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Abstract

The question of how natural evolution acts on DNA and protein sequences to ensure mu-
tational robustness and evolvability has been asked for decades without definitive answer. We
tackled this issue through a structurome-scale computational investigation, in which we esti-
mated the change in folding free energy upon all possible single-site mutations introduced in
more than 20,000 protein structures. The validity of our results are supported by a very good
agreement with experimental mutagenesis data. At the amino acid level, we found the protein
surface to be more robust to mutations than the core, in a protein length-dependent manner.
About 4% of all mutations were shown to be stabilizing, and a majority of mutations on the
surface and in the core to be neutral and destabilizing, respectively. At the nucleobase level,
single base substitutions were shown to yield on average less destabilizing amino acid mutations
than multiple base substitutions. More precisely, the smallest average destabilization occurs
for substitutions of base III in the codon, followed by base I, bases I4+III, and base II. This
ranking highly anticorrelates with the frequency of codon-anticodon mispairing, and suggests
that the standard genetic code is optimized more to limit translation errors than the impact of
random mutations. Moreover, the codon usage also appears to be optimized for minimizing the
errors at the protein level, especially for surface residues that evolve faster and have therefore
been under stronger selection, and for biased codons, suggesting that the codon usage bias also
partly aims to optimize protein mutational robustness.

1 Introduction

Amino acid substitutions can have different impacts on protein fitness. Some have highly
destabilizing effects, thus causing the loss of structure and/or function. Others lead to the
emergence of new functions, although with a very low frequency of about 10~ per site, thus
driving functional evolution [1]. But the large majority of amino acid substitutions are neutral
with respect to protein fitness [46].

Two concepts play a central role in these matters: mutational robustness, which refers to the
capacity to tolerate mutations without changing the molecular and/or organism’s phenotype,
and evolvability, which is defined as the capacity of proteins of acquiring new functions, hence
allowing them to adapt to modifications in the environment.

Despite recent advances, the role of the evolutionary mechanisms in the complex interplay
between the optimization of these two fundamental but sometimes conflicting characteristics is
still a major issue in molecular evolution and protein biophysics [13, 53, 14, 64, 66, 73, 69, 70].
A wide variety of disciplines, from synthetic biology to protein design, would definitely benefit
from a better understanding of these mechanisms and from the ability of accurately predicting
the future evolutionary processes from the analysis of the past [51].

Mutational robustness and evolvability can be viewed as two sides of the same coin, which
drive evolution in an entangled way. On the one hand, physical principles are expected to
favor proteins with a high degree of stability, while on the other hand the selection for function
imposes opposite constraints in targeted regions, such as the presence of amino acids carrying
specific chemical moieties or a required degree of structural flexibility. Once the functional
criteria are satisfied, mutational robustness ensures better tolerance of random mutations in
non-functional regions and thus confers an evolutionary advantage [12, 10]. Note, however,
that too high tolerance to mutations can also prevent necessary adaptation to environmental
changes [26].


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Results obtained from experimental analyses and theoretical models of population genetics
suggest that mutational robustness is favored or disfavored, and impedes or facilitates adapta-
tive evolution, according to the polymorphicity and size of the population, the mutation rate,
and the fitness landscape [72, 14, 15, 26].

To further shed light on these challenging issues, we performed an extensive in silico mu-
tagenesis study, in which we computed the change in protein thermodynamic stability caused
by all single point mutations inserted in the structurome, defined as the ensemble of all protein
structures available in the Protein Data Bank [9]. To support our analyses, we also included
available experimental data on stability changes and fitness.

The first question that we investigated in detail on the basis of these large-scale computations
is how the mutational robustness is influenced by some protein characteristics, such as protein
length and residue solvent accessibility.

A second question concerns the relation between the mutational robustness and the standard
genetic code (SGC). It has been shown that this code has evolved to minimize the costs of amino
acid replacements. Indeed, from the observation of the SGC table (Fig. S1), we immediately
see that amino acids that share similar biophysical characteristics tend to be encoded in codons
that differ by only a single base. However, a long and controversial debate regards the level of
optimality that SGC has reached. [40, 31, 39, 36, 23, 38, 76].

We also retrieved the nucleobase sequence of the whole structurome and this allowed us to
investigate the relation between the mutational robustness, the codon choice and the codon
usage bias. Indeed, the degeneracy of the genetic code introduces some variability into pro-
tein encoding in nucleobase sequences, which opens alternative pathways in the evolutionary
landscape that are likely to allow, e.g., the minimization of translational errors and an effective
increase of protein mutational robustness [16, 4, 5]. Codons are selected for other reasons too,
such as the matching of tRNA abundance and the mRNA stability for improved translation
efficiency [5, 43, 44, 2].

2 Results and Discussion

The central question addressed here concerns the protein robustness against mutations, its
dependence on various parameters at the codon, residue and protein levels, and its link with
evolutionary rates.

With this objective in mind, we estimated with the PoPMuSiC*¥™ algorithm [59, 60] the
change in folding free energy (AAG) for all single-site mutations in the non-redundant set
D of protein X-ray structures representing the protein structurome, as described in Methods.
In parallel, we considered the smaller ensembles of experimentally measured AAG values and
fitness scores. These three sets of mutations, that we call Mp,p, ME;, and Mp;; contain
about 4 x 10°, 2.6 x 10® and 10* mutations, respectively.

Most of the natural amino acid mutations are the result of a single base substitution (SBS) in
the codon, as the evolutionary probability to have simultaneously two or three base substitutions
is small. However, we would like to point out that only a subset of all possible amino acid
mutations can be obtained through SBSs. We call such amino acid mutations 4SBS, and limit
ourselves to this subset unless otherwise stated. The amino acid mutations that result from
multiple base substitutions (MBS) are called pMBSs.

2.1 Relative solvent accessibility

We started by analyzing the effect of the relative solvent accessibility (RSA) of the mutated
residues on the mutational robustness. This effect is clearly visible in Figs 1.a-b: the AAG
distribution of pSBSs is much more spread out and shifted towards destabilizing mutations for
core residues than for surface residues. Random mutations are thus on average much more
destabilizing when introduced in the core, where close packing and specific interactions tend
to impede changes in residue size and physicochemical properties. In contrast, surface residues
are more robust to mutations than core residues, in the sense that they have a smaller impact
on the thermodynamic stability.

It has to be stressed that these results are almost identical whether using the set of computed
or experimental AAGs from Mp,p and Mg,y (¢f. Figs 1.a and b). This supports the validity
and accuracy of PoPMuSiC*¥"™’s AAG predictions.
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We also found that the relationship between RSA and AAG values is linear above an RSA
threshold of about 20% and non-linear below this threshold, where the curve is well fitted by
a second-degree polynomial function (Fig. 1.c-d). Again, the same trend is observed for the
computed and experimental mutations of Mp,p and Mg, with an even stronger deviation
from linearity at small RSA values for the latter; note that the number of mutations in Mgy,
is low, which explains the noisy behavior.

2.2 Protein length

The effects of residue RSA and protein size on the mutational robustness are entangled. Indeed,
mutations of residues located in the core, which have a low RSA, have on average a larger impact
on stability than surface mutations, which have a large RSA. As a consequence, proteins of
different sizes, which have different core to surface ratios, appear to have different tolerances to
mutation [33].

The dependence of mutational robustness on protein length L is shown in Fig. l.e. On
average, shorter proteins that have a smaller core to surface ratio are more robust than longer
proteins for which this ratio is larger. Above about 400 residues, the robustness remains roughly
constant. Such large proteins are usually multi-domain proteins, which implies that the core to
surface ratio does not increase any more.

