C-

like protein by the WEND (form of this motif in hA3C) abolished both their anti-HIV-1 and 

catalytic activity. Notably, the converse strategy of introducing the substitution WE-RK in the 

loop 1 of hA3C rendered hA3C.WE-RK a potent, deaminase-dependent, anti-HIV-1 enzyme. 

Consistent with these observations, our EMSA data clearly demonstrate that residues in the 

loop 1 of A3C regulate protein-DNA interaction and we postulate that this interaction is 

causative for the enhanced deamination activity and enhanced anti-HIV and L1 activity. A 

similar model was discussed by Solomon and coworkers, which demonstrated that loop 1 

residues of hA3G-CTD-2K3A-E259A (a catalytically inactive form of A3G-CTD) strongly interact 

with substrate ssDNA and that this distinguishes catalytic binding from non-catalytic binding 

[81]. Interestingly, loop 1 of A3A was found to be important for substrate specificity but not 

for substrate binding affinity [82], while loop 1 of A3H especially residue R26, plays a triple 

role for RNA binding, DNA substrate recognition, and catalytic activity likely by positioning the 

DNA substrate in the active site for effective catalysis [83]. In accordance with this, our study 

claims that 25RK26 substitution in loop 1 of A3C provides the microenvironment that drives the 

flexibility in substrate binding and enzymatic activity.  

The binding model developed here rationalizes how A3C variant C2 can interact with the 

negatively charged backbone of ssDNA via the positively charged loop 1 side chains of R25 and 

K26 (Fig. 8D). Like our modeling strategy, Fang et al. [78] used their binding mode model of 

A3F-CD2 with ssDNA to identify residues in the A3G-CTD important for ssDNA binding. 

Furthermore, the increased mobility of DNA binding regions carrying the substitutions in C2 

and hA3C-S61P.S188I, respectively, compared to hA3C (Suppl. Fig. S8) suggests that C2 and 

hA3C-S61P.S188I can better slide along the ssDNA than hA3C: The higher mobility of the 

residues may allow them to adapt more quickly to the passing ssDNA, which, paired with likely 

stronger interactions with the backbone of the ssDNA, may explain the increased deaminase 

activity. In addition, loop 7 exhibits a decreased mobility in both C2 and hA3C-S61P.S188I 

compared to hA3C, which was shown to be a predictor for higher deaminase activity, DNA 

binding, and substrate specificity of A3G and A3F, and reported to be also relevant for antiviral 

activity of A3B and A3D [73,84-86]. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

17 

 

Unexpectedly, our experiments also demonstrated that LINE-1 restriction by A3C which was 

reported earlier to be deaminase-independent [56], is enhanced after expression of the 

A3C.WE-RK variant. These data suggest that the reported RNA-dependent physical interaction 

between L1 ORF1p and A3C dimers might be mediated by A3C loop 1, is partly dependent on 

the two amino acids W25 and E26 and enhanced by the R25 and K26 substitutions. However, 

L1 inhibition by A3F was not significantly altered by the A3F.RK-WE mutations, clearly 

indicating that in A3F other regions (and NTD) are likely to be relevant for L1 restriction. 

Because selection likely had to balance between anti-viral/anti-L1 activity and genotoxicity of 

A3 proteins, we wanted to characterize loop 1 residues during the evolution of closely related 

A3Z2 proteins such as A3C, A3D CTD and A3F CTD in primates. In the most recent common 

ancestor of these enzymes, before the split Catarrhini-Platyrrhini some 43 Mya, the sequence 

of this motif in loop 1 is LRKAYG. In New World Monkeys, the A3C genes were not duplicated 

and are basal to the three sister clades of Catarrhini A3C, A3D-CTD, and A3F-CTD. In extant 

A3C sequences in New World monkeys, the loop 1 motif has notably remained unchanged and 

reads LRKAYG. In Catarrhini, on the contrary, the ancestral A3C sequence underwent two rapid 

rounds of duplication that occurred after the split with the ancestor of Platyrrhini, and before 

the split between the ancestors of Cercopithecoidea and Hominoidea, some 29 Mya. In extant 

A3F-CTD sequences, the consensus form of the loop 1 remains LRKAYG, albeit with certain 

variability of the Arg residue to be exchanged by other positively charged amino acids. In 

extant A3D-CTD enzymes, this motif has undergone erosion, is more variable and reads 

L[RLQ][KT]A[YC]G. Interestingly, loop 1 in A3C has experienced rapid and swift selective 

pressure to exchange the positively charged RK amino acids by the largely divergent chemistry 

of WE, yielding LWEAYG. This selective sweep occurred very rapidly, as this is the fixed form 

in all Catarrhini. Notoriously, and exclusively in the Chlorocebus lineage, this amino acid 

substitution was partly reverted to LREAYG, which is the conserved sequence in the four 

Chlorocebus A3C entries available.  

Overall, our results suggest that the two duplication events that generated the extant A3C, 

A3D-CTD, and A3F-CTD sequences in Catarrhines, released the selective pressure on two of 

the daughter enzymes allowing them to explore the sequence space and to evolve via 
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sub/neofunctionalisation, as proposed for Ohno’s in-paralogs [87]. Thus, the A3F-CTD form of 

the loop 1 diverged little from the ancestral chemistry and possibly maintained the ancestral 

function, while the release in conservation pressure on A3D-CTD allowed the enzyme loop 1 

to accumulate mutations and diverge from the ancestral state. In turn, A3C was rapidly 

engaged into a distinct evolutionary pathway, which is unique due to the highly divergent 

chemistry of loop 1 but also because A3C is the only A3Z2 monodomain enzyme of the A3 

family.  

In conclusion, we postulate that the loop 1 region of A3s might have a conserved role in 

anchoring ssDNA substrate for efficient catalysis and that hA3C’s weak deamination and anti-

HIV-1 activity might have been the result of losing DNA interactions in loop 1 during its 

evolution. It is thus possible that genes encoding A3C proteins with loop 1 residues with a 

higher ssDNA affinity were too genotoxic to benefit its host by superior anti-viral and anti-L1 

activity. 

 

MATERIALS AND METHODS 

Cell culture. HEK293T cells were maintained in Dulbecco’s high-glucose modified Eagle’s 

medium (DMEM) (Biochrom, Berlin, Germany), supplemented with 10% fetal bovine serum 

(FBS), 2 mM L-glutamine, 50 units/ml penicillin, and 50 µg/ml streptomycin at 37°C in a 

humidified atmosphere of 5% CO2. Similarly, HeLa-HA cells [88] were cultured in DMEM with 

10% FCS (Biowest, Nuaillé, France), 2mM L-glutamine and 20 U/ml penicillin/streptomycin 

(Gibco, Schwerte, Germany).  

 

Plasmids. The HIV-1 packaging plasmid pMDLg/pRRE encodes gag-pol, and the pRSV-Rev for 

the HIV-1 rev [89]. The HIV-1 vector pSIN.PPT.CMV.Luc.IRES.GFP expresses the firefly 

luciferase and GFP reported previously [90]. HIV-1 based viral vectors were pseudotyped using 

the pMD.G plasmid that encodes the glycoprotein of VSV (VSV-G). SIVagm luciferase vector 

system was described before [31]. All APOBEC3 constructs described here were cloned in 

pcDNA3.1 (+) with a C-terminal hemagglutinin (HA) tag. The smmA3C-like expression plasmid 
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was generated by exon assembly from the genomic DNA of white-crowned mangabey 

(Cercocebus torquatus lunulatus), and the cloning strategy for smmA3C-like and the chimeras 

of hA3C/smmA3C-like plasmid construction was recently described [64]. The expression 

vector for A3G-HA was generously provided by Nathaniel R. Landau. Expression constructs 

hA3C, rhA3C, cpzA3C, agmA3C and A3C point mutant A3C.C97S were described before 

[52,55,65]. smmA3C-like with C-terminal V5 tag was cloned using following primers forward 

5'-EcoRI-ATGAATTCGCCACCATGAATCCACAGATCAGAAAC and reverse 5’-NotI-

ATGCGGCCGCCACTCGAGAATCTCCTGTAGGCGTC. 

Various point mutants hA3C.WE-RK, hA3C.ND-YG, hA3C.WE-RK.C97S, hA3C.WE-RK.S61P, 

hA3C.WE-RK.S61P.C97S, hA3C.WE-RK.S61P.S188I, hA3C.WE-RK.S61P.S188I.C97S, hA3F.RK-

WE, smmA3C-like.E68A were generated by using site-directed mutagenesis. Similarly, single 

or multiple amino acid changes were made in expression vectors to produce chimera 2 

mutants (C2.DH-YG, C2.RKYG-WEND, C2.R25W, C2.K26E, C2.Y28N, and C2.G29D) and 

smmA3C-like.RKYG-WEND. To clone C-terminal GST-tagged hA3C, hA3C.WE-RK, the ORFs 

were inserted between the restriction sites HindIII and XbaI in the mammalian expression 

construct pK-GST mammalian expression vector [91]. Individual exons of authentic smmA3C 

and smmA3F and smmA3F-like genes exons were amplified and cloned in pcDNA3.1. All the 

primer sequences are listed in Suppl. table 1. 

