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ABSTRACT 21 

Metabolic disorders commonly have a large heritable component, and have increased 22 

markedly over the past few generations.  Genome-wide association studies of metabolic 23 

traits typically find a substantial unexplained fraction of the total heritability, suggesting 24 

an important role for the effects of spontaneous mutation.  An alternative explanation, 25 

considered less likely, is that epigenetic effects contribute significantly to the heritable 26 

variation. Here we report a study designed to quantify the cumulative effects of 27 

spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis 28 

elegans, including both the activity and concentration of two metabolic enzymes (ADA 29 

and ADK) and the standing pools of their associated metabolites.  A previous study with 30 

the same set of C. elegans mutation accumulation (MA) lines found a large cumulative 31 

effect of mutation on adenosine concentration.  The only prior study on the effects of 32 

mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total 33 

enzyme activity presents a mutational target similar to that of morphological and life-34 

history traits.  However, those experiments were not designed to account for short-term 35 

heritable effects.  We find that the means of some traits (6/17) change significantly over 36 

the course of ~250 generations under MA conditions, consistent with previous findings, 37 

but that the short-term heritable variance for all but one trait (total soluble protein 38 

concentration) is of the same order of magnitude as the mutational variance.  This result 39 

has important implications for the design and interpretation of MA studies, and suggests 40 

that the potential effects of epigenetic variation in human metabolic disease warrant 41 

additional scrutiny. 42 

  43 
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INTRODUCTION 44 

Human metabolic diseases have increased markedly in frequency over the past few generations 45 

(SAKLAYEN 2018). Large genome-wide association studies (GWAS) conducted on the human 46 

metabolome have shown that metabolic traits are highly heritable, but that a substantial fraction 47 

of the heritability of metabolic traits remains unexplained by the cumulative effects of mQTL 48 

(RHEE et al. 2013; SHIN et al. 2014; MAHAJAN et al. 2018). This discrepancy indicates that the 49 

remainder of the heritable variation is the result of some combination of (1) rare, highly 50 

deleterious variants recently arisen in the population; (2) many variants with effects too small to 51 

be detected by the typical GWAS (MANOLIO et al. 2009; EICHLER et al. 2010; BOYLE et al. 2017); 52 

and/or (3) cross-generational epigenetic effects that are heritable but leave no genetic signature 53 

(FURROW et al. 2011; RICHARD et al. 2017). Scenarios (1) and (2) imply a significant role of 54 

spontaneous mutation in the risk of metabolic disease, although the rapid increase in frequency 55 

further implies some sort of genotype-environment interaction.  A recent onslaught of epigenetic 56 

effects is considered less likely as a general explanation for the "missing heritability" of human 57 

complex traits (WAINSCHTEIN et al. 2019), but specific examples of cross-generational effects 58 

are known in humans (PEMBREY et al. 2006; CURLEY et al. 2011; VEENENDAAL et al. 2013; 59 

RANDO AND SIMMONS 2015), and are well-documented in other organisms (e.g., plants; MUNIR et 60 

al. 2001; LUNA et al. 2012; RASMANN et al. 2012) and C. elegans; (GREER et al. 2011; RECHAVI 61 

et al. 2011; ASHE et al. 2012; JOBSON et al. 2015; MARRÉ et al. 2016).    62 

 To our knowledge, the cumulative effects of spontaneous mutation on metabolic traits 63 

have been investigated in only two experiments.  In a groundbreaking study in Drosophila 64 

melanogaster, CLARK et al. (1995) quantified the input of mutational (co)variance in the activity 65 

of a set of 12 metabolic enzymes and two metabolites. Mutational heritability (ℎ𝑀𝑀2 , the per-66 

generation increase in genetic variation (VM) scaled as a fraction of the residual variance, VE) of 67 

enzyme activity was on the order of that of life-history and morphological traits (ℎ𝑀𝑀2 ≈10-68 

3/generation; HOULE et al. (1996)). In several of the mutation accumulation (MA) lines studied, 69 
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there were large changes in enzymatic activity relative to the population mean over the course 70 

of 44 generations of evolution under minimal selection. Results for the two metabolites studied 71 

were analogous, but there was no attempt to assess the relationship between enzyme activity 72 

and metabolite concentration in the context of metabolic pathways.  73 

More recently, DAVIES et al. (2016)  examined the changes in metabolite concentration 74 

for 29 metabolites in a set of C. elegans MA lines that had undergone ~250 generations of 75 

evolution under minimal selection and found that metabolites vary considerably in their 76 

response to spontaneous mutation, as quantified by the change in mean metabolite 77 

concentration (ΔM) and by the mutational (co)variance.  Associations between mutational 78 

correlations between pairs of metabolites (rM, presumably the result of pleiotropy) and proximity 79 

of the metabolites in the global metabolic network were, on average, positive but weak 80 

