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Abstract

Intrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes

structural characterization challenging. Transient long-range interactions in IDPs are known to have im-

portant functional implications. Thus, in order to calculate reliable structural ensembles of IDPs, the data

used in their calculation must capture these important structural features. We use integrative modelling

to understand and implement conformational restraints imposed by the most common structural tech-

niques for IDPs: NMR spectroscopy, small-angle X-ray scattering (SAXS), and single-molecule Förster

Resonance Energy Transfer (smFRET). Using the disordered N-terminal region of the Sic1 protein as a

test case, we find that only Paramagnetic Relaxation Enhancement (PRE) and smFRET measurements

are able to unambiguously report on transient long-range interactions. It is precisely these features which

lead to deviations from homopolymer statistics and divergent structural inferences in non-integrative sm-

FRET and SAXS analysis. Furthermore, we find that the sequence-specific deviations from homopolymer

statistics are consistent with biophysical models of Sic1 function that are mediated by phospho-sensitive

binding to its partner Cdc4. To our knowledge, these are the first conformational ensembles for an IDP

in physiological conditions that are simultaneously consistent with smFRET, SAXS, and NMR data.

Our results stress the importance of integrating the global and local structural information provided by

SAXS and Chemical Shifts, respectively, with information on specific inter-residue distances from PRE

and smFRET. Our integrative modelling approach and quantitative polymer-physics-based characteri-

zation of the experimentally-restrained ensembles could be used to implement a rigorous taxonomy for

the description and classification of IDPs as heteropolymers.

Significance Statement

Intrinsically disordered proteins (IDPs) exhibit highly dynamic and heterogeneous conformations,

which impedes rigorous structural characterization and understanding of their biological functions. Sic1

regulates the yeast cell cycle through phospho-sensitive binding to its partner Cdc4 and is paradigmatic

of IDPs that bind tightly without partial/transient folding. In this paper, we integrated new and exist-

ing structural data from nuclear magnetic resonance, small-angle X-ray scattering and single-molecule

fluorescence to calculate conformational ensembles for Sic1 and its phosphorylated state, pSic1. Data

mining of these ensembles reveal unique features distinguishing Sic1/pSic1 from homopolymer statistics,

such as overall compactness and large end-to-end distance fluctuations. Integrating experiments probing

disparate scales, computational modelling, and polymer physics provides new and valuable insights into

the conformation-to-function relationships in IDPs.
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1 Introduction

Rather than encoding an energetically stable three-dimensional fold [1, 2], the primary amino-acid sequence

of intrinsically disordered proteins (IDPs) encodes for a much flatter free-energy surface, allowing the protein

to sample a large and heterogeneous set of conformations[3, 4]. These surfaces however, are not featureless,

and IDPs may populate conformations with preferred local and long-range transient structure[5].

To better understand the relationship between primary sequence and the free-energy surface of IDPs,

and to determine how the primary sequence encodes IDP functions, atomic-resolution descriptions of IDP

conformational states have been developed[5, 6]. These structural ensembles are typically represented by

a collection of conformations, each described by its atomic coordinates. The calculation or validation of

these ensembles requires the input of multiple experimental observables, prompting the development of

computational approaches for calculating structural ensembles consistent with a diverse set of experimental

input data[5, 6].

One such approach is ENSEMBLE, which selects a subset of conformations from a starting pool of

conformations to achieve agreement with Small Angle X-Ray Scattering (SAXS) and Nuclear Magnetic

Resonance (NMR) data[5, 7, 8]. Because these ensembles have many free parameters, a polymer physics

framework has also been used to concisely describe IDPs and unfolded proteins and to infer structural

information from experimental data [9–12].

Given the importance of specific amino-acid motifs, sequence composition, and sequence patterning [13–

16], it is not obvious that statistical laws derived for homopolymers in the limit of infinitely long chains will

always satisfactorily describe finite-length heteropolymeric IDPs. This conformational diversity will likely

not be captured by a single mean-field descriptor of polymer behaviour, such as a scaling exponent ν, or a

single global dimension, such as the radius of gyration Rg. Though concise, homopolymer descriptions do

not allow integration of different experimental observables, which is a problem especially if the IDP departs

significantly from homopolymer statistics. However, the selection of sequences which deviate from simple

statistical laws may be the result of a pressure to maintain a certain conformational ensemble for a certain

biological function. Whether homopolymer or atomistically-detailed ensemble descriptions are used, the

ultimate goal is to use structural information to generate hypotheses about protein function.

In yeast, the disordered protein Sic1 is eliminated via ubiquitination by the SCFCdc4 ubiquitin ligase and

subsequent degradation by the proteasome, allowing initiation of DNA replication[17, 18]. Sic1 binding to

Cdc4 generally requires phosphorylation of a minimum of any six of the nine Cdc4 phosphodegron (CPD)

sites on (full length) Sic1. This effectively sets a high threshold for the level of active G1 CDK required to

initiate transition to S-phase. This ultrasensitivity with respect to G1 CDK activity ensures a coordinated

onset of DNA synthesis and genomic stability[17]. The N-terminal 90 residues of Sic1 (henceforth Sic1) are

sufficient for targeting to Cdc4 when highly phosphorylated (henceforth pSic1), making this region a valuable

model for structural characterization[19].

Different biophysical models have been proposed to explain the ultrasensitive dependence of the Sic1-Cdc4

interaction on the number of phosphorylated CPDs. A kinetic model argued that the probability of Sic1

rebinding before diffusive exit could exhibit an ultrasensitive dependence on the number of phosphorylated

CPDs, dependent on the timescales of diffusion and chain dynamics[20, 21]. A polyelectrostatic model

suggested that long-range electrostatic interactions between the positively charged CPD binding pocket

on Cdc4 and the constellation of unbound negatively charged phosphorylated CPDs on Sic1 could yield

ultrasensitive binding[22, 23].

We sought to determine conformational ensembles of Sic1 and pSic1 with a combination of biophysical
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methods that give insight into IDP conformations. We generated SAXS and single-molecule Förster Reso-

nance Energy Transfer (smFRET) data on Sic1 and pSic1. These datasets initially appeared inconsistent

when the datasets were analysed one at a time. Typical of reported smFRET-SAXS discrepancies, the sm-

FRET dataset indicated more compact ensembles than did SAXS. We then used the ENSEMBLE method

(Fig. 1) to understand the implications and advantages of combining multiple datasets, and to resolve the ap-

parent discrepancy by joint refinement using the SAXS data and additional non-smFRET data. Specifically,

we restrained conformational ensembles with SAXS data and with previously published NMR data[24, 25]

to arrive at ensembles that are also consistent with the smFRET data.

We then contrasted the calculated conformational ensembles of Sic1 and pSic1 with the polymer-theoretic

properties of infinitely long homopolymers to demonstrate the ways in which finite-length heteropolymers

can deviate from these (often assumed) values. In contrast to infinitely long homopolymers which follow

uniform power-law scaling of internal distances, Sic1 and pSic1 follow good-solvent scaling at short sequence

separations and poor-solvent scaling at long sequence separations, leading to uncoupling between the root-

mean-squared (rms) end-to-end distance (Ree) and the rms radius of gyration (Rg). This heteropolymer effect

has previously been hypothesized to explain apparently discrepant structural inferences between SAXS and

smFRET [26–28].

We find through our approach of joint refinement by SAXS and NMR data, and validation by smFRET

data, that the sequence-specific deviations from homopolymer statistics are consistent with biophysical mod-

els of Sic1 function, by encoding conformational states that give rise to ultrasensitive binding to its partner

Cdc4. Our results provide a strong impetus for integrative modelling approaches over homopolymer ap-

proaches whenever possible.