 

Virus production and isolation. HEK293T cells were transiently transfected using 

Lipofectamine LTX and Plus reagent (Invitrogen, Karlsruhe, Germany) with an appropriate 

combination of HIV-1 viral vectors (600 ng pMDLg/pRRE, 600 ng pSIN.PPT.CMV.Luc.IRES.GFP, 

250 ng pRSV-Rev, 150 ng pMD.G with 600 ng A3 plasmid or replaced by pcDNA3.1, unless 

otherwise mentioned) or SIVagm vectors (1400 ng pSIVTan-LucΔvif, 150 ng pMD.G with 600 

ng A3 plasmid) in 6 well plate. 48 h post-transfection, virion containing supernatants were 

collected and for isolation of virions, concentrated by layering on 20% sucrose cushion and 

centrifuged for 4 h at 14,800 rpm. Viral particles were re-suspended in mild lysis buffer (50 

mM Tris (pH 8), 1 mM PMSF, 10% glycerol, 0.8% NP-40, 150 mM NaCl and 1X complete 

protease inhibitor).  
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Luciferase-based infectivity assay. HIV-1 luciferase reporter viruses were used to transduce 

HEK293T cells. Prior infection, the amount of reverse transcriptase (RT) in the viral particles 

was determined by RT assay using Cavidi HS kit Lenti RT (Cavidi Tech, Uppsala, Sweden). 

Normalized RT amount equivalent viral supernatants were transduced. 48 h later, luciferase 

activity was measured using SteadyliteHTS luciferase reagent substrate (Perkin Elmer, Rodgau, 

Germany) in black 96-well plates on a Berthold MicroLumat Plus luminometer (Berthold 

Detection Systems, Pforzheim, Germany). Transductions were done in triplicate and at least 

three independent experiments were performed. 

 

Immunoblot analyses. Transfected HEK293T cells were washed with phosphate-buffered 

saline (PBS) and lysed in radioimmunoprecipitation assay buffer (RIPA, 25 mM Tris (pH 8.0), 

137 mM NaCl, 1% glycerol, 0.1% SDS, 0.5% sodium deoxycholate, 1% Nonidet P-40, 2 mM 

EDTA, and protease  inhibitor cocktail set III [Calbiochem, Darmstadt, Germany].) 20 min on 

ice. Lysates were clarified by centrifugation (20 min, 14800 rpm, 4°C). Samples (cell/viral 

lysate) were boiled at 95⁰C for 5 min with Roti load reducing loading buffer (Carl Roth, 

Karlsruhe, Germany) and subjected to SDS-PAGE followed by transfer (Semi-Dry Transfer Cell, 

Biorad, Munich, Germany) to a PVDF membrane (Merck Millipore, Schwalbach, Germany). 

Membranes were blocked with skimmed milk solution and probed with appropriate primary 

antibody, mouse anti-hemagglutinin (anti-HA) antibody (1:7,500 dilution, MMS-101P, 

Covance, Münster, Germany); mouse α-V5 antibody (1: 4000 dilution; Serotec); goat anti-

GAPDH (C-terminus, 1:15,000 dilution, Everest Biotech, Oxfordshire, UK); mouse anti-α-

tubulin antibody (1:4,000 dilution, clone B5-1-2; Sigma-Aldrich, Taufkirchen, Germany), 

mouse anti-capsid p24/p27 MAb AG3.0 [92] (1:250 dilution, NIH AIDS Reagents); rabbit anti 

S6 ribosomal protein (5G10; 1:103 dilution in 5% BSA, Cell Signaling Technology, Leiden, The 

Netherlands). Secondary Abs.: anti-mouse (NA931V), anti-rabbit (NA934V) horseradish 

peroxidase (1:104 dilution, GE Healthcare) and anti-goat IgG-HRP (1:104 dilution, sc-2768, 

Santa Cruz Biotechnology, Heidelberg, Germany). Signals were visualized using ECL 

chemiluminescent reagent (GE Healthcare). To characterize the effect of the expression of A3 
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proteins and their mutants on LINE-1 (L1) reporter expression, HeLa-HA cells were lysed 48 h 

post-transfection using triple lysis buffer (20 mM Tris/HCl, pH 7.5; 150 mM NaCl; 10 mM EDTA; 

0.1% SDS; 1% Triton X-100; 1% deoxycholate; 1x complete protease inhibitor cocktail [Roche]), 

clarified and 20 μg total protein were used for SDS-PAGE followed by electroblotting. HA-

tagged A3 proteins and L1 ORF1p were detected using an anti-HA antibody (Cat.# MMS-101P; 

Covance Inc.) in a 1:5,000 dilution and the polyclonal rabbit-anti-L1 ORF1p antibody #984 [93]  

in a 1:2,000 dilution, respectively, in 1xPBS-T containing 5% milk powder. ß-actin expression 

(clone AC-74, 1:30,000 dilution, Sigma-Aldrich Chemie GmbH) served as a loading control.   

 

Differential DNA denaturation (3D) PCR. HEK293T cells were cultured in 6-well plates and 

infected with DNAse I (Thermo Fisher Scientific, Schwerte, Germany) treated viruses for 12 

hours. Cells were harvested and washed in PBS, the total DNA was isolated using DNeasy DNA 

isolation kit (Qiagen, Hilden, Germany). A 714-bp fragment of the luciferase gene was 

amplified using the primers 5’-GATATGTGGATTTCGAGTCGTC-3’ and 5’-

GTCATCGTCTTTCCGTGCTC-3’. For selective amplification of the hypermutated products, the 

PCR denaturation temperature was lowered stepwise from 87.6°C to 83.5°C (83.5°C, 84.2°C, 

85.2°C, 86.3°C, 87.6°C) using a gradient thermocycler. The PCR parameters were as follows: (i) 

95°C for 5 min; (ii) 40 cycles, with 1 cycle consisting of 83.5°C to 87.6°C for 30 s, 55°C for 30 s, 

72°C for 1 min; (iii) 10 min at 72°C. PCRs were performed with Dream Taq DNA polymerase 

(Thermo Fisher Scientific). PCR products were stained with ethidium bromide. PCR product 

(smmA3C-like sample only) from the lowest denaturation temperature was cloned using 

CloneJET PCR Cloning Kit (Thermo Fisher Scientific) and sequenced. smmA3C-like protein-

induced hypermutations of eleven independent clones were analysed with the Hypermut 

online tool (https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html) [94]. 

Mutated sequences (clones) carrying similar base changes were omitted and only the unique 

clones were presented for clarity. 

 

In vitro DNA cytidine deamination assay. A3 proteins expressed in transfected HEK293T cells 

or virion incorporated A3s used as input. Cell lysates were prepared with mild lysis buffer 48 
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h post plasmid transfection. Deamination reactions were performed as described [67,95] in a 

10 µL reaction volume containing 25 mM Tris pH 7.0, 2 µl of cell lysate and 100 fmol single-

stranded DNA substrate (TTCA: 5’-

GGATTGGTTGGTTATTTGTATAAGGAAGGTGGATTGAAGGTTCAAGAAGGTGATGGAAGTTATGTTT

GGTAGATTGATGG). Samples were treated with 50 µg/ml RNAse A (Thermo Fisher Scientific). 

Reactions were incubated for 1 h at 37˚C and the reaction was terminated by boiling at 95˚C 

for 5 min. One fmol of the reaction mixture was used for PCR amplification Dream Taq 

polymerase (Thermo Fisher Scientific) 95˚C for 3 min, followed by 30 cycles of 61˚C for 30 s 

and 94˚C for 30 s) using primers forward 5’-GGATTGGTTGGTTATTTGTATAAGGA and reverse 

5'-CCATCAATCTACCAAACATAACTTCCA. PCR products were digested with MseI (NEB, 

Frankfurt/Main, Germany), and resolved on 15% PAGE, stained with ethidium bromide (7.5 

μg/ml). As a positive control, substrate oligonucleotides with TTUA instead of TTCA were used 

to control the restriction enzyme digestion [65].  

 

L1 retrotransposition assay. Relative L1 retrotransposition activity was determined by 

applying a rapid dual-luciferase reporter based assay described previously [76]. Briefly, 2x105 

HeLa-HA cells were seeded per well of a six-well plate and transfected using Fugene-HD 

transfection reagent (Promega) according to the manufacturer’s protocol. Each well was 

cotransfected with 0.5 g of the L1 retrotransposition reporter plasmid pYX017 or pYX015 [76] 

and 0.5 g of pcDNA3.1 or wild-type or mutant A3 expression construct resuspended in 3 l 

Fugene-HD transfection reagent and 100 l GlutaMAX-I-supplemented Opti-MEM I reduced-

serum medium (Thermo Fisher Scientific). Three days after transfection cultivation, the 

medium was replaced by complete DMEM containing 2.5 g/ml puromycin, to select for the 

presence of the L1 reporter plasmid harboring a puroR-expression cassette. Next day, the 

medium was replaced once more by puromycin containing DMEM medium and 48 hours later, 

transfected cells were lysed to quantify dual-luciferase luminescence. Dual-luciferase 

luminescence measurement: Luminescence was measured using the Dual-Luciferase Reporter 

Assay System (Promega) following the manufacturer’s instructions. For assays in 6-well plates, 

200 l Passive Lysis Buffer was used to lyse cells in each well; for all assays, 20 l lysate was 
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transferred to a solid white 96-well plate, mixed with 50 l Luciferase Assay Reagent II and 

firefly luciferase (Fluc) activity was quantified using the microplate luminometer Infinite 

200PRO (Tecan, Männedorf, Switzerland). Renilla luciferase (Rluc) activity was subsequently 

read after mixing 50 l Stop & Glo Reagent into the cell lysate containing Luciferase Assay 

Reagent II. Data were normalized as described in the results section. We routinely used the 

retrotransposition-defective L1RP/JM111 (located on pYX015) as the reference Fluc vector 

and set normalized luminescence ratio (NLR) resulting from cotransfection of pYX015 and 

pcDNA3.1(+) as 1. 

 

Protein sequence alignment and visualization. Sequence alignment of hA3C and smmA3C-

like protein was done by using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

The alignment file was then submitted to ESPript 3.0 [96] (espript.ibcp.fr) to calculate the 

similarity and identity of residues between both proteins and to build the alignment figure. 

Cartoon model of the crystal structure of A3C (PDB 3VOW) was constructed using PyMOL 

(PyMOL Molecular Graphics System version 1.5.0.4; Schrödinger, Portland, OR). 