To gain insights into this effect, we computed the L-dependence separately for core and
surface residues. We found that shorter proteins tend to have a less robust core and a more
robust surface than larger proteins, as shown in Figs 1.e-f and S2.

The former observation can be attributed to the larger compactness and hydrophobicity of
the core of short proteins, which is therefore less able to accommodate mutations. We indeed
checked that the core becomes less and less hydrophobic as the protein size increases (Fig. S3).
In fact, the increase in core to surface ratio is compensated up to a certain level by variations
in the amino acid composition. However, this compensation is far from perfect, and the core of
small proteins is definitely more hydrophobic than that of large proteins [22]. For example, the
hydrophobic residues (Val, Ile, Leu, Phe) represent about 45% of buried residues in proteins of
L <200, 41% for medium-size proteins (200 < L < 200) residues and only about 37% in larger
proteins (400 < L).

The second observation, i.e. the higher mutational robustness of the surface of small proteins
compared to the surface of longer proteins, can be explained by the larger fraction of functional
residues. These residues are known to be well optimized for function but poorly for stability
[20, 37]. Therefore, their substitutions are likely to be stabilizing, which confers a higher
mutational robustness to the surface of small proteins.

Finally note that the mean AAG per protein ((AAG)) is, on average, proportional to the
fraction of residues in the core, as seen in Fig. 1.g. This follows from the fact that core
mutations have much larger AAG values on average than surface mutations, and their effect
thus dominates when computing the mean.

2.3 Evolutionary rate

We compared the mutational robustness analyzed in the previous sections with the evolutionary
rate that has been estimated in a series of papers on the basis of sequence evolution models
[35, 62, 78, 34, 63]. These two quantities are expected to be related given that stability is known
to be one of the major factors contributing to the evolutionary pressure [77, 30, 29].

The dependence of the evolutionary rate on RSA was investigated in [35, 62]. A larger rate
was found for surface than for core residues. This is in agreement with our findings of a larger
mutational robustness. In brief, surface residues, whose mutations have on average smaller
effects on protein stability, evolve faster than buried residues.

However, while the relationship between RSA and evolutionary rate appears to be linear
[35, 62], the relationship between RSA and mutational robustness is shown to be linear only for
RSA values larger than 20% (Figs 1.c-d). This could suggests either that our models or those
of [35, 62] are not totally accurate, or that the correlation between mutational robustness and
evolutionary rate is linear solely for surface residues and becomes non-linear for core residues,
where the robustness decreases more than the evolutionary rate.

Finally, the RSA-evolutionary rate regression line has a larger slope for large proteins than
for small proteins [35, 62]: the rate difference is almost zero for core residues and positive for
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Figure 1: Influence of the protein length and of the mutated residues’ RSA (in %) on the mutational
robustness, evaluated from the AAG values (in kcal/mol) of £SBSs from the sets MPoP (a,c,e-h)
and MExp (b,d). (a-b) AAG distribution for different RSA ranges; (c-d) Mean AAG per RSA
bin as a function of the RSA; the chosen bin width is equal to 1%; (e) Mean AAG per protein as
a function of the protein length for all residues and (f) for surface residues (RSA<20%). (g) Mean
AAG per protein as a function of protein length (blue points) and protein core to length ratio,
defined as the number of residues in the core over the number of residues in the protein (orange
points); (h) Difference between the mean AAG per protein and per RSA bin of long proteins
(L >200 residues) and short proteins (L <200 residues) as a function of RSA.
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Figure 2: Fraction of stabilizing uSBSs (AAG < —0.5 kcal/mol), neutral zSBSs (-0.5< AAG < 0.5
kcal/mol) and destabilizing 4pSBSs (AAG > 0.5 kcal/mol) in M PoP for: (a) all residues; (b) core
residues (RSA< 20%); (c) surface residues (RSA> 20%).

surface residues. This means that surface residues from large proteins evolve faster than those
from small proteins, whereas almost no difference is observed for core residues.

This can seem in contradiction with our results of small proteins having a more robust
surface and a less robust core than large proteins (Fig. 1.h).

This is actually not the case. Rather, we run here up against the limits of the correlation
between evolutionary rate and mutational robustness: small proteins have a more robust and
slower evolving surface than large proteins, and a less robust and equally evolving core. The
interpretation of this difference lies in the fact that a significant proportion of surface residues
are functional, especially in small proteins. These functional residues increase the robustness
by lowering the (AAG) as they are not optimized for stability, and decrease the evolutionary
rate as many mutations render the protein non-functional.

2.4 Experimental fitness

To compare the computed mutational robustness with experimental fitness measures, we subdi-
vided the mutations into stabilizing, neutral and destabilizing, using the free energy thresholds:
AAG < —0.5 keal/mol, -0.5 kecal/mol< AAG < 0.5 kecal/mol and 0.5 keal/mol< AAG, respec-
tively.

With these definitions, the fractions of destabilizing, neutral and stabilizing uSBSs from
Mpop are (68%, 28%, 4%) in the core, (41%, 55%, 4%) on the surface and to (55%, 41%, 4%)
overall (Fig. 2, and Table S1 for more detailed RSA dependence).

Note that, in the set of experimental 4SBSs of M g,,;,, the fraction of stabilizing mutations
is slightly higher (about 10 to 12 %, according to whether they are introduced in the core or
at the surface). This is not surprising as these mutations are non-random; they are engineered
and biased toward stabilizing mutations.

The fraction of stabilizing mutations obtained via a single base substitution is thus constant
and equal to 4% of the total number of mutations both in the core and on the surface. In
contrast, destabilizing uSBSs dominate in the core and neutral uSBSs dominate on the surface.
Of course, the precise fractions of stabilizing, neutral and destabilizing mutations depend on
the somewhat arbitrary threshold energy values of -0.5 and 40.5 kcal/mol.

We compared these results with experimentally characterized fitness values of random muta-
tions, taken from three different studies and grouped in M p;; (Table 1). Note that the concept
of fitness is not precisely defined and depends on the experimental setup used to characterize
it. Stability is for sure a major factor [77], but fitness contains also other factors, related to,
e.g., protein expression, solubility and function.

The first study involves about 150 mutations inserted in three proteins (the transcription
factor AraC, the enzyme AraD and the transporter AraE) [54]. Among these mutations, the
number of deleterious, neutral and advantageous mutations were found to be equal to 53%,
43% and 4% on average, with some differences between the three tested proteins. These values
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are close to the fractions of destabilizing, neutral and stabilizing mutations that we predicted
for the full structurome.

A second experimental investigation used deep mutagenesis scanning to investigate about
13,000 mutations in four proteins (SUMO E2 conjugase, a small ubiquitin-like modifier, thiamin
pyrophosphokinase and calmodulin). The percentage of deleterious (51%), neutral (44%) and
advantageous (5%) mutations [75] also fits very well with our predictions.

The third series of experimental results concerns the mutational landscape of TEM-1 (-
lactamase [45]. In this case, a bigger fraction of neutral than of destabilizing mutations was
found. This could suggest that the activity of this enzyme is particularly well optimized as
already observed in [45].