2 Results

2.1 Measurements of Ree and Rg inferred individually from smFRET or SAXS

provide discrepant descriptions of Sic1 and pSic1 conformational ensembles

Fig. 2 A-C shows smFRET data measured on the Sic1 FRET construct, which is based on Sic1(1-90)

and hereafter called Sic1. This construct was labelled stochastically at its termini with the FRET donor

Alexa Fluor 488 and acceptor Alexa Fluor 647 (Förster radius R0 = 52.2 ± 1.1 Å, SI Appendix 1.7 ). The

histogram is fit to a Gaussian function to extract the mean transfer efficiency 〈E〉exp, which reports on the

end-to-end distance distribution P (ree) (see SI Appendix 1.10 for more details). Multisite phosphorylated

Sic1 (pSic1) was generated via overnight incubation with Cyclin A/Cdk2 resulting in predominantly 6- and

7-fold phosphorylated Sic1, with a minor population of 5-fold phosphorylated Sic1 (determined by ESI mass

spectrometery). Upon phosphorylation, 〈E〉exp decreases from 0.42 to 0.36 indicating chain expansion.

An estimate of the root-mean-squared end-to-end distance Ree can be made from 〈E〉 by assuming P (ree)

is described by a homopolymer model (SI Appendix 1.10 ). However, the smFRET data itself (〈E〉exp)
does not suggest which (if any) homopolymer model is appropriate for a certain IDP. There is considerable

flexibility in the choice of homopolymer model and in how to rescale the root-mean-squared inter-dye distance

RD,A to Ree, resulting in a range of Ree. The inferred Ree is 61-65 Å for Sic1 and 66-72 Å for pSic1, suggesting

multisite phosphorylation results in an approximately 10% increase in Ree (SI Appendix, Table S2 ). The

smFRET data set, examined alone, suggests that Sic1 is 7-13% more compact than a self-avoiding random

coil (RC) ensemble generated with the statistical coil generator TraDES for Sic1[32, 33].
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Figure 1: A schematic showing the ENSEMBLE approach for SAXS and smFRET data from an ensemble of
structures X = [X1, ..., Xk, ..., XNconf ]. (A-B) The SAXS intensity curve of each conformation ik(q) is back-calculated
from the atomic coordinates using CRYSOL[29]. (C) The linear average of the CRYSOL-calculated SAXS profiles
of individual conformers (black) is compared with the experimental SAXS profile (yellow). (D-E) Per-conformer
FRET efficiencies ek are calculated from the mean distance between dyes 〈rDA〉k predicted by accessible volume
simulations[30, 31]. (F) The ensemble-averaged transfer efficiency 〈E〉ens = 〈ek〉 (grey vertical line in E and F) is
compared to the mean experimental transfer efficiency 〈E〉exp (yellow vertical line collinear with grey line in F).

.

To infer the root-mean-squared radius of gyration Rg from Ree requires an additional assumption about

the polymeric nature of system under study, namely the ratio G = R2
ee/R

2
g. It has recently been shown

that finite-length heteropolymeric chains can take on values of G that deviate from the values derived for

infinitely long homopolymers in either the θ-state (Gaussian chains, G = 6) or excluded-volume (EV)-limit

(self-avoiding walks, G ≈ 6.25)[26–28]. Application of polymer-theoretic values of G to the smFRET inferred

Ree results in Rg 24-27 Å for Sic1 and 26-29 Å for pSic1 (SI Appendix Table S3 ). These inferred Rg values are

systematically smaller than those inferred from the SAXS dataset (see below), or from integrated ensemble

modelling (see below), similar to previously reported discrepancies between smFRET and SAXS[27, 34, 35].

Fig. 2 D-F shows SAXS data for Sic1 and pSic1. Rg was estimated to be approximately 30 Å for Sic1 and

32 Å for pSic1 using the Guinier approximation, and from the distance distribution function P (r) obtained

using the indirect Fourier transform of the regularized scattering curve (Fig. 2 E&F and SI Appendix 2.1 ).

A model of chain statistics does not need to be specified, however, these methods are limited in describing

IDPs and unfolded proteins[35, 36]. For example, the expanded and aspherical conformations of IDPs

lead to a reduced range of scattering angles in which the Guinier approximation can be applied without

systematic error[35]. The degree of underestimation of Rg increases as the maximum scattering angle qmax

increases, while decreasing qmax reduces the number of points restraining the Guinier fit, which increases

the uncertainty in Rg[35] (see also, SI Appendix, Table S4 ).

One solution to these limitations is to model the protein chain explicitly by generating ensembles of

conformations. This is epitomized by the Ensemble Optimization Method (EOM) [37] and ENSEMBLE [7].
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Figure 2: (A-B) smFRET efficiency (E) histograms of Sic1 (A) and pSic1 (B) labelled with Alexa Fluor 488 and
Alexa Fluor 647 at positions -1C and T90C in TE buffer pH 7.5 150 mM NaCl. (C) Example SAW homopolymer
P (ree) distributions (left vertical scale) for Sic1 (black, Ree = 62.5 Å) and pSic1 (red, Ree = 67.8 Å). The shaded
underlying region shows the FRET distance dependence function E(ree) (right vertical scale). (D) Dimensionless
Kratky plots of Sic1 (black) and pSic1 (red), normalized by initial intensity I0 and the Rg estimated from the
DATGNOM fit of the distance distribution function. (E) Guinier plots of Sic1 (black) and pSic1 (red). The solid
circles are the data points selected for fitting (qmaxRg < 1.1) and the solid lines show the Guinier fits using these
data points. (F) The normalized distance distribution function P (r) estimated by DATGNOM for Sic1 (black) and
pSic1 (red).

Both approaches select a subset of conformations from an initial pool of conformations, such that the linear

average of the CRYSOL-calculated SAXS profiles of individual conformers is in agreement with the full

experimental SAXS profile (Fig. 1 A-C). However, the techniques differ in their generation of the initial pool

of conformations and in the algorithm and cost-function used to minimize the disagreement with experiment

(SI Appendix 2.2 ). Despite their differences, both ensemble-based approaches fit the SAXS data equally well,

and resulted in nearly identical Rg values, which are similar to the “model-free” estimates (SI Appendix,

Table S5 ). As was seen from the smFRET data, multisite phosphorylation results in chain expansion; this

is in agreement with the SAXS data that indicates an approximately 6% increase in Rg.

Similarly, Riback and coworkers have recently introduced a procedure for fitting SAXS data by pre-

generating ensembles of conformations with different properties (specifically, the strength and patterning

of inter-residue attractions) and extracting dimensionless “molecular form factors” (MFFs)[34, 38]. The

properties of interest are then inferred from the ensemble whose MFF best fits the data. Using the MFFs

generated from homopolymer or heteropolymer simulations results in similar Rg to the aforementioned

methods (SI Appendix, Table S6 ). Thus, Rg is strongly determined by the SAXS data, such that differences

in the construction and refinement of models leads to minor differences in Rg.

Since conformations are explicitly represented in the EOM, ENSEMBLE, and MFF methods, the Ree

(and hence G) of the determined ensembles can be calculated. Although the various ensembles fit the SAXS

data equally well, they have distinct values of Ree, i.e., from 71-81 Å for Sic1 and from 71-87 Å for pSic1

depending on the method used (SI Appendix, Tables S5&6 ). These ensembles thus have G values from 5.1-7.7

and 4.6-7.9 for Sic1 and pSic1, respectively (SI Appendix, Tables S5&6 ). Unlike Rg, the SAXS data does not
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uniquely determine Ree and G, independent of modelling approach. Naturally, the accuracy of those aspects

of the ensemble not strongly determined by the SAXS data will depend on the initial conformer generation

and the optimization/selection algorithms. This suggests that integrating additional experimental data will

improve structural inferences.