  

Protein structural model building. The structural models of hA3C or C2 binding to ssDNA were 

generated by first aligning the X-ray crystal structure of rhA3G-NTD (PDB ID 5K82 [77]) onto 

the X-ray crystal structure of hA3F-CTD (PDB ID 5W2M [78]), the latter of which was co-

crystallized with ssDNA. Subsequently, the hA3C X-ray crystal structure (PDB ID 3VOW [63]) 

was aligned onto the NTD of rhA3G, which is structurally similar to hA3C. The ssDNA and the 

interface region of hA3C were subsequently relaxed in the presence of each other using 

Maestro [97]. The same program was used to mutate hA3C to obtain the C2 and 

hA3C.S61P.S188I variants, which was again relaxed in the presence of the ssDNA. Similarly, we 

obtained a C2 ssDNA binding model based on the ssDNA-binding X-ray crystal structure of 

hA3A (PDB ID 5SWW [98]).  
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The alignment of the sequences of the crystal structures was generated with Probcons [99], 

accessed through Jalview [100], which was also used to visualize the alignment (Suppl. Fig. 

S9). 

hA3C, C2, and hA3C.S61P.S188I were subjected to MD simulations. For this, the above-

mentioned structures without the DNA were N- and C-terminally capped with ACE and NME, 

respectively. The three variants were protonated with PROPKA [101] according to pH 7.4, 

neutralized by adding counter ions, and solvated in an octahedral box of TIP3P water [102] 

with a minimal water shell of 12 Å around the solute. The Amber package of molecular 

simulation software [103] and the ff14SB force field [104] was used to perform the MD 

simulations. For the Zn2+-ions the Li-Merz parameters for two-fold positively charged metal 

ions [105] were used. To cope with long-range interactions, the “Particle Mesh Ewald” method 

[106] was used; the SHAKE algorithm [107] was applied to bonds involving hydrogen atoms. 

As hydrogen mass repartitioning [108] was utilized, the time step for all MD simulations was 

4 fs with a direct-space, non-bonded cut-off of 8 Å. In the beginning, 17500 steps of steepest 

descent and conjugate gradient minimization were performed; during 2500, 10000, and 5000 

steps positional harmonic restraints with force constants of 25 kcal mol-1 Å-2, 5 kcal mol-1 Å-2, 

and zero, respectively, were applied to the solute atoms. Thereafter, 50 ps of NVT (constant 

number of particles, volume, and temperature) MD simulations were conducted to heat up 

the system to 100 K, followed by 300 ps of NPT (constant number of particles, pressure, and 

temperature) MD simulations to adjust the density of the simulation box to a pressure of 1 

atm and to heat the system to 300 K. During these steps, a harmonic potential with a force 

constant of 10 kcal mol-1 Å-2 was applied to the solute atoms. As the final step in 

thermalization, 300 ps of NVT-MD simulations were performed while gradually reducing the 

restraint forces on the solute atoms to zero within the first 100 ps of this step. Afterwards, 

five independent production runs of NVT-MD simulations with 2 s length each were 

performed. For this, the starting temperatures of the MD simulations at the beginning of the 

thermalization were varied by a fraction of a Kelvin. 
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Expression and purification of recombinant GST-tagged hA3C and hA3C.WE-RK from 

HEK293T cells. Recombinant C-terminal GST-tagged hA3C and hA3C.WE-RK were expressed in 

HEK293T cells and purified by affinity chromatography using Glutathione Sepharose 4B beads 

(GE Healthcare) as described previously [65]. Cells were lysed 48 h later with mild lysis buffer 

[50 mM Tris (pH 8), 1 mM PMSF, 10% glycerol, 0.8% NP-40, 150 mM NaCl, and 1X complete 

protease inhibitor and incubated with GST beads. After 2 h incubation at 4°C in end-over-end 

rotation, GST beads were washed twice with wash buffer containing 50 mM Tris (pH 8.0), 5 

mM 2-ME, 10% glycerol and 500 mM NaCl. The bound GST hA3C and hA3C.WE-RK proteins 

were eluted with wash buffer containing 20 mM reduced glutathione. The proteins were 90-

95% pure as checked on 15% SDS-PAGE followed by Coomassie blue staining. Protein 

concentrations were estimated by Bradford's method. 

 

Electrophoretic mobility shift assay (EMSA) with hA3C-GST and hA3C.WE-RK-GST. EMSA was 

performed as described previously [65,79,109]. We mixed 20 fmol of 3′ biotinylated DNA (30-

TTC-Bio-TEG purchased from Eurofins Genomics, Ebersberg Germany) with 10 mM Tris (pH − 

7.5), 100 mM KCl, 10 mM MgCl2, 1 mM DTT, 2% glycerol, and the respective amount of 

recombinant proteins in a 15 μl reaction mixture, and incubated at room temperature for 30 

min. The reaction mixture containing the protein–DNA complex were resolved on a 5% native 

PAGE gel on ice and transferred to a nylon membrane (Amersham Hybond-XL, GE healthcare) 

using 0.5 X TBE. After the transfer, the membrane containing protein–DNA complex were 

cross-linked by UV radiation with 312-nm bulb for 15 min. Chemiluminescent detection of 

biotinylated DNA was carried out according to the manufacturer's instruction (Thermo 

Scientific LightShift Chemiluminescence EMSA Kit). 

 

Phylogenetic inference. In order to study the evolution of the A3-Z2 domains a representative 

set of 62 primate A3C, A3D, and A3F gene sequences were collected from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank), as follows: 26 A3C sequences, 12 A3D sequences, 

and 21 A3F sequences. The phylogenetic relationships and divergence times among the 

species used were retrieved from http://www.timetree.org (Suppl. Fig. S10). A3 sequences 
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from the northern tree shrew Tupaia belangeri were included as an outgroup to the primate 

ones. As A3D and A3F sequences contain each two Z2 domains, they were split into the 

corresponding N- and C-termini. The alignments were performed at the amino acid level using 

MAFFTv7.380 (http://mafft.cbrc.jp/alignment/software/) [110]. Phylogenetic inference was 

performed using RAxMLv8 [111], at either the nucleotide level under the GTR+ model or at 

the amino acid level under the LG+ model. Node support was evaluated applying 5,000 

bootstrap cycles. Phylogenies at the nucleotide level were also calculated after introducing 

constraints in the tree, forcing monophyly of each clade A3D_N and C-termini, A3F_N and C-

termini, New World monkeys A3C, and catarrhine A3C. Differences in maximum likelihood 

between alternative topologies for the same alignment were evaluated by the Shimodaira-

Hasegawa test. Ancestral state reconstruction of amino acids in the loop A3_Z2 loop1 was 

performed only for the supported clades using RAxMLv8. A tanglegram with the two 

phylogenies was drawn with Dendroscope v3.6.3 [112]. Final layouts were done with Inkscape 

0.92.4. 

 

Statistical analysis. Data were represented as the mean with SD in all bar diagrams. 

Statistically significant differences between two groups were analyzed using the unpaired 

Student’s t-test with GraphPad Prism version 5 (GraphPad Software, San Diego, CA, USA). A 

minimum p-value of 0.05 was considered as statistically significant. 

 

ACKNOWLEDGMENTS 

We thank Wioletta Hörschken for excellent technical assistance. We thank Michael Emerman, 

Jens-Ove Heckel, Henning Hofmann, Yasumasa Iwatani, Nathanial R. Landau, Neeltje Kootstra, 

Bryan Cullen, Jonathan Stoye, Harald Wodrich, and Jörg Zielonka for reagents. The following 

reagents were obtained through the NIH AIDS Research and Reference Reagent Program, 

Division of AIDS, NIAID, NIH: a monoclonal antibody to HIV-1 p24 (AG3.0) from Jonathan 

Allan1. HG is grateful for computational support and infrastructure provided by the “Zentrum 

für Informations- und Medientechnologie” (ZIM) at the Heinrich-Heine-University Düsseldorf 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

http://mafft.cbrc.jp/alignment/software/
https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

27 

 

and the computing time provided by the John von Neumann Institute for Computing (NIC) to 

HG on the supercomputer JUWELS at Jülich Supercomputing Centre (JSC) (user ID: HKF7).  

 

FUNDING 

This work was supported by a grant from the research commission of the medical faculty of 

the Heinrich-Heine-University Düsseldorf (grant #2019-13 to CM and HG). KB is supported by 

the German Academic Exchange Service (DAAD). ZZ was supported by China Scholarship 

Council (CSC). CK and GGS are supported by the German Ministry of Health (grant # 

G115F020001). CM is supported by the Heinz-Ansmann foundation for AIDS research. The 

Center for Structural Studies is funded by the Deutsche Forschungsgemeinschaft (DFG Grant 

number 417919780 and INST 208/761-1 FUGG). 

 

Competing interests: The authors have declared that no competing interests exist. 