Mutation set Destabilizing | Neutral Stabilizing Reference

Mpop 55% 41% 4% this paper

Mutations in Deleterious | Neutral | Advantageous | Reference
AraC/D/E 53% 43% 4% [54]
UBE2I/SUMO1/CALM1/TPK1 51% 44% 5% [75]
TEM-1 37% 59% 4% [45]

Table 1: Comparison between mutational robustness and fitness: computed fraction of destabi-
lizing, neutral and stabilizing $SBSs from MPoP and experimentally characterized fraction of
deleterious, neutral and advantageous mutations. The fitness thresholds for defining the mutation
phenotypes are chosen by the authors for mutations in [54]; for the other sets of experimental mu-
tations: deleterious if the fitness is lower than the mean of loss-of-function and wild-type scores,
neutral if the fitness is between that threshold and 1.25 times the wild-type score, and advantageous
otherwise.

2.5 Similarity matrices

Similarity matrices, such as the series of BLOSUM matrices [42], are commonly used in sequence
alignment methods to account for the similarity between the 20 amino acids and the ease with
which they are mutated into each other. They are derived from multiple sequence alignments
of homologous proteins and thus reflect both the physicochemical similarity of the substituted
amino acids, the evolutionary mechanisms acting on protein sequences, and the structure of the
genetic code.

We expected a certain correlation between BLOSUM scores and mutational robustness, as
they share stability as one of their main ingredients. Moreover, BLOSUM and fitness scores
have been shown to correlate in the mutational landscape of TEM-1 S-lactamase [45].

We focused here on mutational robustness rather than fitness, expanded the analysis to
the ensemble of all uSBSs in the structurome set Mp,p, and computed the AAG distribution
as a function of the BLOSUM scores. We considered for that purpose the commonly used
BLOSUMG62 matrix.

We clearly observe a strong correlation between the mean AAG and the BLOSUMG62 score,
with a linear correlation coefficient as high as r=-0.97. As shown in Table 2, the substitutions
that are the most likely to occur during natural evolution are mostly neutral for stability and
only a small fraction is destabilizing. The picture is completely reversed for the substitutions
that are less likely to occur. Indeed these substitutions impact on average quite strongly on
protein stability, while only a very small fraction is neutral. Interestingly, the fraction of
stabilizing mutations is almost constant, between 3 and 5%, except for mutations between very
similar amino acids where it drops to 1%.

The relation between mutational robustness and BLOSUM scores is clearly seen in Fig. 3:
the AAG distribution extends more and more toward positive values — i.e. toward destabilizing
mutations — when the BLOSUMG62 score decreases.

2.6 Structure of the genetic code

We investigated the relation between the mutational robustness and the structure of the stan-
dard genetic code. In the codon-to-amino acid mapping, single base substitutions lead to some
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BLOSUM| (AAG)| Stab| Neut| Dest

-4 1.58 4% | 18% | 8%
-3 1.15 5% | 29% | 66%
-2 1.11 4% | 27% | 69%
-1 0.83 4% | 34% | 62%

0 0.56 5% | 46% | 49%
1 0.33 3% | 65% | 32%
2 0.28 3% | 1% | 26%
3 0.25 1% | 78% | 21%

Table 2: Mean AAG (in kcal/mol) of all xSBSs in Mp,p as a function of the BLOSUMG62 class.
Positive BLOSUM scores indicate more likely amino acid substitutions and negative scores, less
likely substitutions. The fraction of stabilizing (Stab), neutral (Neut) and destabilizing (Dest)
substitutions in each class is also reported.

BLOSUM
1.2 class

Figure 3: AAG distribution (in kcal/mol) of all uSBSs in M PoP as a function of the BLOSUMG62
score. Positive BLOSUM scores indicate more likely amino acid substitutions and negative scores,
less likely substitutions.
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but not all amino acid mutations. To get them all, the simultaneous substitution of two or
three bases has to be considered, which occur at a much lower rate.

We thus compared the mutational AAG profiles of single versus multiple base substitutions
(1SBSs versus pMBSs) to better understand the extent to which the standard genetic code is
optimized to ensure mutational robustness. Note that we call pMBS, amino acid mutations
that cannot be reached by any SBS.

First of all, we found that mutations resulting from single base substitutions are on average
less destabilizing than those resulting from multiple base substitutions, for both the core and
surface regions (Fig. 4.a-b and Table 3, and Table S1 and Fig. S4 for more detailed RSA
dependence). This suggests that the structure of the standard genetic code is optimized, at
least partially, for protein mutational robustness through the minimization of the destabilizing
impact of random mutations.

Regionl (AAG)‘ Stab‘ Neut | Dest
uSBS
All 0.81 4% | 41% | 55%
Core 1.09 4% | 28% | 68%
Surface | 0.49 4% | 55% | 41%
MBS
All 0.97 4% | 32% | 64%
Core 1.35 4% | 18% | 78%
Surface| 0.56 5% | 47% | 48%

Table 3: Comparison between the mean AAG values (in kcal/mol) of single and multiple nucleotide
substitutions (xSBS and pMBS) in M p,p and the fraction of stabilizing, neutral and destabilizing
mutations. Core residues have an RSA< 20% and surface residues an RSA > 20%.

However, a deeper investigation leads to nuance this view. Indeed, there is a large difference
according to which bases in the codon are substituted, as seen in Fig. 4.c-d and Table 4. We
denote as I, IT and III the three bases in the codons.

Clearly, the substitution of base II in the codon yields the most destabilizing amino acid
mutations, on average. At the other extreme, the least destabilizing SBSs involve base III,
followed by base I. This is related to the structure of the genetic code and the smallest physic-
ochemical property changes caused by base III substitutions and the largest changes caused by
base II substitutions. Again, the trends are more pronounced for core than for surface residues
(Table S1 and Fig. S4).

An important result is that we find the same trends with experimental stability values from
MEzp than with computed values from M p,p, as shown in Table S2.

Moreover, only 14 amino acid mutations are reachable by varying base III, against 64 for
base I, and 80 for base II, as can be deduced by looking at the genetic code table (Fig. S1).
Thus, not only is base III the most optimized for stability, but it is also the base that leads to
the lowest number of non-synonymous mutations. Base II is the least optimized for stability
and moreover leads to the highest number of non-synonymous mutations.

As a consequence, the difference between the three base substitutions is even clearer when
including the synonymous mutations in the estimation of the mean AAG, which consist of base
substitutions that lead to the same amino acid and thus to AAG values equal to zero. We have
in that case also to count the degeneracy, that is the number of different base substitutions
that yields the same amino acid mutation. The results are shown in Table 4: the mean AAG
is lowest for base III (0.16 kcal/mol), medium for base I (0.64 kcal/mol) and highest for base II
(0.91 keal/mol). Analogous differences can be observed at any values of the solvent accessibility
and become even more important in the core while decrease at the surface (Table S1).

So there seems to be a stronger positive selection pressure on base I and even more on base
ITI, whereas base IT appears much more constrained across evolution. This has sometimes been
related to the origin of the genetic code and considered as a by-product of the expansion of
the primitive code through the diversification of the amino acids repertoire [18, 47]. However,
another interpretation is more straightforward in the present context: our results are related to
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the codon-anticodon pairing and mispairing in the translation process. Indeed, transfer RNA
reads with much higher accuracy base II in the codon than base I and even more, than base I1I
40, 11].

Our results can thus be taken to mean that natural selection, through targeted adaptation
of the standard genetic code, primarily favors an increased translation accuracy, rather than
the minimization of the impact of random mutations.

This interpretation is supported by the finding of a high anticorrelation between the mean
AAG per position in the codon and the frequency of the translation error at these positions;
these frequencies are equal to (31.3%, 6.2%, 62.5%) [36]. Indeed, the Pearson’s linear correlation
coefficient is almost perfect: r = —0.996 (P-value~ 0.05).