(JOHNSON et al. 2018).  The weakness of the association between mutational pleiotropy and 81 

network proximity suggests that pleiotropic effects propagate throughout the metabolic network 82 

and are not confined to local modules.  However, there was no attempt to link changes in 83 

metabolite concentration to the properties of associated metabolic enzymes.  84 

Here we report results of a study designed to investigate the cumulative effects of 85 

mutation on the concentration and activity of the enzymes in the adenosine metabolism pathway 86 

and their associated metabolites (Figure 1), using the same set of C. elegans MA lines as in 87 

DAVIES et al. (2016).  We chose this particular metabolic pathway for investigation because 88 

adenosine was one of the metabolites with the largest mutational variance, indicative of a large 89 

mutational target.  In addition, adenosine levels are assumed to be tightly regulated due to its 90 

role as a critical signaling molecule for energetic homeostasis as a metabolite involved in ATP: 91 

AMP, as well has having other critical functions (PARK AND GUPTA 2008; BOISON 2013). Lastly, 92 

the adenosine pathway has well-defined network topology and is highly conserved.     93 
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 94 

Figure 1. Adenosine metabolism pathway. Activity and concentration of enzymes Adenosine deaminase (ADA, red) and 95 

Adenosine kinase (ADK, red) were measured. We were unable to measure the concentration of APRT (pink). Metabolites 96 

in orange had concentrations quantified, those in gray were not measured.   97 
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 In contrast to the aforementioned studies (CLARK et al. 1995; DAVIES et al. 2016; 98 

JOHNSON et al. 2018), our experimental design allows us to infer the relative contributions of 99 

both mutation and short-term heritable (i.e., epigenetic) effects on the total heritable variance of 100 

metabolic traits.   101 

 102 

MATERIALS AND METHODS 103 

Mutation Accumulation: 104 

A detailed description of the construction and propagation of the mutation accumulation (MA) 105 

lines is given in BAER et al. (2005). Briefly, 100 replicate MA lines were initiated from a nearly 106 

isogenic population of N2-strain C. elegans and propagated by single-hermaphrodite descent at 107 

four-day (one generation) intervals for approximately 250 generations. The common ancestor of 108 

the MA lines ("G0") was cryopreserved at the outset of the experiment; MA lines were 109 

cryopreserved upon completion of the MA phase of the experiment (Figure 2).  Based on 110 

extensive whole-genome sequencing (DENVER et al. 2012; SAXENA et al. 2019), we estimate 111 

that the average MA line carries about 60-80 mutant alleles in the homozygous state.  In this 112 

study we used the same 43 N2-strain MA lines assayed by DAVIES et al (2016).  113 

The ideal design of a phenotypic assay of a MA experiment includes replicates of the 114 

(putatively) unmutated common ancestor, which we call "pseudolines" and which are treated 115 

identically to MA lines in analyses (LYNCH 1985; LYNCH AND WALSH 1998; TEOTÓNIO et al. 116 

2017). The among-pseudoline component of variance includes the effects of residual 117 

segregating genetic variation in the ancestor, as well as short-term heritable (epigenetic) effects 118 

that are propagated across assay generations and purely environmental effects resulting from 119 

(sometimes unavoidable) imperfections of experimental design, such as a temporal correlation 120 

between line and assay time.  In the absence of a pseudoline control, some fraction of the 121 

among-MA line (co)variance will potentially be the result of non-mutational factors, and resulting 122 

estimates of VM and COVM will be upwardly biased. 123 
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 124 

 125 

Figure 2. Propagation of mutation accumulation (MA) lines. The G0 ancestor was 126 

thawed from a cryopreserved sample and a single hermaphrodite picked onto each of 127 