  

AUTHOR CONTRIBUTIONS 

 

Conceptualization: AAJV and CM 

Data curation: AAJV, KB, CGWG, FB, UH, CK, SB, GGS, IGB, DH, and HG 

Formal analysis: AAJV, KB, CGWG, FB, ZZ, AS, UH, SB, CK, GGS, IGB, DH, HG, and CM 

Funding acquisition: AAJV, CM, and HG  

Investigation: AAJV, KB, CGWG, FB, UH, CK, HG, and IGB 

Methodology: AAJV, KB, CGWG, SB, HG, and CM 

Project administration: CM 

Resources: GGS, IGB, HG, and CM 

Supervision: CM, DH, and AAJV 

Validation: AAJV and CM 

Visualization: AAJV, KB, CGWG, FB, CK, GGS, IGB, HG, and CM 

Writing – original draft: AAJV 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

28 

 

Writing – review and editing: AAJV, KB, CGWG, FB, ZZ, AS, UH, CK, SB, GGS, DH, IGB, HG, and 

CM  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

29 

 

REFERENCES 

1. Goila-Gaur R, Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5: 51. 
2. Harris RS, Dudley JP (2015) APOBECs and virus restriction. Virology 479-480: 131-145. 
3. Salter JD, Bennett RP, Smith HC (2016) The APOBEC Protein Family: United by Structure, Divergent 

in Function. Trends Biochem Sci 41: 578-594. 
4. Silvas TV, Schiffer CA (2019) APOBEC3s: DNA-editing human cytidine deaminases. Protein Sci 28: 

1552-1566. 
5. Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, et al. (2002) An anthropoid-specific locus of 

orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79: 285-296. 
6. Münk C, Willemsen A, Bravo IG (2012) An ancient history of gene duplications, fusions and losses in 

the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 12: 71. 
7. LaRue RS, Jonsson SR, Silverstein KA, Lajoie M, Bertrand D, et al. (2008) The artiodactyl APOBEC3 

innate immune repertoire shows evidence for a multi-functional domain organization that 
existed in the ancestor of placental mammals. BMC Mol Biol 9: 104. 

8. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 
infection and is suppressed by the viral Vif protein. Nature 418: 646-650. 

9. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, et al. (2003) The cytidine deaminase 
CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424: 94-98. 

10. Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, et al. (2004) Cytidine deamination of 
retroviral DNA by diverse APOBEC proteins. Curr Biol 14: 1392-1396. 

11. Vasudevan AA, Smits SH, Hoppner A, Häussinger D, Koenig BW, et al. (2013) Structural features of 
antiviral DNA cytidine deaminases. Biol Chem 394: 1357-1370. 

12. Zennou V, Perez-Caballero D, Gottlinger H, Bieniasz PD (2004) APOBEC3G incorporation into human 
immunodeficiency virus type 1 particles. J Virol 78: 12058-12061. 

13. Luo K, Liu B, Xiao Z, Yu Y, Yu X, et al. (2004) Amino-terminal region of the human immunodeficiency 
virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 78: 11841-11852. 

14. Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, et al. (2004) Human apolipoprotein B mRNA-
editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions 
through interactions with viral and nonviral RNAs. J Biol Chem 279: 35822-35828. 

15. Huthoff H, Malim MH (2007) Identification of amino acid residues in APOBEC3G required for 
regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J Virol 81: 
3807-3815. 

16. Schafer A, Bogerd HP, Cullen BR (2004) Specific packaging of APOBEC3G into HIV-1 virions is 
mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 328: 163-
168. 

17. Burnett A, Spearman P (2007) APOBEC3G multimers are recruited to the plasma membrane for 
packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent 
process requiring the NC basic linker. J Virol 81: 5000-5013. 

18. Browne EP, Allers C, Landau NR (2009) Restriction of HIV-1 by APOBEC3G is cytidine deaminase-
dependent. Virology 387: 313-321. 

19. Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, et al. (2003) DNA deamination 
mediates innate immunity to retroviral infection. Cell 113: 803-809. 

20. Yu Q, König R, Pillai S, Chiles K, Kearney M, et al. (2004) Single-strand specificity of APOBEC3G 
accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11: 435-442. 

21. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, et al. (2003) Broad antiretroviral defence by 
human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99-103. 

22. Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, et al. (2007) Deaminase-independent 
inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35: 7096-7108. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

30 

 

23. Holmes RK, Koning FA, Bishop KN, Malim MH (2007) APOBEC3F can inhibit the accumulation of 
HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with 
APOBEC3G. J Biol Chem 282: 2587-2595. 

24. Münk C, Jensen BE, Zielonka J, Häussinger D, Kamp C (2012) Running Loose or Getting Lost: How 
HIV-1 Counters and Capitalizes on APOBEC3-Induced Mutagenesis through Its Vif Protein. 
Viruses 4: 3132-3161. 

25. Bishop KN, Holmes RK, Malim MH (2006) Antiviral potency of APOBEC proteins does not correlate 
with cytidine deamination. J Virol 80: 8450-8458. 

26. Mbisa JL, Bu W, Pathak VK (2010) APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by 
different mechanisms. J Virol 84: 5250-5259. 

27. Strebel K (2005) APOBEC3G & HTLV-1: inhibition without deamination. Retrovirology 2: 37. 
28. Mehle A, Strack B, Ancuta P, Zhang C, McPike M, et al. (2004) Vif overcomes the innate antiviral 

activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J 
Biol Chem 279: 7792-7798. 

29. Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the 
proteasome in response to HIV-1 Vif. Nat Med 9: 1404-1407. 

30. Yu X, Yu Y, Liu B, Luo K, Kong W, et al. (2003) Induction of APOBEC3G ubiquitination and degradation 
by an HIV-1 Vif-Cul5-SCF complex. Science 302: 1056-1060. 

31. Mariani R, Chen D, Schrofelbauer B, Navarro F, König R, et al. (2003) Species-specific exclusion of 
APOBEC3G from HIV-1 virions by Vif. Cell 114: 21-31. 

32. Bogerd HP, Doehle BP, Wiegand HL, Cullen BR (2004) A single amino acid difference in the host 
APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity 
factor. Proc Natl Acad Sci U S A 101: 3770-3774. 

33. Mangeat B, Turelli P, Liao S, Trono D (2004) A single amino acid determinant governs the species-
specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279: 14481-14483. 

34. Zhang W, Huang M, Wang T, Tan L, Tian C, et al. (2008) Conserved and non-conserved features of 
HIV-1 and SIVagm Vif mediated suppression of APOBEC3 cytidine deaminases. Cell Microbiol 
10: 1662-1675. 

35. Smith JL, Pathak VK (2010) Identification of specific determinants of human APOBEC3F, APOBEC3C, 
and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. J Virol 84: 
12599-12608. 

36. Dang Y, Wang X, Esselman WJ, Zheng YH (2006) Identification of APOBEC3DE as another 
antiretroviral factor from the human APOBEC family. J Virol 80: 10522-10533. 

37. Wiegand HL, Doehle BP, Bogerd HP, Cullen BR (2004) A second human antiretroviral factor, 
APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23: 2451-2458. 

38. Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, et al. (2004) Human APOBEC3F is another host 
factor that blocks human immunodeficiency virus type 1 replication. J Virol 78: 6073-6076. 

39. Hultquist JF, Lengyel JA, Refsland EW, LaRue RS, Lackey L, et al. (2011) Human and rhesus 
APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to 
restrict Vif-deficient HIV-1. J Virol 85: 11220-11234. 

40. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, et al. (2013) APOBEC3B is an enzymatic 
source of mutation in breast cancer. Nature 494: 366-370. 

41. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, et al. (2013) An APOBEC cytidine 
deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45: 970-976. 

42. Henderson S, Fenton T (2015) APOBEC3 genes: retroviral restriction factors to cancer drivers. 
Trends Mol Med 21: 274-284. 

43. Swanton C, McGranahan N, Starrett GJ, Harris RS (2015) APOBEC Enzymes: Mutagenic Fuel for 
Cancer Evolution and Heterogeneity. Cancer Discov 5: 704-712. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

31 

 

44. Green AM, Weitzman MD (2019) The spectrum of APOBEC3 activity: From anti-viral agents to anti-
cancer opportunities. DNA Repair (Amst) 83: 102700. 

45. Olson ME, Harris RS, Harki DA (2018) APOBEC Enzymes as Targets for Virus and Cancer Therapy. 
Cell Chem Biol 25: 36-49. 

46. Muckenfuss H, Hamdorf M, Held U, Perkovic M, Lower J, et al. (2006) APOBEC3 proteins inhibit 
human LINE-1 retrotransposition. J Biol Chem 281: 22161-22172. 

47. Yu Q, Chen D, König R, Mariani R, Unutmaz D, et al. (2004) APOBEC3B and APOBEC3C are potent 
inhibitors of simian immunodeficiency virus replication. J Biol Chem 279: 53379-53386. 

48. Langlois MA, Beale RC, Conticello SG, Neuberger MS (2005) Mutational comparison of the single-
domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases 
provides insight into their DNA target site specificities. Nucleic Acids Res 33: 1913-1923. 

49. Suspene R, Guetard D, Henry M, Sommer P, Wain-Hobson S, et al. (2005) Extensive editing of both 
hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl 
Acad Sci U S A 102: 8321-8326. 

50. Baumert TF, Rosler C, Malim MH, von Weizsacker F (2007) Hepatitis B virus DNA is subject to 
extensive editing by the human deaminase APOBEC3C. Hepatology 46: 682-689. 

51. Vartanian JP, Guetard D, Henry M, Wain-Hobson S (2008) Evidence for editing of human 
papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320: 230-233. 

52. Stauch B, Hofmann H, Perkovic M, Weisel M, Kopietz F, et al. (2009) Model structure of APOBEC3C 
reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. 
Proc Natl Acad Sci U S A 106: 12079-12084. 

53. Ahasan MM, Wakae K, Wang Z, Kitamura K, Liu G, et al. (2015) APOBEC3A and 3C decrease human 
papillomavirus 16 pseudovirion infectivity. Biochem Biophys Res Commun 457: 295-299. 

54. Suspene R, Aynaud MM, Koch S, Pasdeloup D, Labetoulle M, et al. (2011) Genetic editing of herpes 
simplex virus 1 and Epstein-Barr herpesvirus genomes by human APOBEC3 cytidine 
deaminases in culture and in vivo. J Virol 85: 7594-7602. 

55. Perkovic M, Schmidt S, Marino D, Russell RA, Stauch B, et al. (2009) Species-specific inhibition of 
APOBEC3C by the prototype foamy virus protein bet. J Biol Chem 284: 5819-5826. 