We also compared the impact of single and multiple nucleotide substitutions (Table S1, Figs
4.c-d and S4). We found that the AAG profile obtained from pMBSs of the two bases I+I1I
are less destabilizing than base II uSBSs, and only slightly more destabilizing than base I or
base III uSBSs. Furthermore, the AAG profile of base IT uSBSs strongly resembles the profiles
of bases I+II and bases II4+III pMBSs.

In summary, we have the following increased destabilization ranking: III, I, I4+III, II, IT4III,
I+I1, I4+II+II1. The comparison of these results with the frequency of translation errors yields
a very interesting result that further confirms our hypotheses: the anticorrelation between
the mean AAG and the frequency of the translation errors for all these different types of
substitutions is extremely high r = —0.951 (P-value< 0.001).

Finally, we computed the fraction of stabilizing, destabilizing and neutral mutations accord-
ing to whether they result from random mutations or from errors in translation. In the latter
case, the frequencies of the translation errors at the three positions in the codon must be taken
into account. As shown in Fig 4.e-f; a much larger number of neutral mutations and a reduced
fraction of destabilizing mutations are found if we consider translation errors. This trend is
even more pronounced in the core, as seen in Fig. S5.

This result signals a better optimization of the standard genetic code for minimizing the
consequences of errors in translation. It is also optimized to minimize the effects of random
mutations in the DNA, but to a lesser extent. Indeed, random mutations occur with equal
frequency at the three codon positions.

The error rates are known to be of the order of 10~ in genome replication and of 1075 in
transcription. Instead, the error rate in protein synthesis is higher with a value of about 1074,
This suggests that the mRNA translation process is the real bottleneck in proteome accuracy
maintenance [57] and explains our finding that the standard genetic code evolved to primarily
favor robustness against mutations caused by defaults in the translation machinery.

Position | (AAG)| Stab | Neut | Dest
Without synonymous mutations and degeneracy

1 0.65 3% 49% 48%
11 0.91 5% 36% 59%
11 0.51 4% 50% 46%
With synonymous mutations and degeneracy
1 0.64 3% 50% 47%
11 0.91 5% 36% 59%
111 0.16 2% 84% 14%

Table 4: Mean AAG (in kcal/mol) for uSBSs from M p,p obtained from SBSs at different codon
positions (I, II, III). In the lower part of the Table, the mean AAG is computed by considering
also the synonymous mutations (with AAG = 0) and the degeneracy (the number of SBSs leading
to a uSBS).

2.7 Nucleobase composition

Let us now study the mutational robustness as a function of the nucleobase composition of the
mRNA sequence, which is often biased and varies from GC- to AT-rich. This composition influ-
ences the amino acid content of the encoded protein, as well as protein stability and evolution
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Figure 4: Effects of single and multiple base substitutions and the nucleobase position in the
codon. (a)-(d) AAG distribution (in kcal/mol) of amino acid mutations in MPoP. (a) uSBSs
and pMBSs in the core (RSA< 20%) and (b) on the surface (RSA> 20%); (c) uSBSs resulting
from substitutions of bases I, I or III in the codon; (d) uMBSs resulting from simultaneous
substitutions of two or three bases in the codon. Ratio of stabilizing, destabilizing and neutral
mutations considering random mutations (that occur with equal frequency at each codon position)
(e) or translation errors (that occur with different frequency at each codon position) (f). Note that
in (e)-(f), the synonymous mutations and mutation degeneracy are included in the computations.
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[56, 24, 25], but the magnitude of this effect is still debated [17].

The mutational robustness was estimated from the mean AAG of puSBSs resulting from
the substitution of one of the four nucleobases, independently of their position in the codon
(Fig. 5.a and Table S3). We observed that substitutions of A yields the most robust amino acid
mutations and substitutions of T the least robust mutations. C and G show similar intermediate
behaviors. The same trends are observed for experimental mutations from Mgy, (Table S4).

The low robustness of T is not surprising as it is the least frequently mutated base [17, 58]
and there is thus a low evolutionary pressure acting on it. In contrast, the high robustness of
A is a priori surprising since it is usually less frequently mutated than G and C bases.

In fact, the differences observed between the four bases are mainly observed in the protein
core. This can be clearly seen from Figs 5.b and d, where the mean AAG as a function of
the solvent accessibility is plotted for each kind of wild-type nucleobase, for computed and
experimental AAGS.

We can thus hypothesize that these difference are linked to the hydrophobicity of the encoded
amino acids. This is indeed the case: the T content of the codons is correlated with the
hydrophobicity of the encoded amino acids (r=0.55 using the hydrophobicity scale of Kyte-
Doolittle, P-value < 10~7), the A content is anticorrelated with it (r=-0.28, P-value < 0.005).
No correlation is observed for C and G.

Thus, T-containing codons code preferentially for hydrophobic amino acids, and their mu-
tations in the core induce on average strong destabilization. In contrast, A-containing codons
tend to encode polar amino acids, and their mutations in the core are often neutral or stabiliz-
ing. This explains the observed mutational robustness profile upon specific base substitutions
and the absence of link with the rate of SBSs.

To better assess our observations, we compared them with the mutagenesis data from M p;;.
We found a nice agreement between our stability predictions (Fig. 5.a) and the experimental
fitness data of TEM-1 f-lactamase [45] as measured via the minimum inhibitory concentration
(MIC) to p-lactam amoxicillin (Fig. 5.c). A similar agreement was found with the other fitness
data from Mp; (Fig S6).

Base| (AAG)| Stab| Neut| Dest
0.43 6% | 55% | 39%
0.67 3% | 41% | 55%
0.74 5% | 46% |49 %
1.23 2% | 27% | 1%

HQOQ>

Table 5: Mean AAG (in kcal/mol) and fraction of stabilizing, neutral and destabilizing ©SBSs
from M p,p which result from the substitution of one of the four nucleobases.

2.8 Transition:transversion bias

Transitions are substitutions that interchange purines (A<+G) or pyrimidines (C«+T), whereas
transversions interchange purines and pyrimidines (C,T++A,G). Transitions are known to be
from 2 to 5 times more frequent than transversions [50, 67], an observation called the transi-
tion:transversion bias. However, the origin of this bias is a longstanding problem in molecular
evolution.

Recently, the relationship between this bias and the fitness score was analyzed on a set
of about 1,200 mutations, in which a probability of 53% was found for the transitions to be
fitter than the transversions [67]. However, this tiny difference cannot justify the large bias
observed in evolutionary investigations, and thus essentially discard a selection effect as main
explanation.

In another recent study [55], transitions were seen to be significantly less detrimental than
transversions in deep mutagenesis scanning experiments on the influenza and HIV viruses. This
suggests instead that the selective hypothesis cannot be totally ruled out, but that it could con-
tribute, together with other mutational biases, to explain the observed transition:transversion
substitution rate.

Our results are basically in agreement with the first aforementioned analysis. Indeed, we
found the transitions to be slightly more robust than transversions, with a mean (AAG) of 0.51
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Figure 5: Mean AAG (in kcal/mol) and fitness of amino acid mutations caused by the substitution
of each of the four nucleobases. (a) Computed (AAG) of SBSs in the Mpror set; (b) Computed
(AAG) of SBSs as a function of the residue solvent accessibility (RSA) in the Mprpor set; (c)
Fitness score of mutations measured via the minimum inhibitory concentration (MIC) to S-lactam
amoxicillin [45]; (d) Computed (AAG) of SBSs as a function of the RSA in the Mexy set. Note
that here only three RSA bin (0% -20%, 20%-50%, 50%-100%) are considered due to the limited

number of entries.
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and 0.60 kcal/mol, respectively, when considering the mutation degeneracy and the synonymous
mutations. However, this free energy difference is too small to explain the large bias observed.