Similarly, for homopolymer-based smFRET inferences, modelling flexibility lead to a 4-6 Å range of

inferred Ree for Sic1, while the accuracy of 〈E〉exp (±0.02), roughly corresponds to an uncertainty in the

inferred Ree of ±2 Å. Likewise, G cannot be determined from the data itself, and must be assumed a priori.

It would therefore be desirable to back calculate 〈E〉ens from a structural ensemble that is restrained by

additional experimental data and to compare 〈E〉ens and 〈E〉exp directly.

2.2 Ensembles jointly restrained by SAXS and NMR data are consistent with

measured FRET efficiencies

While attractive fluorophore interactions have been used to explain the smFRET technique’s discrepant

inferences for IDP ensembles relative to SAXS[38], we consider whether optimization using multiple solution

data types might reduce or eliminate such discrepancies. One solution to reduce or eliminate the apparent

smFRET and SAXS discrepancy is to jointly restrain ensembles with both data sets simultaneously[27, 35].

Instead, we hypothesized that jointly restraining ensembles with non-smFRET internal distance restraints

and SAXS data could result in ensembles with back-calculated mean transfer efficiencies, 〈E〉ens, in agreement

with the experimental mean transfer efficiency 〈E〉exp. This would provide complementary and much more

compelling evidence that the smFRET and SAXS data sets are mutually consistent.

To provide non-smFRET information for joint refinement with SAXS data we used previously published

NMR data on Sic1[24, 25]. Briefly, the NMR data consist of 13Cα and 13Cβ chemical shifts (CSs) from

Sic1 and Paramagnetic Relaxation Enhancement (PRE) data from six single-cysteine Sic1 mutants using a

nitroxide spin label (MTSL) coupled to cysteine residues in positions -1, 21, 38, 64, 83, and 90. We used

the ENSEMBLE approach to calculate ensembles that are in agreement with the NMR and SAXS data (see

Materials and Methods and SI Appendix 3 ). We used fluorophore accessible volume (AV) simulations[30] to

back-calculate the mean transfer efficiency 〈E〉exp from the sterically accessible space of the dye attached to

each conformation via its flexible linker (see Materials and Methods and SI Appendix 3 ).

The agreement of the experimental and back-calculated NMR and SAXS data was quantified using the

reduced χ2 metric to identifying statistically significant disagreement with experimental data (χ2 >> 1)

(considering experimental and back-calculation errors, see Materials and Methods and SI Appendix 3 ). As

a structureless null-hypothesis we also include a random coil (RC) ensemble generated by TraDES for Sic1.

This RC ensemble is shown to be in very good agreement with excluded volume (EV) homopolymer statistics

(see below). Table 1 summarizes the goodness of fit for Sic1 ensembles under various restraint combinations.

SI Appendix Fig. S3 shows typical examples of TraDES RC and SAXS-restrained fits to the experimental

SAXS profiles.

For the TraDES RC ensemble, there is no statistically significant disagreement with the CS data (χ2 < 1).

However, the agreement with the PRE, smFRET and SAXS data is poor. Internal distances between specific

residues are generally larger in the RC ensemble than are expected from the PRE and smFRET data. On the

other hand, the radius of gyration of this ensemble (Rg ≈ 28 Å) is slightly smaller than SAXS-only estimates

(Rg ≈ 30 Å). Although specific internal distances in this ensemble are not reproduced, the mean-squared

sum over all internal distances in this ensemble is only slightly less than indicated by the SAXS data, as
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Table 1: Goodness of fit for Sic1 Nconf = 500 ensembles a

Restraints χ2 PRE χ2 13Cα CS χ2 13Cβ CS χ2 SAXS 〈E〉exp − 〈E〉ens
TraDES RC (none) 1.51 0.479 0.466 1.85 0.12

SAXS 2.06 0.470 0.395 1.01 0.15
PRE 0.230 0.544 0.608 13.5 -0.22

SAXS+PRE 0.261 0.376 0.394 1.12 0.01
SAXS+PRE+CS+〈E〉-filter 0.231 0.317 0.231 1.12 0.01

a Fit quality of Nconf = 500 ensembles derived by combining conformations from five independently calculated

Nconf = 100 ensembles. Differences |〈E〉exp − 〈E〉ens| ≤
√
σ2
E,exp + σ2

E,ens ≈ 0.02 indicate no disagreement

between back-calculated and experimental mean transfer efficiencies (see Materials and Methods).

Rg =
√

1
2n2

∑n
ij 〈r2ij〉.

When only the SAXS data are used as a restraint, the ensemble reproduces the SAXS curve very well.

However, relative to the RC ensemble, the overall larger inter-residue distances in the SAXS-only ensemble

further deteriorate the agreement with data reporting on specific inter-residue distances from PRE and

smFRET.

When only the PRE data are used as a restraint, the agreement with the PRE data is achieved at

the expense of not agreeing with all other observables. This ensemble reproduces specific inter-residue

distances encoded by the PRE data, but not the overall distribution of inter-residue distances encoded by

the SAXS data. A corollary of the r−6 PRE weighting is that the PRE ensemble average is dominated by

contributions from compact conformations[39]. Consistent with this, the PRE-only ensemble is much more

compact (Rg ≈ 22 Å) than expected from the SAXS data. Similarly, the transfer efficiency calculated from

the ensemble 〈E〉ens is larger than 〈E〉exp indicating either too short end-to-end distances overall, or some

conformations with strongly underestimated end-to-end distances. Although for there is no disagreement

with CS data (χ2
ν < 1), the PRE-only ensemble is in worse agreement with the CS data than the TraDES

RC or SAXS-only ensemble.

When the overall distribution of inter-residue distances from SAXS and the specific pattern of inter-

residue distances from PRE are synthesized in one ensemble model, the transfer efficiency calculated from

the ensemble, 〈E〉ens, is in excellent agreement with the experimental transfer efficiency, 〈E〉exp. The fit

of the CS data (which were not used as a restraint for this ensemble) are also improved relative to the

TraDES RC, the SAXS-only, and PRE-only ensembles. As was previously observed, generating ensembles

by satisfying tertiary structure restraints seems to place some restraints on the backbone conformations[40].

Although the ensembles considered thus far are all consistent with CS data, we also calculated ensem-

bles jointly restrained by SAXS, PRE, and CS data. However, introducing CSs (a non-distance restraint)

decreases the relative weighting of distance-based restraints (SAXS and PRE) and causes a greater disper-

sion between 〈E〉ens for independently calculated ensembles. We therefore used a strategy of generating

ensembles jointly restrained by SAXS, PRE, and CS data and filtered them against experimental transfer

efficiencies (Table 1, SAXS+PRE+CS+〈E〉-filter).

2.3 Integrative modelling provides a more comprehensive description of global

dimensions than can be provided by SAXS or smFRET individually

To better understand the implications and advantages of combining multiple datasets we calculated global

descriptions of Sic1 and pSic1 conformational ensemble dimensions (Rg, Ree, and hydrodynamic radius Rh).
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SI Appendix Table S10 summarizes the global dimensions of five independently calculated ensembles with

100 conformations each (Nconf = 100).