56. Horn AV, Klawitter S, Held U, Berger A, Vasudevan AA, et al. (2014) Human LINE-1 restriction by 
APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE 
reverse transcriptase activity. Nucleic Acids Res 42: 396-416. 

57. Hultquist JF, Binka M, LaRue RS, Simon V, Harris RS (2012) Vif proteins of human and simian 
immunodeficiency viruses require cellular CBFbeta to degrade APOBEC3 restriction factors. J 
Virol 86: 2874-2877. 

58. Bonvin M, Achermann F, Greeve I, Stroka D, Keogh A, et al. (2006) Interferon-inducible expression 
of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus 
replication. Hepatology 43: 1364-1374. 

59. Refsland EW, Hultquist JF, Harris RS (2012) Endogenous origins of HIV-1 G-to-A hypermutation and 
restriction in the nonpermissive T cell line CEM2n. PLoS Pathog 8: e1002800. 

60. Bourara K, Liegler TJ, Grant RM (2007) Target cell APOBEC3C can induce limited G-to-A mutation in 
HIV-1. PLoS Pathog 3: 1477-1485. 

61. Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, et al. (2010) Quantitative profiling of the 
full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. 
Nucleic Acids Res 38: 4274-4284. 

62. Abdel-Mohsen M, Raposo RA, Deng X, Li M, Liegler T, et al. (2013) Expression profile of host 
restriction factors in HIV-1 elite controllers. Retrovirology 10: 106. 

63. Kitamura S, Ode H, Nakashima M, Imahashi M, Naganawa Y, et al. (2012) The APOBEC3C crystal 
structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 19: 1005-1010. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

32 

 

64. Zhang Z, Gu Q, Jaguva Vasudevan AA, Jeyaraj M, Schmidt S, et al. (2016) Vif Proteins from Diverse 
Human Immunodeficiency Virus/Simian Immunodeficiency Virus Lineages Have Distinct 
Binding Sites in A3C. J Virol 90: 10193-10208. 

65. Jaguva Vasudevan AA, Hofmann H, Willbold D, Häussinger D, Koenig BW, et al. (2017) Enhancing 
the Catalytic Deamination Activity of APOBEC3C Is Insufficient to Inhibit Vif-Deficient HIV-1. J 
Mol Biol 429: 1171-1191. 

66. Suspene R, Henry M, Guillot S, Wain-Hobson S, Vartanian JP (2005) Recovery of APOBEC3-edited 
human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR. J 
Gen Virol 86: 125-129. 

67. Nowarski R, Britan-Rosich E, Shiloach T, Kotler M (2008) Hypermutation by intersegmental transfer 
of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 15: 1059-1066. 

68. Jaguva Vasudevan AA, Kreimer U, Schulz WA, Krikoni A, Schumann GG, et al. (2018) APOBEC3B 
Activity Is Prevalent in Urothelial Carcinoma Cells and Only Slightly Affected by LINE-1 
Expression. Front Microbiol 9: 2088. 

69. Wittkopp CJ, Adolph MB, Wu LI, Chelico L, Emerman M (2016) A Single Nucleotide Polymorphism 
in Human APOBEC3C Enhances Restriction of Lentiviruses. PLoS Pathog 12: e1005865. 

70. Wan L, Nagata T, Katahira M (2018) Influence of the DNA sequence/length and pH on deaminase 
activity, as well as the roles of the amino acid residues around the catalytic center of 
APOBEC3F. Phys Chem Chem Phys 20: 3109-3117. 

71. Nakashima M, Ode H, Kawamura T, Kitamura S, Naganawa Y, et al. (2016) Structural Insights into 
HIV-1 Vif-APOBEC3F Interaction. J Virol 90: 1034-1047. 

72. Hache G, Liddament MT, Harris RS (2005) The retroviral hypermutation specificity of APOBEC3F 
and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J Biol Chem 
280: 10920-10924. 

73. Chen Q, Xiao X, Wolfe A, Chen XS (2016) The in vitro Biochemical Characterization of an HIV-1 
Restriction Factor APOBEC3F: Importance of Loop 7 on Both CD1 and CD2 for DNA Binding and 
Deamination. J Mol Biol 428: 2661-2670. 

74. Schumann GG (2007) APOBEC3 proteins: major players in intracellular defence against LINE-1-
mediated retrotransposition. Biochem Soc Trans 35: 637-642. 

75. Schumann GG, Gogvadze EV, Osanai-Futahashi M, Kuroki A, Münk C, et al. (2010) Unique functions 
of repetitive transcriptomes. Int Rev Cell Mol Biol 285: 115-188. 

76. Xie Y, Rosser JM, Thompson TL, Boeke JD, An W (2011) Characterization of L1 retrotransposition 
with high-throughput dual-luciferase assays. Nucleic Acids Res 39: e16. 

77. Xiao X, Li SX, Yang H, Chen XS (2016) Crystal structures of APOBEC3G N-domain alone and its 
complex with DNA. Nat Commun 7: 12193. 

78. Fang Y, Xiao X, Li SX, Wolfe A, Chen XS (2018) Molecular Interactions of a DNA Modifying Enzyme 
APOBEC3F Catalytic Domain with a Single-Stranded DNA. J Mol Biol 430: 87-101. 

79. Marino D, Perkovic M, Hain A, Jaguva Vasudevan AA, Hofmann H, et al. (2016) APOBEC4 Enhances 
the Replication of HIV-1. PLoS One 11: e0155422. 

80. Adolph MB, Ara A, Feng Y, Wittkopp CJ, Emerman M, et al. (2017) Cytidine deaminase efficiency of 
the lentiviral viral restriction factor APOBEC3C correlates with dimerization. Nucleic Acids Res 
45: 3378-3394. 

81. Solomon WC, Myint W, Hou S, Kanai T, Tripathi R, et al. (2019) Mechanism for APOBEC3G catalytic 
exclusion of RNA and non-substrate DNA. Nucleic Acids Res 47: 7676-7689. 

82. Ziegler SJ, Hu Y, Devarkar SC, Xiong Y (2019) APOBEC3A loop 1 is a determinant for ssDNA binding 
and deamination. Biochemistry. 

83. Bohn JA, DaSilva J, Kharytonchyk S, Mercedes M, Vosters J, et al. (2019) Flexibility in nucleic acid 
binding is central to APOBEC3H antiviral activity. J Virol. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

33 

 

84. Rathore A, Carpenter MA, Demir O, Ikeda T, Li M, et al. (2013) The local dinucleotide preference of 
APOBEC3G can be altered from 5'-CC to 5'-TC by a single amino acid substitution. J Mol Biol 
425: 4442-4454. 

85. Siu KK, Sultana A, Azimi FC, Lee JE (2013) Structural determinants of HIV-1 Vif susceptibility and 
DNA binding in APOBEC3F. Nat Commun 4: 2593. 

86. Dang Y, Abudu A, Son S, Harjes E, Spearman P, et al. (2011) Identification of a single amino acid 
required for APOBEC3 antiretroviral cytidine deaminase activity. J Virol 85: 5691-5695. 

87. Ohno S (1970) Evolution by gene duplication Springer-Verlag Heidelberg. Germany. 
88. Athanassiou M, Hu Y, Jing L, Houle B, Zarbl H, et al. (1999) Stabilization and reactivation of the p53 

tumor suppressor protein in nontumorigenic revertants of HeLa cervical cancer cells. Cell 
Growth Differ 10: 729-737. 

89. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. (1998) A third-generation lentivirus vector 
with a conditional packaging system. J Virol 72: 8463-8471. 

90. Bähr A, Singer A, Hain A, Vasudevan AA, Schilling M, et al. (2016) Interferon but not MxB inhibits 
foamy retroviruses. Virology 488: 51-60. 

91. Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, et al. (2005) Foamy virus Bet proteins 
function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J 
Virol 79: 8724-8731. 

92. Simm M, Shahabuddin M, Chao W, Allan JS, Volsky DJ (1995) Aberrant Gag protein composition of 
a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. J Virol 
69: 4582-4586. 

93. Raiz J, Damert A, Chira S, Held U, Klawitter S, et al. (2012) The non-autonomous retrotransposon 
SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40: 1666-
1683. 

94. Rose PP, Korber BT (2000) Detecting hypermutations in viral sequences with an emphasis on G --> 
A hypermutation. Bioinformatics 16: 400-401. 

95. Jaguva Vasudevan AA, Perkovic M, Bulliard Y, Cichutek K, Trono D, et al. (2013) Prototype foamy 
virus Bet impairs the dimerization and cytosolic solubility of human APOBEC3G. J Virol 87: 
9030-9040. 

96. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript 
server. Nucleic Acids Res 42: W320-324. 

97. Release S (2016) 2: Maestro, Schrödinger, LLC, New York, NY, 2017. Received: February 21: 2018. 
98. Shi K, Carpenter MA, Banerjee S, Shaban NM, Kurahashi K, et al. (2017) Structural basis for targeted 

DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol 
24: 131-139. 

99. Roshan U (2014) Multiple sequence alignment using Probcons and Probalign. Methods Mol Biol 
1079: 147-153. 

100. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple 
sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. 

101. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for 
protein-ligand complexes. Proteins 73: 765-783. 

102. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple 
potential functions for simulating liquid water. The Journal of chemical physics 79: 926-935. 

103. D.A. Case VB, J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. 
Duke, H. Gohlke, A.W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. 
Kovalenko, T.S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K.M. Merz, F. Paesani, D.R. Roe, 
A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C.L. Simmerling, W. Smith, J. Swails, R.C. 
Walker, J. Wang, R.M. Wolf, X. Wu and P.A. Kollman (2014) AMBER 14. University of California, 
San Francisco. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

34 

 

104. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, et al. (2015) ff14SB: Improving the 
Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 
11: 3696-3713. 