Note that, if only the non-synonymous mutations are included in the (AAG) computation,
the opposite trend is observed, both using computed and experimental stability data (Tables
6, S5 and S6). This is due to the fact that transitions are enriched in synonymous mutations.

Mutation | (AAG)| Stab | Neut | Dest
With synonymous mutations
Transitions 0.51 2% 63% | 35%
Transversions | 0.60 4% 53% | 43%
Without synonymous mutations
Transitions 0.79 3% 44% | 53%
Transversions | 0.73 5% 43% | 52%

Table 6: Mean AAG (in kcal/mol) for £SBSs from M p,p obtained from transitions and transver-
sions. In the upper part of the Table, the mean AAG includes the synonymous mutations (with
AAG = 0), while the lower part is without them.

2.9 Codon usage

The understanding of the codon usage and its evolution are strongly debated in the molecular
evolution field. Indeed, the codon usage is intrinsically connected with a wide range of factors
whose contributions are difficult to disentangle [65]. For example, relations of codon usage with
tRNA abundance, translation elongation rate, protein expression levels and stability of mRNA
secondary structure have been observed, which suggests an explanation in terms of selection
for translation efficiency [19, 71, 3].

Another interesting hypothesis is that codon usage is shaped to minimize errors at the pro-
tein level. This adaptive hypothesis suggests that a selective pressure for mutational robustness
acts on codon usage to reduce the deleterious impacts of genetic variants [5, 4, 6, 2, 28, 79]. In
[52], the comparison between wild type and engineered capsid poliovirus, in which synonymous
mutations are introduced, suggests that the former has a higher mutational robustness than
the latter, and thus that codon choice is directly connected to robustness.

Codon usage could also be related to protein evolvability, since synonymous codons allow
the exploration of different evolutionary pathways displaying different sets of proximal amino
acid mutations [16].

In order to deepen the hypothesis of the role of the codon usage in minimizing errors at
the protein level, we compared the mutational robustness of proteins when using the actual
codon or synonymous codons. More specifically, we analyzed how the (AAG) that results from
random mutations or translation errors differs according to the codon usage. We also analyzed
the (AAG) at each codon position to study a possible position-dependent codon selection.

The difference in (AAG) when using the actual or a synonymous codon is reported in Tables
7 and S7. We observe that the used codons are in general more robust than synonymous ones.
The difference can amount to more than 20%. This appears to be true for mutations inserted
at each of the three positions in the codon, although to a different extent, and both for random
mutations, which do not distinguish between the positions in the codon, and for translation
errors, in which the error rate depends on the position.

Interestingly, we found that this effect is smaller in the core and bigger on the surface (Fig.
6). This could be related to the fact that surface residues evolve faster than those in the
core. Evolution has thus had the opportunity to better optimize the surface than the core,
and this could explain why the chosen codons are more robust in this region. This general
trend is independent of the codon position, as seen in Tables 7 and S7, and is also seen for
experimentally characterized mutations (Table S8).

Another interesting result is that the codon choice seems to minimize slightly more the
effects of translation errors than the impact of random mutations.

We also analyzed the C+G-content in the codons, which is a simple factor related to mRNA
stability and translation efficiency [48]. We found that the difference in CG content between
used and synonymous codon is equal to be about -4%. This indicates that codons with higher
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Figure 6: Difference between (AAG) for pSBSs in Mrpop and Mexp reached from synonymous codons
(syn) or from the used codon (used) as a function of the RSA.
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CG content have a slightly higher chance to be used and is probably due to the fact that this
choice improves mRNA stability.

(AAGsyn> _ <AAGused>

[AAGu==d)
All | Core| Surface
I 6% | -4% 24%
11 12% | 7% 12%
111 21% | 14% 20%
Random | 13% | 6% 19%
Translation | 16% | 8% 21%

Table 7: Difference between (AAG) for uSBSs in M p,p reached from synonymous codons (syn)
or from the wild-type codon (used), according to the position of the substituted base in the codon
(I, IT and IIT), and according to whether the position-dependent frequency of translation errors is
taken into account (translation) or not (random).

2.10 Codon usage bias

Some codons occur much more frequent than others, and this effect, known as the codon usage
bias, strongly depends on the host organism [8]. This bias has been related to the tRNA pool
in the organisms; indeed a correlation between the codon frequency and the concentration of
tRNAs with the complementary anticodons has been found in many genomes. This correlation
could contribute to the efficiency of the translational process by tuning the elongation rate
(61, 41].

We analyzed here whether there is a link between codon choice, codon usage bias and
mutational robustness. More precisely, we investigated if the used codon is better optimized for
mutational robustness than synonymous codons in the biased or unbiased subsets of codons.

To explore this question, we retrieved the codon usage frequency tables [7] of the host
organisms of the proteins from the D structurome set, and defined codons as biased if their
frequency deviates by more than 12.5% from equiprobability [7]. We then compared the (AAG)
of uSBSs reached from synonymous and used codons, according to whether these codons are
biased or not in the protein’s host organism.

For unbiased codons, the wild-type and synonymous codons appear to have the same muta-
tional robustness (Table 8). In contrast, for biased codons, the used codons appear to be more
robust than the synonymous ones.

This interesting result suggests that the codon usage bias is not only related to the opti-
mization of the translation efficiency, but also to increase the mutational robustness. It points
out the non-trivial role of the selection for error minimization at the protein level in shaping
the codon usage, in agreement with an adaptionist hypothesis [5]. Here, for the first time, we
quantified these effects that certainly play an important role in the highly complex interdepen-
dence with other factors, such as translation elongation speed, initiation efficiency and mRNA
stability. These interrelationships need to be further explored.

(AAG®™) —(AAGU5eT)
<AAGused>
Biased | Unbiased
Random 16% 0%
Translation| 19% 1%

Table 8: Comparison of the mean mutational robustness of used and synonymous codons for uSBSs
in Mp,p for biased and unbiased codons.
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3 Conclusion

The mutational robustness of proteomes and its adaptation across natural evolution are key
questions in protein science. Answering these would be proficuous not only for fundamental
understanding but also for a wide range of biotechnological and biopharmaceutical applications.
To deepen this issue, we investigated here how a series of factors influences protein mutational
robustness through large-scale in-silico deep-mutagenesis scanning experiments and the analysis
of experimental mutagenesis data.

A first point to emphasize is that, whenever the amount of experimental data is sufficient,
experimental and computed results largely coincide. This strongly supports the accuracy and
unbiased nature of our predictions and the validity of our structurome-scale approach.

Our results can be summarized as follows:

e Amino acid level. We quantified the crucial effects of residue RSA and protein length
on the folding free energy changes upon mutations, and compared these with previous
estimations of evolutionary rates. We found that core residues are much less robust
on average and evolve more slowly than mutations on the surface, as they are more
constrained. Moreover, short proteins have a less robust core and a more robust surface
than longer proteins, as they have larger proportions of buried hydrophobic residues and
of exposed functional residues.

We also showed that the fraction of stabilizing mutations amount to about 4%, both in
the core and on the surface, whereas the fraction of neutral and destabilizing mutations
is higher on the surface and in the core, respectively. We found a very nice agreement
between these quantities and the fractions of beneficial, neutral and deleterious mutations
experimentally estimated in a series of mutagenesis studies. This supports the pivotal role
of thermodynamic stability in the fitness cost of mutations [77].