The SAXS+PRE restrained ensembles have a mean Ree = 63.6 ± 1.1 Å for Sic1 and Ree = 64.7 ± 0.7

Å for pSic1. There is no significant discrepancy between Ree inferred from smFRET using hompolymer

models and the integrative approach (/5% error). Inferences of Ree using only the SAXS data overestimate

the calculated mean Ree by greater than 10% and depend highly on the initial conformer generation and

the optimization/selection algorithm. Our approach of joint refinement/validation using SAXS, PRE and

smFRET data addresses this issue. The Sic1 and pSic1 SAXS+PRE ensembles have back-calculated transfer

efficiencies, 〈E〉ens, which differ by five standard deviations, while their mean Ree differ by less than one

standard deviation. This is due to the increased sensitivity of 〈E〉 over Ree due to the highly non-linear

r6 distance averaging. This demonstrates an additional advantage of integrative approaches, which use

smFRET as explicit distance restraints or validation, rather than using derived values from the data via

polymer theory assumptions.

The Sic1 and pSic1 SAXS+PRE ensembles’ mean Rg (Rg = 29.50±0.06 Å for Sic1 and Rg = 30.68±0.08

for pSic1) are within 3% and 5% respectively of the model-free and the SAXS-only explicit chain estimates

of Rg. In contrast, the determination of Rg from smFRET strongly depends on the model used. As shown

below, the calculated ensembles have smaller values of G than do homopolymers resulting in systematically

underestimated Rg when the polymer-theoretic values of G are used.

The calculated hydrodynamic radius, Rh, was found to be highly similar for all considered ensembles

(Rh ≈ 21 Å). The Rh of these ensembles is in excellent agreement with previously published pulsed-field

gradient (PFG) diffusion NMR experiments, Rh = 21.5 ± 1.1 Å and Rh = 19.4 ± 1.6 Å for Sic1 and pSic1,

respectively [25], and Fluorescence Correlation Spectroscopy (FCS) measurements Rh = 22±2 Å for Sic1[41].

2.4 Analysis of the conformational behaviour of calculated ensembles beyond

global dimensions

We next sought to determine descriptions of the calculated conformational ensembles which go beyond

global dimensions and would facilitate comparison with polymer theory reference states, and with IDPs and

unfolded states of varying sequence and chain length, n. To this end, we used the fact that many aspects

of homopolymer behaviour become universal, or independent of monomer identity, in the long chain (as

n→∞) limit[42] (see below). This allowed us to clearly identify ways in which ensembles jointly restrained

by SAXS and PRE data, and validated by smFRET data, deviate from homopolymer behaviour, and whether

ensembles restrained only by SAXS data more resemble homopolymers, or the fully restrained ensembles.

For very long homopolymer chains, the scaling exponent ν tends to one of only three possible limits (1/3,

1/2, 0.588), describing the poor-solvent, θ-state, and excluded volume (EV)-limit respectively. Homopoly-

mers in these limits have well-defined universal values for the size ratios G = R2
ee/R

2
g and ρ = Rg/Rh, the

overall shape of the ensemble, as characterized by the average asphericity 〈A〉 (A ∼ 0 for a sphere and A ∼ 1

for a rod), the relative variance in the end-to-end distance distribution ∆Ree =
√
〈r2ee〉 − 〈ree〉2/Ree, and

the relative variance in the distribution of the shape of individual conformations ∆A =
√
〈A2〉 − 〈A〉2/〈A〉.

Table 2 summarizes the universal values expected for homopolymers in the θ-state or the EV-limit, in the

case of very long chains (EV and θ-state n→∞) and for chains with similar length to Sic1 (EV n = 90−100).

As IDPs are finite-length heteropolymers, their apparent scaling exponents (νapp, see below), can take

on intermediate values to these three limits. Similarly, their behaviour can deviate from the universal values

expected for homopolymers. Table 2 shows the nominally universal values calculated for the experimentally-
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restrained ensembles. The TraDES RC, though not a homopolymer, is constructed with only excluded volume

long-range interactions, and so is expected to have behaviour consistent with polymer theory predictions for

an EV-limit polymers of similar chain-length (EV n = 90− 100 Table 2).

Table 2: Nominally universal polymer properties of the TraDES RC ensemble, SAXS-only
ensemble, and SAXS+PRE ensemblesa

G ρ 〈A〉 ∆A ∆Ree

Polymer Theory
EV (n→∞) 6.254 ∼1.59 0.431 0.442 0.374

EV (n = 90− 100) 6.32 1.27–1.39 0.4377 0.437 -
θ-state (n→∞) 6 ∼ 1.5 0.396 - 0.422

Sic1
TraDES RC 6.37 1.33 0.438 0.438 0.352
SAXS-only 6.34 1.35 0.447 0.430 0.363

SAXS+PRE 4.99 1.33 0.349 0.461 0.417

pSic1
TraDES RC 6.35 1.33 0.438 0.432 0.366
SAXS+PRE 4.83 1.31 0.361 0.440 0.388

a Reported values are the mean of 5 independently calculated Nconf = 100 ensembles. Table is re-
produced in supplementary information with standard deviations of reported values and references
for polymer theory values.

The values of G for the RC and SAXS-only ensembles are indistinguishable from the expected value

for a homopolymer in the EV-limit (G ≈ 6.3). Modelling the TraDES RC using phosphorylated residues

at phosphorylation sites does not change G, consistent with the predicted universality. In contrast, for

SAXS+PRE ensembles, G decreases from G ≈ 5.0 for Sic1 to G ≈ 4.8 for pSic1. Both values are outside the

range Gθ = 6 ≤ G ≤ GEV ≈ 6.3 despite the intermediate values of the apparent scaling exponents for Sic1

and pSic1 (see below).

For Sic1 and pSic1, ρ is not sensitive to deviations from homopolymer statistics at long sequence separa-

tions. The value of ρ remains ∼1.3 for the RC, SAXS-only, and SAXS+PRE restricted ensembles, despite

large changes in Ree and G. The observed ρ are consistent with the range of polymer-theoretic values for a

finite length EV homopolymer (EV n = 90− 100 Table 2).

The Sic1 and pSic1 RC ensembles, have an average asphericity 〈A〉 very close to the polymer-theoretic

value for a homopolymer in the EV-limit. The Sic1 SAXS-only ensembles are slightly more aspherical than

the RC ensembles, consistent with the expected correlation between Rg and 〈A〉[27, 43]. Sic1 SAXS+PRE

ensembles, however, are more spherical, with significantly lower 〈A〉, despite their larger-than-RC Rg. Similar

to G, the values of 〈A〉 for the SAXS+PRE ensembles are not bound between the value predicted for the

θ-state and EV-limit, despite these ensembles having intermediate values of the apparent scaling exponents

(see below).

The relative variance in the end-to-end distance distribution, ∆Ree is close to the EV-limit value

(∆REVee ≈ 0.37) for the TraDES RC and Sic1 SAXS-only restrained ensembles. In contrast, ∆Ree ≈ 0.42

for the Sic1 SAXS+PRE ensembles, which is practically identical to the θ-state value. Sic1, although more

compact than the RC, exhibits strong fluctuations in the end-to-end distance. Multisite phosphorylation

appears to slightly reduce ∆Ree, although it remains above the EV-limit values.

The RC and SAXS-only ensembles have a relative variance in the distribution of shapes, ∆A, similar

to that of an EV-limit homopolymer, while that of the Sic1 SAXS+PRE ensemble is slightly larger. The

broadness of the SAXS+PRE ensembles’ A distribution stresses the fact that despite being more spherical

than an EV polymer, the Sic1 ensemble contains conformations with a large distribution of shapes.
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2.5 Internal scaling profiles and apparent scaling exponents

To extract further insights regarding the effects of combining multiple solution data types on the statistics of

internal distances in the ensembles, we calculated internal scaling profiles (ISPs, Fig. 3). ISPs quantify the

mean internal distances (R|i−j| =
〈
〈r2ij〉

〉1/2
) between all pairs of residues that are |i−j| residues apart in the

linear amino acid sequence (see Materials and Methods). The dependence of R|i−j| on sequence separation

|i− j| is often quantified by fitting to the power-law relation:

R|i−j| =
√

2lpb |i− j|νapp (1)

where b = 3.8 Å is the distance between bonded Cα atoms and lp ≈ 4 Å is the persistence length. This

persistence length was found to be applicable to a broad range of denatured and disordered states[27, 44, 45].