105. Li P, Roberts BP, Chakravorty DK, Merz KM, Jr. (2013) Rational Design of Particle Mesh Ewald 
Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. J Chem Theory 
Comput 9: 2733-2748. 

106. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in 
large systems. The Journal of chemical physics 98: 10089-10092. 

107. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of 
motion of a system with constraints: molecular dynamics of n-alkanes. Journal of 
computational physics 23: 327-341. 

108. Hopkins CW, Le Grand S, Walker RC, Roitberg AE (2015) Long-Time-Step Molecular Dynamics 
through Hydrogen Mass Repartitioning. J Chem Theory Comput 11: 1864-1874. 

109. Iwatani Y, Takeuchi H, Strebel K, Levin JG (2006) Biochemical activities of highly purified, 
catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 80: 5992-6002. 

110. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: 
improvements in performance and usability. Mol Biol Evol 30: 772-780. 

111. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large 
phylogenies. Bioinformatics 30: 1312-1313. 

112. Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees 
and networks. Syst Biol 61: 1061-1067. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

35 

 

FIGURES 

 

 

 

Figure 1. A3C-like protein from sooty mangabey but not A3C from any orthologue inhibits 

HIV1Δvif by more than an order of magnitude. (A) HIV-1Δvif particles were produced with 

A3C from human, rhesus macaque, chimpanzees (cpz), African green monkey (agm), and A3C-

like protein from sooty mangabey monkey (smm), hA3G or vector only. Infectivity of (RT-

activity normalized) equal amounts of viruses, relative to the virus lacking any A3, was 

determined by quantification of luciferase activity in HEK293T cells. Presented values are 
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means ± standard deviations (error bars) for three independent experiments. Unpaired t-tests 

were computed to determine whether differences between vector and each A3 protein reach 

the level of statistical significance. Asterisks indicate statistically significant differences: ***, p 

< 0.0001. (B) Immunoblot analysis of HA-tagged A3 and HIV-1 capsid expression in cell lysates 

using anti-HA and anti p24 antibodies, respectively. GAPDH served as a loading control. “α” 

represents anti. Viral encapsidation of hA3G, hA3C, and smmA3C-like protein is demonstrated 

in Suppl. Fig. S1. (C) 3D-PCR: HIV-1Δvif produced together with A3C orthologues, hA3G or 

vector controls were used to transduce HEK293T cells. Total DNA was extracted and a 714-bp 

fragment of reporter viral DNA was selectively amplified using 3D-PCR. Td = denaturation 

temperature. Extensive viral DNA editing profile of smmA3C-like protein and its relative 

positions of GA transition mutations are presented in Suppl. Fig. S5. (D) In vitro deamination 

activity of A3Cs encapsidated in HIV-1Δvif, and SIVagmΔvif particles. Virions were 

concentrated and lysed in mild lysis buffer and an equal amount of lysate were used for the 

assay. Numbers 1 and 10 indicate 60 ng and 600 ng of A3 expression vector used for 

transfection, respectively. Samples were treated with RNAse A; oligonucleotide-containing 

uracil (U) instead of cytosine served as a marker to denote the migration of deaminated 

product after restriction enzyme cleavage. S-substrate, P-product. 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

37 

 

 

 

Figure 2. Anti-HIV-1 activity of hA3C/smmA3C-like protein chimeras. (A) Structures of the 

generated chimeras between A3C and smmA3C-like protein. Grey and white boxes indicate 

fractions of A3C and the smmA3C-like protein, respectively. Each chimera (C) encompasses 

190 amino acids. Amino acid position (number) at the breakpoints of each chimera is 

indicated. Please find protein sequence and alignment presented in Suppl. Fig. S4A. (B) HIV-

1Δvif particles were produced with A3C from human, smm (A3C-like), and h/smm chimeras or 

vector only. Infectivity of (RT-activity normalized) equal amounts of viruses, relative to the 

virus lacking any A3, was determined by quantification of luciferase activity in HEK293T cells. 

Values are means ± standard deviations (error bars) for three independent experiments. 

Unpaired t-tests were computed to determine whether differences between vector and each 

A3 protein reach the level of statistical significance. Asterisks represent statistically significant 

differences: ***, p < 0.0001. (C) A3 expression in the cell lysates of transfected cells and A3 

viral incorporation were determined by immunoblotting. A3s and HIV-1 capsids were stained 
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with anti-HA and anti-p24 antibodies, respectively. GAPDH served as a loading control. “α” 

represents anti. (D) To examine the catalytic activity of A3C chimeras, in vitro deamination 

assays were performed using lysates of cells that were previously transfected with respective 

expression plasmids. RNAse-treatment was included in samples (ten h/smm A3C chimeras, 

hA3C and smmA3C-like protein) subjected to this assay; oligonucleotide containing uracil (U) 

instead of cytosine served as a marker to denote the migration of deaminated product after 

restriction enzyme cleavage. S-substrate, P-product. 
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Figure 3. Identification of the A3Z2 domain mediating enhanced antiviral activity. (A) 

Illustration of chimera 2 (C2) and variants of C2 or smmA3C-like protein having amino acid 

exchanges in the DHIH (circle) or RKYG (square) motif. The red triangle denotes catalytic 

residue E68A mutation. Amino acid position (number) at the breakpoints of each chimera is 

indicated. Please see Suppl. Fig. S4 for more details about the sequence and structure of these 

motifs. (B) To examine the catalytic activity of chimeras C2 and its variants, in vitro 

deamination assays were performed using lysates of transfected cells. RNAse A-treatment was 
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included; oligonucleotide containing uracil (U) instead of cytosine served as a marker to 

denote the migration of deaminated product after restriction enzyme cleavage. S-substrate, 

P-product. Immunoblot shows the amount of proteins produced in the transfected cells (lower 

panel). A3s were stained with anti-HA antibody and tubulin served as a loading control. “α” 

represents anti. (C) HIV-1Δvif particles were produced with C2 and its variants or vector only. 

Infectivity of (RT-activity normalized) equal amounts of viruses, relative to the virus lacking 

any A3, was determined by quantification of luciferase activity in HEK293T cells. Values are 

means ± standard deviations (error bars) for three independent experiments. Unpaired t-tests 

were computed to determine whether differences between vector and each A3 protein reach 

the level of statistical significance. Asterisks represent statistically significant differences: ***, 

p < 0.0001; ns, not significant. (D) Amount of proteins in the cell lysate and viral encapsidation 

of C2 or its variants were determined by immunoblotting. C2/variants and HIV-1 capsids were 

stained with anti-HA and anti-p24 antibodies, respectively. Tubulin served as a loading control. 

(E) Quantification of hypermutations in viral DNA by 3D-PCR. HIV-1Δvif particles produced in 

the presence of overexpressed C2, C2.DH-YG, C2.RKYG-WEND or vector controls were used to 

transduce HEK293T cells. Total DNA was extracted and a 714-bp fragment of reporter viral 

DNA was selectively amplified using 3D-PCR. Td = denaturation temperature. 
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Figure 4. RKYG-WEND exchange in smmA3C-like protein abrogates its antiviral activity. (A) 

HIV-1Δvif particles were produced with smmA3C-like protein, its mutants E68A (catalytically 

inactive), RKYG-WEND or vector only. Infectivity of (RT-activity normalized) equal amounts of 

viruses, relative to the virus lacking any A3, was determined by quantification of luciferase 

activity in HEK293T cells. (B) Immunoblot analyses were performed to quantify HA-tagged A3 

proteins and viral p24 proteins in cellular and viral lysates using anti-HA and anti-p24 

antibodies, respectively. Tubulin served as a loading control. “α” represents anti. (C) 

Quantification of hypermutation in viral DNA by 3D-PCR. HIV-1Δvif particles produced in the 

presence of overexpressed smmA3C-like protein, its variants or vector control were used to 

transduce HEK293T cells. Total DNA was extracted and a 714-bp fragment of reporter viral 

DNA was selectively amplified using 3D-PCR. Td = denaturation temperature.  
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Figure 5. A3C gains deaminase-dependent anti-HIV-1 activity by a WE-RK change in loop 1. 

(A) HIV-1Δvif particles were produced with hA3C, its mutants (C97S, S61P, S188I, WE-RK, ND-

YG) or vector only. Infectivity of equal amounts of viruses (RT-activity normalized), relative to 

the virus lacking any A3C, was determined by quantification of luciferase activity in HEK293T 

cells. (B) HIV-1Δvif particles were produced with hA3C, its variants such as, C97S, WE-RK, WE-

RK.C97S, WE-RK.S61P, WE-RK.S61P.C97S, WE-RK.S61P.S188I, WE-RK.S61P.S188I.C97S or 

vector only. Infectivity of equal amounts of viruses (RT-activity normalized), relative to the 

virus lacking any A3C, was determined by quantification of luciferase activity in HEK293T cells. 

(C) Quantification of HA-tagged wild-type and mutant A3C proteins in both cellular and viral 

lysates by immunoblot analysis. A3s and HIV-1 capsids were stained with anti-HA and anti-p24 
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antibodies, respectively. Tubulin served as a loading control. “α” represents anti. (D) 3D-PCR: 

HIV-1Δvif produced together with hA3C, its variants (as in Fig. 5B), or vector controls were 

used to transduce HEK293T cells. Total DNA was extracted and a 714-bp fragment of reporter 

viral DNA was selectively amplified using 3D-PCR. Td = denaturation. Please see Suppl. Fig. S6 

for the 3D-PCR data of mutants S61P and S188I. (E) In vitro deamination assays to examine 

the catalytic activity of A3C and its variants using lysates of cells that were previously 

transfected with respective expression plasmids (as in Fig. 5B). RNAse A-treatment was 

included; oligonucleotide containing uracil (U) instead of cytosine served as a marker to 

denote the migration of deaminated product after restriction enzyme cleavage. S-substrate, 

P-product. The two lower panels represent immunoblot analyses of expression levels of HA-

tagged A3C and mutant proteins ( HA (A3C)) and tubulin ( tubulin) which was used as a 

loading control. 
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Figure 6. Mutations in loop 1 of A3F-CTD moderately affect the antiviral activity of A3F. (A) 

Immunoblot analyses were performed to quantify the amounts of HA-tagged wild-type hA3C 

and hA3F proteins and their loop 1 mutants in cell lysates and viral particles.  HA-tagged A3s 

and HIV-1 capsid proteins were stained with anti-HA and anti-p24 antibodies, respectively. 