Finally, we found a very high correlation between the mean frequency of mutations across
evolution, characterized by the BLOSUMG62 matrix, and their mutational robustness: rare
mutations are on average more destabilizing that frequent ones.

e Standard genetic code. Our analyses at the codon level contributed to get a clearer
picture of the impacts of the evolutionary pressure on the standard genetic code. We
found that single base substitutions are on average less destabilizing for the protein than
multiple base substitutions, which occur at a much lower rate. Our first conclusion is thus
that the standard genetic code evolved to minimize the errors of random mutations and
to preserve the genome information at all stages, from DNA replication and transcription
to mRNA translation and protein synthesis.

Interestingly, not all bases in the codon are optimized in the same way. Base II is less
robust than base I, which in turn is less robust than base III. This is related to the fact that
the translation errors are lowest for base II and highest for base III. Moreover, a better
robustness for the joint substitution of bases I and III than for single base II substitutions
is found. Strikingly, the linear correlation coefficient between the mean AAG caused
by the substitution of specific single and multiple bases and the frequency of translation
errors is almost equal to -1.

We thus conclude that the genetic code is primarily optimized to limit the mRNA trans-
lation errors rather than random mutations. Given that the error rates are higher on
translation than on transcription and replication, the minimization of translation errors
can be seen as a global optimization of the genetic material encoding.

e Codon usage and codon usage bias. We compared the mean change in stability upon
mutations when using the wild-type codon or a synonymous codon, and found that the
former is on average more robust than the latter, in the sense that SBSs of the wild-type
codon yield less destabilizing amino amino acid mutations. The codon is thus selected, at
least partly, to minimize the effect of both transcriptional and translational errors.

Note that our results show that the codon usage is partially optimized for the precision
of translation, but do not exclude that it may also be partially optimized for translation
efficiency and for mRNA stability [19, 71, 3, 27].

Interestingly, the codon selection for mutational robustness is stronger at the protein
surface, where the mutation rate is higher and thus where natural selection has had more
opportunities for optimization. It is moreover stronger for biased than for unbiased codons,

16


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

suggesting that also the codon usage bias could be partly due to mutational robustness
optimization.

We would like to underline that the use of 3D structural information is a fundamental piece
in our analyses, which allowed us to gain a deeper understanding of the link between thermody-
namic constraints and natural evolution. We believe that this is a general trend, and that the
integration of structure and sequence data is needed to further improve our understanding of
the evolutionary mechanisms and how the biophysical features shape and are shaped by them.

Different questions still need to be addressed. A first issue is the origin of the mutational
robustness and whether it can be considered as an emergent property or a property that de-
pends on an intricate combination of factors, some of which are analyzed in this paper [32].
Other biophysical features such as protein dynamics, conformational disorder or environmental
variables such as the organism growth temperature should be explored to better understand
the mutational robustness and its highly complex dependencies.

The intricate relation between translation accuracy and efficiency in the codon choice, which
involve mutational robustness, protein folding rate, mRNA stability and tRNA abundance, is
still an open question. Our study suggests that mutational robustness is an important factor
that has to be taken in consideration, but its magnitude with respect to the other contributions
need to be clarified.

4 Methods

4.1 Protein structurome

The non-redundant set D of protein structures analyzed here, which represent the structurome,
was obtained by following steps, schematically depicted in Fig. S7:

1. We used the PISCES protein culling server [74] to get the subset of proteins from the
Protein Data Bank (PDB) [9] which have an experimental X-ray structure of at most
2.5A resolution, and share less than 95% pairwise sequence identity.

2. We filtered out the membrane proteins, viral capsid proteins and antibodies on the basis
of PDB annotations. The first series of proteins is overlooked because the PoPMuSiC*¥™
predictor is applicable to globular proteins only, the second series because they form very
large oligomeric assemblies, and the last because antibodies have variable sequences and
the mutations in their complementarity determining regions have a clear functional role.
We obtained in this way a uniform set of globular proteins.

3. For each protein entry, we retrieved the DNA sequence from the EMBL webserver [49].

4. To check the protein-DNA mapping, we aligned the translated DNA sequences with the
protein sequences from the PDB using CLUSTALW [68]. We kept only the DNA sequences
which yield at least 95% sequence identity with the PDB sequences.

With this procedure, we obtained 21,540 X-ray structures amounting to 5,368,279 residues
in total.

4.2 Large-scale in stlico mutagenesis experiments

We estimated the folding free energy changes (AAG) caused by all possible single-site mutations
introduced in all collected structures, using the unbiased version of our in-house predictor
PoPMuSiC, called PoPMuSiC*¥™ [60, 59]. The set of mutations so obtained is called M p,p.
It contains 101,997,301 mutations among which 100,149,646 have a known wild-type codon.

The model structure of PoOPMuSiC#*¥™ consists of a linear combination of energy terms esti-
mated using different types of statistical potentials. These have been derived from frequencies
of sequence-structure associations in sets of protein X-ray structures, transformed into folding
free energies using the Boltzmann law. The coefficients of the linear combinations are sigmoid
functions of the RSA of the mutated residues.

The model structure of PoOPMuSiC*¥™ has been designed to avoid the biases toward desta-
bilizing mutations, which we have shown to be present in the original PoPMuSiC version [59].
The results are thus expected to be more reliable when used in large-scale in silico mutagen-
esis experiments. Indeed, a similar analysis using the biased PoPMuSiC version confirms that
PoPMuSiC#¥™ yields results that are much closer to the experimental data.

17


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

We refer to [60] for further details about the PoPMuSiC*¥™ predictor.

4.3 Experimentally characterized stability changes

We also considered the set of 2,648 mutations of which the AAG folding free energy change
upon single-site mutations has been experimentally measured. This set, that we call Mg, was
manually curated as described in [21] and was further annotated according to the previously
described pipeline. It has been used to train the PoPMuSiC predictors. The list of mutations
of Mgy, can be found in the supplementary material of [21].

Acknowledgments

We thank the FNRS - Fund for Scientific Research for its financial support through a PDR
research project. FP and MR are FNRS postdoctoral researcher and research director, respec-
tively, and MS benefits from a FRIA PhD grant.

References

[1] Achoch, M., Dorantes-Gilardi, R., Wymant, C., Feverati, G., Salamatian, K., Vuillon, L.,
and Lesieur, C. 2016. Protein structural robustness to mutations: an in silico investigation.
Phys Chem Chem Phys, 18(20): 13770-13780.

[2] Akashi, H. 1994. Synonymous codon usage in Drosophila melanogaster: natural selection
and translational accuracy. Genetics, 136(3): 927-935.

[3] Akashi, H. and Eyre-Walker, A. 1998. Translational selection and molecular evolution.
Curr. Opin. Genet. Dev., 8(6): 688-693.

[4] Archetti, M. 2004. Selection on codon usage for error minimization at the protein level. J.
Mol. Ewvol., 59(3): 400-415.

[5] Archetti, M. 2006. Genetic robustness and selection at the protein level for synonymous
codons. J. Evol. Biol., 19(2): 353-365.

[6] Archetti, M. 2009. Genetic robustness at the codon level as a measure of selection. Gene,
443(1-2): 64-69.

[7] Athey, J., Alexaki, A., Osipova, E., Rostovtsev, A., Santana-Quintero, L. V., Katneni, U.,
Simonyan, V., and Kimchi-Sarfaty, C. 2017. A new and updated resource for codon usage
tables. BMC Bioinformatics, 18(1): 391.

[8] Behura, S. K. and Severson, D. W. 2013. Codon usage bias: causative factors, quantification
methods and genome-wide patterns: with emphasis on insect genomes. Biological Reviews,
88(1): 49-61.