ISPs highlight important differences between ensembles. If the majority of internal distances are similar

in the ISPs of two ensembles, their Rg values will be similar, as Rg =
√

1
2n2

∑n
ij 〈r2ij〉 [27]. However, if their

spatial separations start to diverge at long sequence separations, the ensembles will have dissimilar Ree and

〈E〉exp, when terminally labelled. This is illustrated by Fig. 3 A which shows the ISPs of the SAXS-only

and SAXS+PRE Sic1 ensembles, which have similar Rg, but only the SAXS+PRE ensemble is consistent

with the smFRET data.

Similarly, ISPs explain how Ree and Rg can become decoupled for finite-length heteropolymers[27, 38].

Internal distances in very long homopolymers are expected to follow power-law scaling with a single global

νapp that defines the scaling behaviour at all sequence separations. We define the change in scaling behaviour

at long sequence separations (νlongapp ) relative to intermediate sequence separations (νintapp) as ∆νendsapp = νlongapp −
νintapp. For long homopolymers we expect ∆νendsapp ≈ 0. Negative (positive) values of ∆νendsapp indicate ensembles

with G less than (greater than) predicted from νapp. The ISPs of SAXS-only (Fig. 3 A) and TraDES

RC ensembles (Fig. 3 B&C) have ∆νendsapp ≈ 0 consistent with the finding that these ensembles exhibit

homopolymer behaviour (Table 2). In contrast, the SAXS+PRE ensembles, which are consistent with the

smFRET data, have ∆νendsapp << 0, consistent with lower than expected G and 〈A〉[27].

To rigorously quantify deviations homopolymer statistics, we fit five independently calculated ensembles

with 100 conformations (Nconf = 100, Table 3). In an intermediate regime (15 ≤ |i− j| ≤ 51), Sic1 and

pSic1 SAXS+PRE ensembles have a scaling exponent νintapp ≈ 0.53, which suggests that at these scales, the

physiological buffer is a marginally good solvent. At longer sequence separations (51 < |i − j| ≤ nres − 5),

the ensembles show behaviour which is closer to the poor solvent scaling regime νlong ≈ 0.3. We performed

a paired t-test on the five Nconf = 100 ensembles to determine if the differences ∆νendsapp come from a

distribution with zero mean (Table 3). The deviations from homopolymer statistics (i.e., ∆νendsapp 6= 0)

are statistically significant (p-value<< 0.01) for the SAXS+PRE ensembles but not for the TraDES RC

ensembles (p-value≈ 0.14 ). The SAXS-only ensemble has weaker evidence for deviations from homopolymer

statistics (p-value≈ 0.03). Ensembles restrained only by SAXS data are more similar to EV homopolymers,

than to the fully experimentally restrained ensembles.

2.6 Two dimensional scaling maps

To better describe the heteropolymeric nature of Sic1, a normalized two-dimensional (2D) scaling map was

constructed (Fig. 4). In the first step, the ensemble-averaged distances between the Cα atoms of every

unique pair of residues in the sequence is calculated for the experimentally-restrained ensemble (
〈
r2ij
〉1/2
ens

),

and for the respective TraDES RC ensemble (
〈
r2ij
〉1/2
RC

). Experimentally-restrained distances are normalized
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Figure 3: (A) Nconf = 500 Sic1 SAXS+PRE ensembles (circles) and Sic1 SAXS-only ensembles (squares) with
fits to intermediate (dashed) and long (solid) sequence separations. (B) Nconf = 500 Sic1 SAXS+PRE ensembles
(circles) and Sic1 TraDES RC (squares) with fits to intermediate (dashed) and long (solid) sequence separations. (C)
Nconf = 500 pSic1 SAXS+PRE ensembles (black) and pSic1 TraDES RC (red) with fits to intermediate (dashed)
and long (solid) sequence separations. For visualization, every fifth data point is shown.

Table 3: Fitting results for the TraDES RC ensemble, SAXS-only ensemble, and SAXS+PRE ensembles
ISPs a

TraDES RCb Sic1 SAXS-only Sic1 SAXS+PRE pSic1 SAXS+PRE

νapp (fixed lp = 4 Å) 0.570 0.585 0.579 0.588

νintapp 0.566 0.583 0.527 0.524
νlongapp 0.51 0.51 0.30 0.31

∆νendsapp -0.06 -0.07 -0.23 -0.21
Paired t-test p-valuec 0.143 0.027 1.6× 10−3 5.1× 10−4

a Table results are the mean results from fitting 5 Nconf = 100 ensembles. Standard deviation of the mean for

νapp and νintapp is ≈ 0.005 and for νlongapp and ∆νendsapp is ≈ 0.03. See Materials and Methods for additional details.
b Sic1 TraDES RC and pSic1 TraDES RC result in nearly identical fits.
c Paired t-test for νintapp and νlongapp differences.

by the RC distances and displayed as a 2D scaling map.

The normalized 2D scaling map for Sic1 (Fig. 4 A) displays regional biases for expansion (αij > 1)

and compaction (αij < 1). Short internal distances |i − j| / 45 show expansion relative to the RC, while

|i− j| ' 60 show compaction. The expansion, however, is heterogeneous. For example, the ∼ 40 residue N-

terminal region is significantly more expanded than the ∼ 40 residue C-terminal region. Similar distinctions

between the RC and pSic1 ensembles were observed (Fig. 4 B).

Figure 4: (A) Sic1 2D scaling map αij = 〈r2ij〉
1/2
ens/〈r2ij〉

1/2
RC using the Sic1 (SAXS+PRE) Nconf = 500 and the Sic1

Nconf = 500 TraDES RC ensemble. (B) pSic1 2D scaling map αij = 〈r2ij〉
1/2
ens/〈r2ij〉

1/2
RC using the pSic1 (SAXS+PRE)

Nconf = 500 and the pSic1 Nconf = 500 TraDES RC ensemble. (C) pSic1 normalized by Sic1 dimensions.
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To compare Sic1 and pSic1 ensembles, the pSic1 ensemble was normalized by the Sic1 ensemble, (Fig. 4

C). This map describes the heterogeneous modulation of Sic1 upon multisite phosphorylation. Sic1 expansion

upon phosphorylation has been attributed to transient tertiary contacts involving non-phosphorylated CPDs

that are lost or weakened upon phosphorylation[24]. In our ensembles, expansion is also seen to be clustered

around CPD sites, particularly those of the C-terminus. Expansion is also seen in the vicinity of Y14,

previously implicated in tertiary interactions with CPDs[25] (see below).

2.7 Y14A mutation and phosphorylation disrupt tertiary contacts in Sic1

An intriguing possibility is that specific tertiary contacts, involving pi-pi[46] and cation-pi interactions[47],

lead to compaction in Sic1. The Sic1 sequence is 23% residues with side chains containing pi-groups (F,N,Q,R,

and Y), and 52% residues with relatively exposed pi-groups in peptide backbone amide groups (G,P,S, and

T) [46]. In particular, PRE effects link CPDs with Y14 and 15N relaxation experiments on Sic1 identified

maxima in the R2 rates near Y14[25]. Furthermore, the substitution Y14A led to an expansion in Rh of ∼20%

in pSic1 [25]. We hypothesized that if Y14 engages in specific pi-pi and cation-pi interactions1 throughout

the chain, then removing its pi-character by mutation to alanine will disrupt these interactions, leading to

larger Ree and lower 〈E〉exp. On the Kyte-Doolittle scale[48] this mutation increases the hydrophobicity

(HY = 0.36→ HA = 0.7) suggesting that expansion would not result from reduced hydrophobicity.