100 agar plates. MA lines were propagated via single worm descent for ~250 128 

generations. 43 MA lines and the G0 ancestor were included in this experiment. 129 
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Here, a set of 15 pseudolines (PS) of the G0 ancestor were included along with the MA 130 

lines (Figure 3A). PS lines were generated by thawing a sample of the N2 ancestor and allowing 131 

it 24 hours to recover from freezing, at which time 15 hermaphrodites were plated individually 132 

onto 60 mm NGM plates seeded with 100 μl of an overnight culture of E. coli OP50 (P0 133 

generation in Figure 3A).  P0 worms were allowed to reproduce until the bacterial food on the 134 

plate was consumed (two generations; F1 and F2), at which time worms were cryopreserved 135 

(F2) (HOPE 1999). The demographic features of this protocol mimic those of our standard 136 

protocol for cryopreserving MA lines.  From this point forward, MA lines and ancestral PS lines 137 

are experimentally identical.  138 

 139 

Protein Extraction: 140 

This study includes six independent experimental tests: concentration and activity of two 141 

enzymes (ADA and ADK), total protein concentration, and mass spectrometry of pooled 142 

metabolites (Note: we were only able to include two of the three enzymes in the adenosine 143 

pathway, ADA and ADK (Figure 1).  We were unable to measure the activity of the third enzyme 144 

in the pathway, adenosine phosphoribosyltransferase (APRT), because commercially available 145 

assay kits require too much material to be practical for application to C. elegans.  Accordingly, 146 

six aliquots of protein (plus metabolites) were extracted and cryopreserved from the same 147 

individual sample of each experimental replicate.  Protein extraction was performed in five 148 

blocks of 10-12 lines per block, to ensure that all samples were handled at the appropriate stage 149 

of development (see below).  In each protein extraction block, the lines selected were a random 150 

mix of MA and PS lines; the experimental design is outlined in Figure 3B. Each line was thawed 151 

and transferred onto a 60mm agar plate.  The following day, five L4-stage hermaphrodites from 152 

each line were transferred individually onto 35mm agar plates (parental generation, P1 in Figure 153 

3B), resulting in a total of 290 samples (five replicates of each of 15 PS lines and 43 MA lines). 154 

Four days later, a single offspring (F1 generation) L4 hermaphrodite was transferred from each 155 
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 156 

 157 
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Figure 3. A) Generation of G0 pseudolines (PS lines). The G0 ancestor was thawed 158 

from a cryopreserved sample ("Tube 1", "Plate 1") and 15 individuals were picked onto 159 

individual agar plates ("Plate 2"; PS1-PS15) and allowed to reproduce for two 160 

generations prior to cryopreservation ("Tube 2"). B) Replication of lines for 161 

protein/metabolite extraction.  Lines (P1, "Tube 2" from [A]) were thawed (plate 3) and 162 

five individuals were picked onto individual agar plates ("Plate 4", Rep1-Rep5) and 163 

propagated by single-worm descent for another generation (F1.1, "Plate 5"). F1.1 164 

worms were allowed to reproduce for two generations (F2.1, F3.1), and when the plates 165 

contained gravid worms (F3.1) and eggs (F4.1) they were bleached. The resulting eggs 166 

(F4.1) were transferred to a new plate ("Plate 6") and allowed to hatch and grow to the 167 

young adult stage, at which time protein and metabolites were extracted. The timeline at 168 

the top represents the number of generations of reproduction of PS lines subsequent to 169 

divergence of the lines from the common ancestor. 170 
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P1 plate onto a 100mm plate (F1.1 in Figure 3B). The F1 worms were grown for ten days (two 171 

generations, F2.1 and F3.1 in Figure 3B) of self-replication to ensure that F3 worms were gravid 172 

and there were abundant eggs on the plate (F4.1 in Figure 3B). Worms were washed from the 173 

plate and "bleached" in an NaOH and sodium hypochlorite solution (SULSTON AND HODGKIN 174 

1988) .This process kills all hatched worms by breaking down their cuticle and leaves only eggs 175 

(F4.1 in Figure 3B), resulting in a population that is closely synchronized in developmental 176 

timing. Once F4 worms had been bleached, hatched, and reached the L4 stage, they were 177 

washed five times in ion-free NGM buffer, mixed with protease inhibitor cocktail, and 178 

homogenized via sonication (TANG AND CHOE 2015). Homogenized samples were centrifuged, 179 

and the protein-rich supernatant was distributed equally into six cryovials and stored at -80 C°.  180 