Tubulin served as a loading control. “α” represents anti. (B) Infectivity of equal amounts of 

HIV-1Δvif viruses (RT-activity normalized) encapsidating hA3C, hA3F, or their loop 1 mutants 
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relative to the virus lacking any A3 protein was determined by quantification of luciferase 

activity in transduced HEK293T cells. (C) 3D-PCR: HIV-1Δvif produced together with hA3C, 

hA3F, and their loop 1 mutants or vector control were used to transduce HEK293T cells. Total 

DNA was extracted and a 714-bp fragment of reporter viral DNA was selectively amplified 

using 3D-PCR. Td = denaturation temperature. (D) In vitro deamination assay to examine the 

catalytic activity of hA3C, hA3F, and their loop variants was performed using lysates of cells 

that were transfected with the respective A3 expression plasmids. RNAse A-treatment was 

included; oligonucleotide containing uracil (U) instead of cytosine served as a marker to 

denote the migration of the deaminated products after restriction enzyme cleavage. S-

substrate, P-product. The two lower panels represent immunoblot analyses of expression 

levels of HA-tagged A3C, A3F and mutant proteins ( HA (A3s)) and tubulin ( tubulin) which 

was used as a loading control. 
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Figure 7. Expression of the hA3C.WE-RK variant enhances A3C-mediated L1 restriction 

significantly. Dual-luciferase reporter assay to evaluate the effect of wild-type and mutant A3 

proteins on L1 retrotransposition activity. (A) Schematic of the L1 retrotransposition reporter 

construct pYX017 [76]. The L1Rp reporter element is under transcriptional control of the CAG 

promoter and a polyadenylation signal (A1) at its 3‘end. The firefly luciferase (Fluc) cassette 

has its own promoter (P2) and polyadenylation signal (A2), is expressed from the antisense 

strand relative to the CAG promoter, and interrupted by an intron (with splice donor SD and 

splice acceptor SA) in the transcriptional orientation of the L1 reporter element. (B) Effect of 

wild-type and mutant A3 proteins on L1 retrotransposition activity indicated by normalized 

luminescence ratio (NLR). NLR indicating retrotransposition activity observed after 

cotransfection of pYX015 and empty pcDNA3.1 (+) expression plasmid was set as 1. Error bars 

indicate standard deviation (N=4). The protein expression level of A3s is presented in Suppl. 

Fig. S7.  
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Figure 8. Model of A3C.WE-RK and ssDNA interaction. (A) Binding mode model of ssDNA 

(orange) to hA3C variant C2 based on hA3A. The side chains of the residues that are different 

between the hA3C WT and the C2 variant are shown in dark blue and labelled. The cytidine in 

the active center of C2 is shown in green. (B) Binding mode model of ssDNA (orange) to hA3C 

WT based on hA3F-CTD and rhA3G-NTD. Magnifications of the active center (green box) are 

shown at the bottom for hA3C WT (C) and C2 (D). The side chains of residues in the active 
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center that differ between hA3C WT and the C2 variant are shown in cyan and dark blue, 

respectively. The Zn2+ ion in the active center is shown as a sphere. Ongoing from hA3C WT to 

the C2 variant, the interface changes from being negatively to being positively charged. The 

flexible arginine and lysine side chains in the C2 variant can interact with the negatively 

charged backbone of ssDNA (panel D), stabilizing this interaction. 
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Figure 9. hA3C.WE-RK strongly interacts with ssDNA. (A) The purity of the recombinantly 

produced and affinity-purified proteins GST, A3C-GST, and A3C.WE-RK-GST was demonstrated 

by SDS-PAGE and subsequent Coomassie blue staining of the gel. The prestained protein 

ladder (M) indicates molecular mass. (B) EMSA with GST-tagged hA3C.WE-RK-GST and A3C-

GST produced in HEK293T cells was performed with 30-nt ssDNA target DNA labelled with 3′-
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labelled biotin. Indicated amounts of protein (at the bottom of the blot, in nm) were titrated 

with 20 fmol of DNA. Presence of competitor DNA (unlabeled 80-nt DNA used in deamination 

assay, 500-fold molar excess added) used to demonstrate the specific binding of the protein 

to DNA being causative for the shift.  

 

 

 

Figure 10A. Evolution of A3C/Z2. Tanglegram showing the maximum-likelihood amino acid-

based reconstructions of the A3 Z2 sequences in primates. The A3D and A3F proteins, 

containing each two Z2 domains, were split into N- and C-termini. The analyses were 
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performed at the Z2-domain level, labelled as follows: A3D-NTD, red; A3F-NTD, green; A3D-

CTD, light blue; A3F-CTD, dark blue; A3C, orange. The A3Z2 sequences of the northern tree 

shrew Tupaia belangeri were used as an outgroup. On the right, the phylogenetic 

reconstruction was built without any topological restriction. On the left, monophyly of the 

different Z2 domains was enforced, as indicated with the keyhole symbols of the 

corresponding color. Sequences with a significantly different position in the two trees are 

connected by a line. All A3C sequences are consistently monophyletic, and their phylogenetic 

relationships in the gene tree adhere to those of the species tree. Conversely, for Old World 

monkeys, sequences identified as A3D-CTD are in certain cases closest relatives of A3F-CTD, 

and vice versa. Such anomalies could have a methodological basis, such as poor annotation or 

overlooked chimeric amplification of closely related sequences into a single amplicon. 

Alternatively, they could be related to a genuine biological phenomenon of interlocus gene 

conversion, in which one allele (or one genomic stretch) is replaced by a paralogous allele with 

which it shares a high sequence identity. In this case, the NTD and the CTD of A3D and A3F 

share respectively very recent common ancestors. 
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Figure 10B. Evolution of A3C/Z2. Phylogenetic relationships between A3 Z2 sequences in 

primates, using A3 Z2 sequences in the northern tree shrew Tupaia belangeri genome as an 

outgroup (see Suppl. Fig. S10 for evolutionary relationships of analyzed species). The A3D and 

A3F proteins, containing each two Z2 domains, were split into NTD and CTD. The A3C 

sequences in the New World Monkeys (A3C_NWM) are monophyletic and constitute the sister 

taxa for A3C, A3D-CTD, and A3F-CTD. For each A3 Z2 sequence cluster, a sequence logo 

focused on loop 1 of the extant sequences is shown on the right. For the ancestor nodes that 

can be inferred with confidence, the most likely amino acid sequence of the ancestral state is 

provided. The last common ancestor of A3C, A3D-CTD and A3F-CTD likely presented a RKAYG 

sequence in the protein loop 1, and this sequence has been maintained in New World 

Monkeys’ A3Cs. However, this sequence stretch underwent a strong selective pressure and 

became the strongly divergent WEA[ND] [ND] in present-day A3Cs. Subsequently, and 

exclusively in A3C in the Chlorocebus genus, a secondary W>R reversion occurred. The 
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ancestral sequence was essentially maintained [RQ]KAYG in A3F-CTD, while it was largely 

eroded [RLQ]KA [YG] [CD] in A3C.  
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Loop 1 of APOBEC3C regulates its antiviral activity against HIV-1
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SUPPLEMENTARY FIGURES

S1 Fig.

α HA (A3s)

Cell Virus

α p55/24

α GAPDH

S1 Fig. Viral incorporation of A3s. Immunoblot analysis of HA-
tagged hA3G, hA3C, and smmA3C-like protein in lysates of
transfected cells (Cell) and HIV-1Δvif viral particles (Virus). A3s
were detected using anti-HA and anti p24 antibodies,
respectively. GAPDH served as a loading control. “α” represents
anti.
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S2 Fig.

smmA3C-like

smmA3F-CTD 5 6 7

smmA3C 2 3 41

S2 Fig. The ORF of smmA3C-like is a hybrid sequence made by exonic sequences of smmA3C and smmA3F.
Arrangement of exons of the ORFs that produce smmA3C-like protein, smmA3C, and smmA3F-CTD. Purple and red
colors indicate exons derived from smmA3C and smmA3F, respectively. Note that smmA3F-CTD is encoded by exons 5,
6, and 7 of smmA3F.
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U

S

P

α HA (A3)

α Tubulin

S3 Fig.

A B

S3 Fig. Expression and deamination activity of smmA3C and smmA3F-CTD (A) HEK293T cells were transfected
with expression plasmids encoding smmA3C, smmA3F-CTD, smmA3C-like protein and their mutants. Immunoblot
stained with anti-HA antibody, shows the amount of A3s in cell lysates. Tubulin served as a loading control. “α”
represent anti. (B) To examine the catalytic activity of smmA3C, smmA3C-like protein, and their variants, in vitro
deamination assay was performed using lysates of cells that were previously transfected with respective
expression plasmids. RNAse A-treatment was included; oligonucleotide containing uracil (U) instead of cytosine
served as a marker to denote the migration of deaminated product after restriction enzyme cleavage. S-substrate,
P-product.
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S4 Fig.