We performed smFRET experiments for the Y14A mutants of Sic1 and pSic1 (Fig. 5 and SI Appendix,

Table S9 ). Y14A mutation decreases Sic1 〈E〉exp by approximately 7% (ca. 0.42 to 0.40, a small but

reproducible shift). Similarly, Y14A mutation decreases pSic1 〈E〉exp by approximately 8% (ca. 0.36 to

0.33). These results are consistent with chain expansion driven by the disruption of interaction with the

pi-group of the tyrosine Y14. The cumulative effect of Y14A mutation and phosphorylation on Sic1 is to

decrease 〈E〉exp by approximately 22%, such that 〈E〉exp = 0.33± 0.02 is similar to that of the Sic1 TraDES

RC (〈E〉ens = 0.30± 0.01).

Figure 5: Y14A mutation and phosphorylation results in a shift to lower 〈E〉exp (more expanded conformations).
Each histogram is normalized so that each Gaussian fit has a maximum of one.

1The Sic1 sequence has 6 K and 5 R residues. The predominantly 6- and 7-fold phosphorylated Sic1 studied here therefore
has a net charge (excluding the dyes) of -1 to -3 assuming each phosphate group contribute -2 charge.
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3 Discussion

To better understand the implications and advantages of combining multiple datasets we generated SAXS

and smFRET data on Sic1 and pSic1, and resolved their apparently discrepant inferences by joint refinement

by the SAXS and PRE data. The ensembles restrained by SAXS and PRE data are, in addition, consistent

with the smFRET data, chemical shift data, and hydrodynamic data (PFG-NMR and FCS).

We then explored the differences between ensembles restrained by different data types, and how they

compare to homopolymer reference states, by calculating global descriptions of Sic1 and pSic1 conformational

ensemble dimensions (Rg, Ree, Rh), their size ratios (G and ρ), overall shape (〈A〉) and the relative variances

of their end-to-end distance and shape distributions (∆Ree and ∆A). To extract further insights we calculated

internal scaling profiles and 2D scaling maps.

The picture that emerges when the entirety of the experimental data on Sic1 and pSic1 is considered, is

that their conformational ensembles cannot be described by statistics derived for infinitely long homopoly-

mers. This is unsurprising, given that Sic1 and pSic1 are finite-length heteropolymers. However, ensembles

restrained only by the SAXS data are congruent with the set of homopolymer descriptions and scaling

relationships for EV homopolymers. Neither the SAXS nor smFRET data, individually, suggest signifi-

cant deviations from homopolymer statistics. Our results therefore provide a strong impetus for integrative

modelling approaches over homopolymer approaches whenever multiple data types exist.

3.1 Experimental restraint contributions

Integrative ensemble modelling leverages the fact that different experimental restraints are sensitive to dif-

ferent aspects of disordered protein structure. Deviations from homopolymer statistics are encoded in the

PRE and smFRET data, as these data types restrain distances between specific residues, rather than global

averages. Deviations from homopolymer statistics at long sequence separations are encoded in the PRE

data, such that joint restraint by PRE and SAXS data results in decoupled Ree and Rg, and consistency

with smFRET data.

We emphasize that the SAXS+PRE ensembles were not constructed by reweighting or selecting ensembles

specifically to achieve agreement with 〈E〉exp. In our approach, it was not guaranteed a priori that 〈E〉ens
would match 〈E〉exp, especially if either the introduction of PRE spin labels or smFRET fluorophores had

perturbed the IDP ensemble. These deviations from homopolymer statistics are likely to be a general

phenomenon for IDPs and unfolded proteins under refolding conditions, given their finite and heteropolymeric

nature.

To fully understand the practical utility of different restraint types for characterizing types of structure

in IDPs will require a more rigorous approach for scoring the probability of an ensemble on the basis of

its agreement with diverse experimental data. For example, Lincoff and co-workers recently developed

a Bayesian scoring formalism, the extended Experimental Inferential Structure Determination (X-EISD)

method, to calculate the most probable ensembles for the drk SH3 unfolded state domain [49]. Using this

method, they also found that FRET and PRE provide strong discriminatory power in determining the most

probable ensemble.

3.2 Comparing smFRET- and SAXS-only estimates of νapp

The Sic1 SAXS+PRE ISP in Fig. 3 A is consistent with the entirety of the experimental data on Sic1. We

therefore consider this ISP as the benchmark in determining the scaling behaviour of the Sic1 ensemble and
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compare it to recently published methods which infer scaling behaviour from only SAXS, or only smFRET

data[34, 38, 50].

Analysing the SAXS data with the homopolymer MFF approach[34, 38] resulted in νapp which is very

similar to the νapp obtained by globally fitting the ISPs with fixed lp (SI Appendix, Table S6 ). Using a

heterpolymer MFF analysis, which allows for deviations in power-law scaling at long sequence separations

(MFF-het3, SI Appendix, Table S6 ), gave similar results to separately fitting ISPs at intermediate and long-

sequence separations (νapp = 0.56 ± 0.01 and ∆νendsapp = −0.17 ± 0.08 for Sic1). However, in the absence

of additional measurements, it is not clear when to prefer this model over the equally well-fit but more

parsimonious homopolymer MFF models.

From the smFRET data, νapp was estimated using the SAW-ν approach[50], which allows νapp to vary

in order to find a inter-dye distance distribution compatible with the observed 〈E〉exp. The method assumes

power law scaling of Eq. 1 with |i− j| dictated by the segment length probed and with lp and b fixed to the

aforementioned values. Terminal labelling, therefore, results in a lower νapp ∼ 0.52.

Part of the resolution to the recent controversy between νapp determined by SAXS and smFRET exper-

iments may be that negative values of ∆νendsapp are common in IDPs and unfolded proteins under refolding

conditions, causing lower estimates of νapp by smFRET relative to SAXS. Since ∆νendsapp may be undetectable

without integrative modelling, the effect would be qualitatively similar to fluorophore-protein interactions,

and like fluorophore-protein interactions it would disappear in high concentrations of denaturant where

∆νendsapp ≈ 0[27, 38]. Deciding between fluorophore-interactions and heteropolymer effects requires an inte-

grative modelling approach.

3.3 Conformation-to-function relationships

For soluble post-translationally modified IDPs, approximately good-solvent scaling may be unsurprising.

The balance between chain-chain and chain-solvent interactions is a driving force for aggregation[54] and

polymer theory predicts that proteins with overall good-solvent scaling in native-like conditions should

remain soluble, while chains with poor-solvent scaling are expected to undergo aggregation. At short-to-

intermediate sequence separations, good-solvent scaling provides read/write access of substrate motifs to

modifying enzymes (e.g., phosphorylation and ubiquitination for Sic1).

Good-solvent scaling also confers advantages specifically to fuzzy or dynamic complexes as internal friction

increases with increasing chain compaction[55]. Low internal friction and fast chain reconfigurations are

therefore expected for short-to-intermediate separations. In a kinetic model of ultrasensitive binding, fast

reconfiguration dynamics provides more opportunities for unbound CPDs to (re)bind before pSic1 diffuses

out of proximity of Cdc4[20, 21, 23]. In the polyelectrostatic model, fast reconfiguration dynamics facilitates

pSic1’s dynamic interactions with Cdc4 through electrostatic averaging effects[22, 25].