[9] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov,
I. N., and Bourne, P. E. 2000. The Protein Data Bank. Nucleic Acids Res., 28(1): 235-242.

[10] Besenmatter, W., Kast, P., and Hilvert, D. 2007. Relative tolerance of mesostable and
thermostable protein homologs to extensive mutation. Proteins, 66(2): 500-506.

[11] Blazej, P., Wnetrzak, M., Mackiewicz, D., and Mackiewicz, P. 2018. Correction: Optimiza-
tion of the standard genetic code according to three codon positions using an evolutionary
algorithm. PLoS ONE, 13(10): €0205450.

[12] Bloom, J. D., Silberg, J. J., Wilke, C. O., Drummond, D. A., Adami, C.; and Arnold,
F. H. 2005. Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. U.S.A.,
102(3): 606-611.

[13] Bloom, J. D., Labthavikul, S. T., Otey, C. R., and Arnold, F. H. 2006. Protein stability
promotes evolvability. Proc. Natl. Acad. Sci. U.S.A., 103(15): 5869-5874.

18


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[14] Bloom, J. D., Lu, Z., Chen, D., Raval, A., Venturelli, O. S., and Arnold, F. H. 2007a.
Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol.,
5: 29.

[15] Bloom, J. D., Raval, A., and Wilke, C. O. 2007b. Thermodynamics of neutral protein
evolution. Genetics, 175(1): 255-266.

[16] Cambray, G. and Mazel, D. 2008. Synonymous genes explore different evolutionary land-
scapes. PLoS Genet., 4(11): €1000256.

[17] Chen, S. L., Lee, W., Hottes, A. K., Shapiro, L., and McAdams, H. H. 2004. Codon usage
between genomes is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci.
U.S.A., 101(10): 3480-3485.

[18] Chiusano, M. L., Alvarez-Valin, F., Di Giulio, M., D’Onofrio, G., Ammirato, G., Colonna,
G., and Bernardi, G. 2000. Second codon positions of genes and the secondary structures
of proteins. Relationships and implications for the origin of the genetic code. Gene, 261(1):
63-69.

[19] Coleman, J. R., Papamichail, D., Skiena, S., Futcher, B., Wimmer, E., and Mueller, S.
2008. Virus attenuation by genome-scale changes in codon pair bias. Science, 320(5884):
1784-1787.

[20] De Laet, M., Gilis, D., and Rooman, M. 2016. Stability strengths and weaknesses in protein
structures detected by statistical potentials: Application to bovine seminal ribonuclease.
Biophysical Journal, 84: 143-158.

[21] Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., and Rooman, M. 2009. Fast and
accurate predictions of protein stability changes upon mutations using statistical potentials
and neural networks: PoPMuSiC-2.0. Bioinformatics, 25(19): 2537-2543.

[22] Dehouck, Y., Gilis, D., and Rooman, M. 2014. Database-derived potentials dependent on
protein size for in silico folding and design. Biophysical Journal, 87: 171-181.

[23] Di Giulio, M. and Medugno, M. 1999. Physicochemical optimization in the genetic code
origin as the number of codified amino acids increases. J. Mol. Evol., 49(1): 1-10.

[24] D’Onofrio, G., Mouchiroud, D., Aissani, B., Gautier, C., and Bernardi, G. 1991. Corre-
lations between the compositional properties of human genes, codon usage, and amino acid
composition of proteins. J. Mol. Evol., 32(6): 504-510.

[25] D’Onofrio, G., Jabbari, K., Musto, H., and Bernardi, G. 1999. The correlation of protein
hydropathy with the base composition of coding sequences. Gene, 238(1): 3-14.

[26] Draghi, J., Parsons, T., Wagner, G., and Plotkin, J. 2010. Mutational robustness can
facilitate adaptation. Nature, 463: 353-355.

[27] Drummond, D. A. and Wilke, C. O. 2008. Mistranslation-induced protein misfolding as a
dominant constraint on coding-sequence evolution. Cell, 134(2): 341 — 352.

[28] Drummond, D. A. and Wilke, C. O. 2009. The evolutionary consequences of erroneous
protein synthesis. Nat. Rev. Genet., 10(10): 715-724.

[29] Echave, J., Jackson, E. L., and Wilke, C. O. 2015. Relationship between protein thermo-
dynamic constraints and variation of evolutionary rates among sites. Physical Biology, 12(2):
025002.

[30] Echave, J., Spielman, S. J., and Wilke, C. O. 2016. Causes of evolutionary rate variation
among protein sites. Nature Reviews Genetics, 17(2): 109-121.

[31] Epstein, C. J. 1966. Role of the amino-acid "code” and of selection for conformation in
the evolution of proteins. Nature, 210(5031): 25-28.

[32] Fares, M. A. 2015. The origins of mutational robustness. Trends Genet., 31(7): 373-381.
19


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[33] Faure, G. and Koonin, E. V. 2015. Universal distribution of mutational effects on protein
stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary
modes of prokaryotic and eukaryotic proteins. Phys Biol, 12(3): 035001.

[34] Franzosa, E. A. and Xia, Y. 2009. Structural determinants of protein evolution are context-
sensitive at the residue level. Mol. Biol. Evol., 26(10): 2387-2395.

[35] Franzosa, E. A. and Xia, Y. 2012. Independent effects of protein core size and expression
on residue-level structure-evolution relationships. PLoS ONE, 7(10): e46602.

[36] Freeland, S. J. and Hurst, L. D. 1998. The genetic code is one in a million. J. Mol. Evol.,
47(3): 238-248.

[37] Freiberger, M., Guzovsky, A., Wolynes, P., Parra, R., and D.U., F. 2019. Local frustration
around enzyme active sites. Proc Natl Acad Sci U S A, 116: 4037-4043.

[38] Gilis, D., Massar, S., Cerf, N. J., and Rooman, M. 2001. Optimality of the genetic code
with respect to protein stability and amino-acid frequencies. Genome Biol., 2(11): RE-
SEARCHO0049.

[39] Goldberg, A. L. and Wittes, R. E. 1966. Genetic code: aspects of organization. Science,
153(3734): 420-424.

40] Haig, D. and Hurst, L. D. 1991. A quantitative measure of error minimization in the
g
genetic code. J. Mol. Evol., 33(5): 412-417.

[41] Hanson, G. and Coller, J. 2018. Codon optimality, bias and usage in translation and mrna
decay. Nature Reviews Molecular Cell Biology, 19(1): 20-30.

[42] Henikoff, S. and Henikoff, J. G. 1992. Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci. U.S.A., 89(22): 10915-10919.

[43] Tkemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs
and the occurrence of the respective codons in its protein genes: a proposal for asynonymous
codon choice that is optimal for the E. coli translational system. J. Mol. Biol., 151: 389—
409.

[44] Ikemura, T. 1985. Codon usage and tRNA content in unicellularand multicellular organ-
isms. Mol. Biol. Evol., 2: 13-34.

[45] Jacquier, H., Birgy, A., Le Nagard, H., Mechulam, Y., Schmitt, E., Glodt, J., Bercot,
B., Petit, E., Poulain, J., Barnaud, G., Gros, P. A., and Tenaillon, O. 2013. Capturing the
mutational landscape of the beta-lactamase TEM-1. Proc. Natl. Acad. Sci. U.S.A., 110(32):
13067-13072.

[46] Kimura, M. 1968. Evolutionary rate at the molecular level. Nature, 217(5129): 624-626.

[47] Koonin, E. V. and Novozhilov, A. S. 2009. Origin and evolution of the genetic code: the
universal enigma. I[UBMB Life, 61(2): 99-111.