A

B

S4 Fig. Protein sequence and structure information
of hA3C and smmA3C-like protein. (A) Sequence
alignment of hA3C and smmA3C-like protein was
done by using Clustal Omega and ESPript 3.0. Motif
1 (YGTQ) and motif 2 (WEND) are marked with red
boxes, red lollipops indicate active site amino acids
H66, E68, C97 and C100, while S61 and S188 are
colored in purple. (B) Ribbon model of the crystal
structure of A3C (PDB 3VOW) depicting the spatial
arrangements of helix 1 (YGTQ motif) and loop 1
(WEND motif). Residues of both motifs are
presented in purple. Key residues S61, S188, and
zinc-coordinating active site residues are denoted
as ball and sticks. Sphere represents Zn2+ ion.
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3D-PCR sequences: HIV-1Δvif with smmA3C-like

GA: 17.16%n=327

S5 Fig.

S5 Fig. smmA3C-like protein mediated hypermutation of
HIV-1Δvif DNA. To characterize and quantify mutations
induced by smmA3C-like protein, the PCR product obtained
at the lowest denaturing temperature (shown in Fig. 1C and
marked with a red asterisk (*)) was cloned and a number of
independent clones were sequenced and analyzed. The
mutation pattern is presented using hypermut tool (note:
identical clones were omitted). Each of the sequences is
given as a horizontal line. Mutations were denoted as small
vertical lines. Red, cyan, magenta, green and black colored
lines represent GG-to-AG, GA-to-AA, GT-to-AT, GC-to-AC,
and non-G-to-A mutations, respectively. The overall
mutation load (GA) was given in the top ride side as %. ‘n’
denotes the total number of independent GA mutations
found in independent sequences.
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S6 Fig.

S6 Fig. 3D-PCR analysis of hA3C mutants. HIV-1Δvif
produced together with hA3C, its variants (C97S, S61P,
S188I, WE-RK, WE-RK.S61P, ND-YG), or vector controls were
used to transduce HEK293T cells. Total DNA was extracted
and a 714-bp fragment of reporter viral DNA was selectively
amplified using 3D-PCR. Td = denaturation.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.05.936021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936021
http://creativecommons.org/licenses/by-nc-nd/4.0/


S7 Fig.
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S7 Fig. Expression of transfected A3- and L1-plasmids in
HeLa cells. Immunoblot analysis of the expression of A3C
and its mutants WE-RK, WE-RK.S61P, A3A, A3F, and its
mutant RK-WE after co-transfection with the L1 reporter
pYX017 into HeLa-HA cells. Expression of the L1 reporter and
A3 proteins was analyzed using antibodies against L1 ORF1p
(-ORF1p) or -HA, respectively. -actin protein levels were
analyzed as loading controls. Cell extracts from mock-
transfected HeLa-HA cells served as negative controls for L1-
ORF1p expression and HA-tagged A3 expression.
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S8 Fig.

S8 Fig. Root mean square fluctuations of the residues in the hA3C, C2, and hA3C.S61P.S188I
variants over the course of 2 µs MD simulations. The RMSF are given as means over five
independent replicas for each variant ± SEM for all residues present in the X-ray structure of
A3C (PDB ID 3VOW). The residues lining the active center are marked by green boxes.
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S9 Fig.

S9 Fig. Multiple sequence alignment of human A3C (ABC3C_HUMAN), rhesus macaque A3G
(M1GSK9_MACMU), human A3F (ABC3F_HUMAN), and chimpanzee A3H (B7T0U6_PANTR), in order.
The coloring of the residues depends on the physicochemical properties of conserved residues.
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S10 Fig.

S10 Fig. Phylogenetic relationships and divergence times among the species used to
collect the A3Z2 sequences, were retrieved from http://www.timetree.org.
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S1 table: List of oligonucleotides used in the study. 

 

Name       Sequence (5’to 3’ direction) Purpose 

hA3C.WE-RK-Fw CCAATTTAAAAACCTACGGAAAGCCAAC

GATCGGAACGAA 

hA3C mutation 

hA3C.WE-RK-Re TTCGTTCCGATCGTTGGCTTTCCGTAGG

TTTTTAAATTGG 

hA3C mutation 

hA3C.ND-YG-Fw AAAAACCTATGGGAAGCCTATGGTCGG

AACGAAACTTGG 

hA3C mutation 

hA3C.ND-YG-Re CCAAGTTTCGTTCCGACCATAGGCTTCC

CATAGGTTTTT 

hA3C mutation 

hA3C.S61P-Fw AACCAGGTGGATCCTGAGACCCATTG hA3C point mutation 

hA3C.S61P-Re CAATGGGTCTCAGGATCCACCTGGTT hA3C point mutation 

hA3C.S188I-Fw GCTACGGGAGATTCTCCAG hA3C point mutation 

hA3C.S188I-Re CTGGAGAATCTCCCGTAGC hA3C point mutation 

hA3F.RK-WE-Fw CCACTTTAAAAACCTATGGGAAGCCTAT

GGTCGGAACG 

hA3F mutation 

hA3F.RK-WE-Re CGTTCCGACCATAGGCTTCCCATAGGTT

TTTAAAGTGG 

hA3F mutation 

pK-GST-A3C-Fw ATAAGCTTGCCACCATGAATCCACAGAT

CAGAAAC 

GST-hA3C, hA3C.WE-RK  cloning 

pK-GST-A3C-Re ATTCTAGACTGGAGACTCTCCCGTAGCC

T 

GST-hA3C, hA3C.WE-RK  cloning 

SmmA3C-like.E68A-

Fw 

CCATTGTCATGCAGCAAGGTGCTTCCTC smmA3C-like point mutation 

SmmA3C-like.E68A-Re   

GAGGAAGCACCTTGCTGCATGACAATG

G 

smmA3C-like point mutation 

smmA3C-like or 

C2.RKYG-WEND-Fw 

TAAAAACCTATGGGAAGCCAATGATCG

GAACGAAAC 

smmA3C-like/C2 mutation 
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smmA3C-like or 

C2.RKYG-WEND-Re 

GTTTCGTTCCGATCATTGGCTTCCCATA

GGTTTTTA 

smmA3C-like/C2 mutation 

C2.DH-YG-Fw CGATGAAGGCAATGTATCCAGGCATAT

TCTACTTCCA 

C2 mutation 

C2.DH-YG-Re TGGAAGTAGAATATGCCTGGATACATT

GCCTTCATCG 

C2 mutation 

C2-IH-TQ-Fw CAATGGATCCACACACATTCTACTTCCA

ATTTAAAAACCTACG 

C2 mutation 

C2-IH-TQ-Re CGTAGGTTTTTAAATTGGAAGTAGAAT

GTGTGTGGATCCATTG 

C2 mutation 

C2.R25W-Fw CACTTTAAAAACCTATGGAAAGCCTATG

GTCGG 

C2 point mutation 

C2.R25W-Re CCGACCATAGGCTTTCCATAGGTTTTTA

AAGTG 

C2 point mutation 

C2.K26E-Fw TTTAAAAACCTACGGGAAGCCTATGGTC

GGAACG 

C2 point mutation 

C2.K26E-Re CGTTCCGACCATAGGCTTCCCGTAGGTT

TTTAAA 

C2 point mutation 

C2.Y28N-Fw AACCTACGGAAAGCCAATGGTCGGAAC

GAAAC 

C2 point mutation 

C2.Y28N-Re GTTTCGTTCCGACCATTGGCTTTCCGTA

GGTT 

C2 point mutation 

C2.G29D-Fw CCTACGGAAAGCCTATGATCGGAACGA

AACTTGGC 

C2 point mutation 

C2.G29D-Re GCCAAGTTTCGTTCCGATCATAGGCTTT

CCGTAGG 

C2 point mutation 

SootyA3C.Exon1+2-

Fw: 

ATGAATTCGCCACCATGAATCCACAGAT

CAGAAACCC 

Sooty A3C cloning 

SootyA3C.Exon1+2-Re CAATGGGTCTCAAGATCGACCTGGTTTT

GGAAGACGCCCC 

Sooty A3C cloning 

SootyA3C.Exon3-Fw GGGGCGTCTTCCAAAACCAGGTCGATC

TTGAGACCCATTG 

Sooty A3C cloning 
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SootyA3C.Exon3-Re TTCCCGACAATATTTAAAATCTTCGTAG

TCCATAATCTCC 

Sooty A3C cloning 

SootyA3C.Exon4-Fw GGAGATTATGGACTACGAAGATTTTAA

ATATTGTCGGGAA 

Sooty A3C cloning 

SootyA3C.Exon4-Re ATCGAATTCAGCGTAATCTGGAACATCG

TATGGGTACTCGAGAATCTCCTGTAG 

Sooty A3C cloning 

SootyA3F-CTD.Exon6- 

Fw 

ATCAAGCTTGCCACCATGAGAAACCCG

ATGAAG 

Sooty A3F-CTD cloning 

SootyA3F-CTD.Exon6-

Re 

GACAATGGGTCTCAGGATCAACCTGGT

TTCGGAAGACGCC 

Sooty A3F-CTD cloning 

SootyA3F-CTD.Exon7-

Fw 

GGCGTCTTCCGAAACCAGGTTGATCCTG

AGACCCATTGTC 

Sooty A3F-CTD cloning 

SootyA3F-CTD.Exon7-

Re 

TGGTGACAAAGCCAGTGGCAATCTCAC

CTTCGTAG 

Sooty A3F-CTD cloning 

SootyA3F-CTD.Exon8-

Fw 

ATGGGCTACGAAGGTGAGATTGCCACT

GGCTTTGTCACCAAAGGGCAAGAGAAC

GTTTCTCCTTATTTTTTTTTATTTTTT 

Sooty A3F-CTD cloning 

SootyA3F-CTD.Exon8-

Re 

ATCGAATTCAGCGTAATCTGGAACATCG

TATGGGTAAAAAAATAAAAAAAAATAA

GGAGAAACGTTCTCTTGCCCTTTGGTGA

CAAAGCCAGTGGCAATCTCACCTTCGTA

GCCCAT 

Sooty A3F-CTD cloning 
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