The crossover to poor-solvent scaling at long sequence separations, G < Gθ < GEV , and 〈A〉 < 〈A〉θ <
〈A〉EV , imply that unbound CPDs that are sequence-distant from a bound CPD are on average closer

to the WD40 binding pocket than they would be for an EV-chain, thus decreasing the solvent screening of

electrostatic interactions. A prediction of the polyelectrostatic model is that decreasing the distance between

the binding pocket and the overall mean-field charge distribution of Sic1, leads to sharper transitions in the

fraction bound with respect to the number of phosphorylations[22]. In the kinetic model, these deviations

from EV-statistics increase the effective concentration of CPDs in the vicinity of the binding pocket, which

may increase the probability for any CPD to rebind before diffusive exit.

Although Sic1 ensembles are more spherical than EV-limit ensembles 〈A〉 < 〈A〉θ < 〈A〉EV , the relative
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fluctuations in shape exceed those of the EV-limit ensembles (Table 2). Similarly, the relative fluctuations

in Ree (∆Ree) for these ensembles exceeds the expected fluctuations not only for an EV-limit polymer, but

also those of the θ-state (Table 2). Large amplitude fluctuations in the shape and size of Sic1, effectively

and rapidly sampling many different conformations, could allow CPDs in Sic1 to rapidly sample either the

primary or secondary WD40 binding pocket, before the two proteins diffuse away. These fluctuations could

also facilitate electrostatic averaging, permitting a mean-field treatment as assumed in the polyelectrostatic

model.

4 Conclusions

Our work provides a high-resolution description of the conformational ensembles of Sic1 and pSic1 in phys-

iological conditions. Our calculated ensembles are consistent with experimental data reporting on a wide

range of spatial and sequence separation scales: local/secondary structure (CSs), non-local/tertiary structure

(PRE and smFRET) and global/molecular size and shape (SAXS, PFG-NMR and FCS). To our knowledge,

these are the first conformational ensembles for an IDP in native-like conditions (i.e., where heteropolymer

effects are not abrogated by denaturant) which are consistent with smFRET, SAXS, and NMR data. Our

results show that there are clear advantages of combining multiple datasets and that quantitative polymer-

physics-based characterization of experimentally-restrained ensembles could be used to implement a rigorous

taxonomy for the description and classification of IDPs as heteropolymers. The chain length independence

of many of these properties facilitates comparison between different IDPs and unfolded states.

Our results suggest that for Sic1 and our dye pair, discrepant inferences between SAXS and smFRET

cannot a priori be assumed to arise from “fluorophore-interactions.” The impact of the fluorophores (or

spin-labels) will of course depend on the physicochemical properties of the specific IDP sequence and the

fluorophores (or spin-labels) used. Robustness to perturbation (e.g., labels or phosphorylation) may be built

into Sic1’s sequence via its patterning of charged and proline residues, as observed for other substrates of

proline directed kinases (e.g., Ash1 [56]). Further ensemble modelling of IDPs will reveal to what extent

robustness to labelling, and deviations from homopolymer statistics, are general to IDPs.

Ultimately, the prediction and elucidation of the structural details of IDPs and non-native states of

proteins may prove to be more difficult than predicting the native structures of proteins with energetically

stable three-dimensional folds. As such, an integrative use of multiple experiments probing disparate scales,

computational modelling, and polymer physics, will provide valuable insights into IDPs and unfolded states

and their biological functions.

5 Materials and Methods

5.1 Sic1 samples

The Sic1 N-terminal IDP region (1-90, henceforth Sic1) was expressed recombinantly as a Glutatione S-transferase (GST) fusion

protein in Escherichia coli BL21 (DE3) codon plus cells and purified using glutathione-Sepharose affinity chromatography and

cation-exchange chromatography. The correct molecular mass of the purified protein was verified by electrospray ionization

mass spectrometry (ESI-MS).

A double cysteine variant of Sic1 (-1C-T90C) for smFRET experiments was generated via site directed mutagenesis from

a single-cysteine mutant produced previously for PRE measurements[24, 25]. This construct was purified as above and the

correct molecular mass of the purified protein was verified by ESI-MS. A Y14A mutant Sic1 (-1C-T90C-Y14A) was generated

via site directed mutagenesis from the aforementioned double-cysteine mutant and was expressed, purified, and characterized

using the same protocol.
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The Sic1 smFRET construct was labelled stochastically with Alexa Fluor 488 C5 Maleimide (ThermoFisher Scientific,

Invitrogen, A10254) and Alexa Fluor 647 C2 Maleimide (ThermoFisher Scientific, Invitrogen, A20347). After labelling with

Alexa Fluor 647, cation-exchange chromatography was used to separate species with a single acceptor label, from doubly acceptor

labelled and unlabelled species. The single-labelled species sample was then labelled with Alexa Fluor 488 and cation-exchange

chromatography was used to separate doubly heterolabelled from acceptor only species. The correct mass of the doubly labelled

sample was confirmed by mass spectrometry. The final FRET labelled sample was concentrated and buffer exchanged into PBS

buffer pH 7.4 with 3 M GdmCl, 2 mM DTT and stored at -80 ◦C.

Phosphorylated samples were prepared by treatment of Sic1 with Cyclin A/Cdk2 (prepared according to Huang et al.,

[57])at a kinase:Sic1 ratio of 1:100 in the presence of 50 fold excess of ATP and 2.5 mM MgCl2 overnight at 30 ◦C. The

yield of phosphorylation reaction was determined by ESI-MS. Under these conditions the dominant species are 6- and 7-

fold phosphorylated Sic1 (10195 Da and 10274 Da respectively) with a small fraction of 5-fold phosphorylated Sic1. After

phosphorylation, the samples were buffer exchanged into PBS buffer pH 7.4 with 3 M GdmCl to prevent aggregation, denature

kinase, and denature any phosphatases which may have inadvertently entered the solution. The samples were kept on ice in

4◦C and measured within 24 hours.

Additional details regarding protein expression, purification and labelling are available in the supplementary information.

5.2 Single-molecule fluorescence

Single-molecule fluorescence experiments were performed on a custom-built multiparameter confocal microscope with microsec-

ond alternating laser excitation. This instrumentation allows the simultaneous detection of the intensity, anisotropy, lifetime,

and spectral properties of individual molecules and for the selection of fluorescence bursts in which both dyes are present and

photophysically active.

Immediately prior to measurement samples were diluted to ∼50 pM in either (i) PBS buffer: 10 mM sodium phosphate

and 140 mM NaCl pH 7.0, 1 mM EDTA (to replicate NMR measurement buffer of Ref [24]) or (ii) Tris buffer: 50 mM Tris and

150 mM NaCl, pH 7.5. (to replicate SAXS measurement buffer). No difference in 〈E〉exp was detected when comparing buffer

conditions and results are shown for Tris buffer conditions.

The acquired data were subjected to multiparameter fluorescence analysis[58, 59] and ALEX filtering[60]. The burst search

was performed using an All Photon Burst Search (APBS)[61, 62] with M = 10, T = 500 µs and L = 50. Transfer efficiencies

were determined burst-wise and corrected for differences in the quantum yields of the dyes and detection efficiencies, as described

in further detail in the SI Appendix.