[48] Kudla, G., Lipinski, L., Caffin, F., Helwak, A., and Zylicz, M. 2006. High guanine and
cytosine content increases mrna levels in mammalian cells. PLOS Biology, 4(6).

[49] Kulikova, T., Akhtar, R., Aldebert, P., Althorpe, N., Andersson, M., Baldwin, A., Bates,
K., Bhattacharyya, S., Bower, L., Browne, P., Castro, M., Cochrane, G., Duggan, K., Eber-
hardt, R., Faruque, N., Hoad, G., Kanz, C., Lee, C., Leinonen, R., Lin, Q., Lombard, V.,
Lopez, R., Lorenc, D., McWilliam, H., Mukherjee, G., Nardone, F., Pastor, M. P., Plaister,
S., Sobhany, S., Stoehr, P., Vaughan, R., Wu, D., Zhu, W., and Apweiler, R. 2007. EMBL
Nucleotide Sequence Database in 2006. Nucleic Acids Res., 35(Database issue): 16-20.

[50] Kumar, S. 1996. Patterns of nucleotide substitution in mitochondrial protein coding genes
of vertebrates. Genetics, 143(1): 537-548.

[51] Lassig, M., Mustonen, V., and Walczak, A. M. 2017. Predicting evolution. Nat Ecol Evol,
1(3): 77.

20


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[52] Lauring, A., Acevedo, A., Cooper, S., and Andino, R. 2012. Codon usage determines the
mutational robustness, evolutionary capacity, and virulence of an rna virus. Cell Host &
Microbe, 12(5): 623-632.

[53] Lenski, R. E., Barrick, J. E., and Ofria, C. 2006. Balancing robustness and evolvability.
PLoS Biol., 4(12): e428.

[54] Lind, P. A., Arvidsson, L., Berg, O. G., and Andersson, D. I. 2017. Variation in Mutational
Robustness between Different Proteins and the Predictability of Fitness Effects. Mol. Biol.
Evol., 34(2): 408-418.

[55] Lyons, D. M. and Lauring, A. S. 2017. Evidence for the Selective Basis of Transition-to-
Transversion Substitution Bias in Two RNA Viruses. Mol. Biol. Evol., 34(12): 3205-3215.

[56] Mendez, R., Fritsche, M., Porto, M., and Bastolla, U. 2010. Mutation bias favors protein
folding stability in the evolution of small populations. PLoS Comput. Biol., 6(5): e1000767.

[57] Mohler, K. and Ibba, M. 2017. Translational fidelity and mistranslation in the cellular
response to stress. Nature Microbiology, 2(9): 17117.

[58] Pucci, F. and Rooman, M. 2019. Relation between DNA ionization potentials, single base
substitutions and pathogenic variants. BMC Genomics, 20(Suppl 8): 551.

[59] Pucci, F., Bernaerts, K., Teheux, F., Gilis, D., and Rooman, M. 2015. Symmetry
principles in optimization problems: an application to protein stability prediction. IFAC-
PapersOnLine, 48(1): 458-463.

[60] Pucci, F., Bernaerts, K. V., Kwasigroch, J. M., and Rooman, M. 2018. Quantification of
biases in predictions of protein stability changes upon mutations. Bioinformatics, 34(21):
3659-3665.

[61] Quax, T. F., Claassens, N., S6ll, D., and van?der?Oost, J. 2015. Codon bias as a means
to fine-tune gene expression. Molecular Cell, 59(2): 149-161.

[62] Ramsey, D. C., Scherrer, M. P.;, Zhou, T., and Wilke, C. O. 2011. The relationship
between relative solvent accessibility and evolutionary rate in protein evolution. Genetics,
188(2): 479-488.

[63] Scherrer, M. P., Meyer, A. G., and Wilke, C. O. 2012. Modeling coding-sequence evolution
within the context of residue solvent accessibility. BMC Ewvol. Biol., 12: 179.

[64] Serohijos, A. W., Rimas, Z., and Shakhnovich, E. I. 2012. Protein biophysics explains why
highly abundant proteins evolve slowly. Cell Rep, 2(2): 249-256.

[65] Shah, P. and Gilchrist, M. A. 2011. Explaining complex codon usage patterns with selection
for translational efficiency, mutation bias, and genetic drift. Proc. Natl. Acad. Sci. U.S.A.,
108(25): 10231-10236.

[66] Sikosek, T. and Chan, H. S. 2014. Biophysics of protein evolution and evolutionary protein
biophysics. J R Soc Interface, 11(100): 20140419.

[67] Stoltzfus, A. and Norris, R. W. 2016. On the Causes of Evolutionary Transi-
tion:Transversion Bias. Mol. Biol. Evol., 33(3): 595-602.

[68] Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic Acids Res., 22(22): 4673-4680.

[69] Tokuriki, N. and Tawfik, D. S. 2009a. Protein dynamism and evolvability. Science,
324(5924): 203-207.

[70] Tokuriki, N. and Tawfik, D. S. 2009b. Stability effects of mutations and protein evolvability.
Curr. Opin. Struct. Biol., 19(5): 596-604.

21


https://doi.org/10.1101/2020.02.05.935809

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.9358009; this version posted February 6, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[71] Tuller, T., Waldman, Y. Y., Kupiec, M., and Ruppin, E. 2010. Translation efficiency is
determined by both codon bias and folding energy. Proc. Natl. Acad. Sci. U.S.A., 107(8):
3645-3650.

[72] van Nimwegen, E., Crutchfield, J. P., and Huynen, M. 1999. Neutral evolution of muta-
tional robustness. Proc. Natl. Acad. Sci. U.S.A., 96(17): 9716-9720.

[73] Wagner, A. 2008. Robustness and evolvability: a paradox resolved. Proceedings of The
Royal Society B, 275: 91-100.

[74] Wang, G. and Dunbrack, R. L. 2003. PISCES: a protein sequence culling server. Bioin-
formatics, 19(12): 1589-1591.

[75] Weile, J., Sun, S., Cote, A. G., Knapp, J., Verby, M., Mellor, J. C., Wu, Y., Pons, C., Wong,
C., van Lieshout, N., Yang, F., Tasan, M., Tan, G., Yang, S., Fowler, D. M., Nussbaum, R.,
Bloom, J. D., Vidal, M., Hill, D. E., Aloy, P., and Roth, F. P. 2017. A framework for
exhaustively mapping functional missense variants. Mol. Syst. Biol., 13(12): 957.

[76] Wnetrzak, M., Blazej, P., Mackiewicz, D., and Mackiewicz, P. 2018. The optimality of
the standard genetic code assessed by an eight-objective evolutionary algorithm. BMC' Evol.
Biol., 18(1): 192.

[77] Wylie, C. S. and Shakhnovich, E. I. 2011. A biophysical protein folding model accounts for
most mutational fitness effects in viruses. Proc. Natl. Acad. Sci. U.S.A., 108(24): 9916-9921.

[78] Yeh, S. W., Liu, J. W., Yu, S. H., Shih, C. H., Hwang, J. K., and Echave, J. 2014. Site-
specific structural constraints on protein sequence evolutionary divergence: local packing
density versus solvent exposure. Mol. Biol. Evol., 31(1): 135-139.

[79] Zhou, T., Weems, M., and Wilke, C. O. 2009. Translationally Optimal Codons Associate
with Structurally Sensitive Sites in Proteins. Molecular Biology and Evolution, 26(7): 1571—
1580.

22


https://doi.org/10.1101/2020.02.05.935809