The Förster radius R0 was calculated assuming a relative dipole orientation factor κ2 = 2/3 and the refractive index of

water n = 1.33. The assumption of κ2 = 2/3 is supported by subpopulation-specific steady-state anisotropies for the donor in

the presence of the acceptor rDA (SI Appendix, Table S1 ). The overlap integral J was measured for each sample and found

not to change upon phosphorylation or Y14A mutation. The minimal variation in donor-only lifetimes τD0 suggested minimal

variation in the donor-quantum yield φD. R0 was therefore calculated to be R0 = 52.2 ± 1.1 Å for all samples, and variation

between samples within this uncertainty.

We estimate the precision for 〈E〉exp to be ca. 0.005 (for measurements performed on the same day, with approximately

equal sample dependent calibration factors). We estimate the accuracy of 〈E〉exp, σE,exp, to be ca. 0.02 (due to uncertainty in

the instrumental and sample dependent calibration factors). Further details about the instrumentation, photoprotection, laser

excitations, burst detection, filtering and multiparameter fluorescence analysis can be found in the SI Appendix.

5.3 Small-angle X-ray scattering

Small angle X-ray scattering data were collected at beamline 12-ID-B at the Argonne National Laboratory Advanced Photon

Source. Protein samples were freshly prepared using size exclusion chromatography (GE Life Sciences, Superdex 75 10/300 GL)

in a buffer containing 50 mM Tris pH 7.5, 150 mM NaCl, 5 mM DTT, and 2 mM TCEP. Fractions were loaded immediately

after elution without further manipulation. Buffer collected one column volume after protein elution from the column was used

to record buffer data before and after each protein sample. SAXS data were acquired manually; protein samples were loaded,

then gently refreshed with a syringe pump to prevent x-ray damage. A Pilatus 2M detector provided q-range coverage from

0.015 Å-1 to 1.0 Å-1. Wide-angle x-ray scattering data were acquired with a Pilatus 300k detector and had a q range of 0.93

– 2.9 Å-1. Calibration of the q-range calibration was performed with a silver behenate sample. Twenty sequential images were

collected with 1 sec exposure time per image with each detector. Data were inspected for anomalous exposures and mean buffer

data were subtracted from sample data using the WAXS water peak at q∼1.9 Å-1 as a subtraction control. Details about the

SAXS data analysis can be found in the SI Appendix.
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5.4 ENSEMBLE

ENSEMBLE 2.1 [7] was used to determine a subset of conformations from an initial pool of conformers created by the statistical

coil generator TraDES[32, 33]. For restraining with SAXS and PRE data, both modules were given rank 1. When SAXS, PRE

and CS modules were used, PRE and SAXS were given rank 1 and CSs were given rank 2. All other ENSEMBLE parameters

were left at their default values.

To achieve a balance between the concerns of over-fitting (under-restraining) and under-fitting (over-restraining) we per-

formed multiple independent ENSEMBLE calculations with 100 conformers, Nconf = 100, as suggested by Ref [40], and

averaged the results from independent ensemble calculation or combined them to form ensembles with larger numbers of con-

formers (e.g., Nconf = 500). Structural features resulting from over-fitting (fitting the “noise” in the experimental data) should

be averaged out in independent ENSEMBLE calculations, while rare states which are conserved in independently calculated

ensembles (and thus have evidence from the data) should accumulate in weight when the ensembles are combined[40]. The

agreement with experimental data and polymer-theory based ensemble descriptions were highly similar for repeated indepen-

dently calculated ensembles (see SI Appendix Table S10-11 ). This supports their averaging or consolidation into one larger

ensemble. Similarly, Lincoff and coworkers demonstrated overall convergence for Nconf = 100 ensembles of drk SH3 unfolded

state domain[49].

NMR data was obtained from BMRB accession numbers 16657 (Sic1) and 16659 (pSic1)[24]. A total of 413 PRE restraints

were used with a typical conservative upper- and lower-bound on PRE distance restraints of ±5 Å[39, 63]. This tolerance was

used in computing the χ2 metric for the PRE data. CSs were back-calculated using the SHIFTX calculator[64] and a total of

61 Cα CSs and 56 Cβ CSs were used. The CS χ2 metric was computed using the experimental uncertainty σres = ±0.4 ppm

and the uncertainty in the SHIFTX calculator (σSHIFTX = 0.98 ppm for Cα CSs and σSHIFTX = 1.10 ppm for Cβ CSs[64]).

CRYSOL[29] with default solvation parameters was used to predict the solution scattering from individual structures from

their atomic coordinates. A total of 235 data points from q = 0.02 to q = 0.254 Å-1 were used in SAXS restrained ensembles.

The SAXS χ2 metric was computed using the experimental uncertainty in each data point. In principle, the calculation of χ2

should also include an uncertainty in the SAXS back-calculation (in particular due to uncertainty in modelling the solvation

shells of IDPs[65]).

Accessible volume (AV) simulations[30, 31] were used to predict the sterically accessible space of the dye attached to each

conformation via its flexible linker. These calculations were performed using the “FRET-restrained positions and screening”

(FPS) software [30] provided by the Seidel group. The mean distance between dyes for conformer k, 〈rDA〉k, is used to calculate

the per-conformer FRET efficiency ek(〈rDA〉k;R0) (Figure 1D). As chain reconfigurations are much faster than the averaging

time in smFRET, the smFRET experiment measures P (E), the probability of observing a burst with efficiency E, rather than

the probability distribution of per-conformer FRET efficiencies p(e) (Figure 1E-F). Ensembles are therefore evaluated by the

discrepancy 〈E〉exp − 〈E〉ens (Figure 1F). The uncertainty in 〈E〉ens, σE,ens, is ca. 0.01, primarily due to uncertainty in

R0; a similar value was obtained by Lincoff and coworkers[49]. Differences |〈E〉exp − 〈E〉ens| ≤
√
σ2
E,exp + σ2

E,ens ≈ 0.02

indicate no disagreement between back-calculated and experimental mean transfer efficiencies. A comprehensive description of

the ENSEMBLE calculations, restraints and back-calculations can be found in the SI Appendix.

5.5 Polymer scaling analysis

The distance R2
|i−j| =

〈
〈r2ij〉

〉
ens

between Cα atoms is an average first over all pairs of residues that are separated by |i − j|
residues, and then over all conformations in the ensemble. The apparent scaling exponent νapp was estimated by fitting an ISP

calculated for each Nconf = 100 ensemble to the following expression:

ln
(
R|i−j|

)
= νapp ln (|i− j|) +A0 (2)

Eq. 2 is derived for homopolymers in the infinitely long chain limit. Following Peran and coworkers[28], for finite-length

chains, a lower bound of |i − j| > 15 was used to exclude deviations from infinitely long chain scaling behaviour at short

sequence-separations and an upper bound of |i − j < |nres − 5 was used to exclude deviations due to “dangling ends.” With

these restrictions, finite-length homopolymers are expected to be well fit by Eq. 2. Evenly spaced points in log-log space were

used during fitting. Fitting the entire 15 < |i − j < |nres − 5 range was used to obtain νapp. A0 was either fixed at log(5.51)

(lp=4 Å) or left as a free fitting parameter.

To test for differences in scaling behaviour at intermediate and long sequence separations, the 15 < |i− j < |nres − 5 range

was evenly divided into intermediate νintapp (15 ≤ |i− j| ≤ 51) and long νlongapp regimes (51 < |i− j| ≤ nres − 5). Homopolymers

are expected to have νlongapp ≈ νintapp. A paired t-test was performed in MATLAB R2018b using five Nconf = 100 νlongapp and

νintapp estimates, to test whether the set of ∆νends = νlongapp − νintapp come from a normal distribution with mean equal to zero
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and unknown variance. Tests for normality (Jarque–Bera, Anderson-Darling, Lilliefors) were performed in MATLAB 2018b

(p > 0.4). Table 3 reports the mean difference for the five ensembles.
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