All lines, both MA and PS, were labeled with their true line number until 181 

cryopreservation, at which time each replicate was assigned a random number to obscure 182 

sample identity. This resulted in six identical sets of 290 samples to be tested. One replicate of 183 

one PS line and all replicates of MA line 571 were lost during protein extraction, resulting in a 184 

total of 284 samples from 15 PS and 42 MA lines.  185 

  186 

Estimating Total Soluble Protein via Bicinchoninic Acid Assay (BCA) 187 

We used total soluble protein as a proxy for the number of individual worms in a sample. To 188 

quantify the total soluble protein in each sample we used a bicinchoninic acid assay (BCA) 189 

following the protocol from Thermo Scientific (Pierce BCA Protein Assay Kit #23225). Briefly, a 190 

set of known concentrations of bovine serum albumin is used to generate a standard curve 191 

against which one can estimate the concentrations of unknown protein samples. A total of 13 192 

BC assays were performed, each with its own set of standards.  193 

 194 

Enzyme activity assays: 195 

(i) Adenosine kinase (ADK) 196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.05.935197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.935197
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Adenosine kinase (ADK) activity was measured using the Novocib PRECISE ADK assay kit 197 

(Novocib, Ref #K0507-01). This assay measures ADK activity based on the production on 198 

NADH2, which is generated by the dephosphorylation of ATP by ADK. To ensure that ADK 199 

activity is not limited by available ATP, an excess of human ATP was added to each sample. 200 

Absorbance at 340nm was measured at one-minute intervals for 40 minutes. The slope of the 201 

line over the linear phase quantifies the activity of each sample in units of absorption per 202 

minute. A set of positive (human ADK, provided in the kit) and negative (no enzyme) controls 203 

were included with the unknown samples in each assay plate and used to quantify assay 204 

quality, per the manufacturer's instructions. Thirty of the 290 samples were not included in the 205 

ADK activity assay. All samples that were run included at least two technical replicates, in which 206 

extracts from a sample were split and assayed independently.  207 

(ii) Adenosine deaminase (ADA): 208 

ADA activity was measured using Abcam’s Adenosine Deaminase (ADA) Activity Assay Kit 209 

(Abcam, ab21193). This kit utilizes an ADA developer and converter which react with inosine 210 

formed from the breakdown of adenosine by ADA to produce uric acid. Uric acid concentration 211 

is then measured via absorbance at 293nm once a minute for 45 minutes. Each kit is run with a 212 

set of known concentration standards that are used to generate a standard curve. The quantity 213 

of uric acid was then measured and used to calculate the activity of the ADA in a given sample 214 

in units of nmol/min/μg, following the manufacturer's instructions.  215 

ADA activity was assayed in six 96-well plates, each including a positive (manufacturer 216 

supplied ADA) and negative (no sample) control. For one assay plate, the highest concentration 217 

standard had an unusually low reading; we therefore omitted this point from the standard curve 218 

for this assay.  Omission of that point had no effect on the interpretation of the data because all 219 

unknown samples had absorbance values greater than the second lowest standard.  All of the 220 

290 samples had maximum measured activity well below the highest concentration standard.  221 

Four samples with erratic absorption readings were omitted from further analyses.  222 
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 223 

Enzyme concentration: 224 

Enzyme concentrations were estimated by Western blot (WB) (Supplemental Figure S1). 225 

Extracted samples were denatured in 2X Laemmli buffer (with β-mercaptoethanol) and boiled at 226 

70° for 10 minutes. Each gel lane was loaded with 7ug of total soluble protein calculated from 227 

the BCA data (Bio-Rad 10% polyacrylamide gel, product #4561033). Each blot included eight 228 

samples, a DNA-ladder and an internal control standard consisting of a homogenate of C. 229 

elegans. We used the Trans-Blot Turbo Transfer System (Bio-Rad, #1704156) to transfer 230 

proteins separated by gel electrophoresis onto blotting paper.  After the primary (enzyme-231 

specific) and secondary (visualization) antibodies were bound (antibodies described below), 232 

antibody binding was visualized using the Pierce ECL Western Blotting Substrate (Thermo 233 

Fischer Product # 32106). Brightness of each band relative to the internal control was estimated 234 

using ImageJ image-analysis software and used as a proxy for enzyme concentration.  246 of 235 

the 284 samples contained sufficient protein to be visualized by Western Blot.     236 

The concentration of tubulin in a sample is commonly used as a loading control, and we 237 

quantified tubulin in each sample for both enzymes (Tubulin antibody DSHB, E7).  However, 238 

tubulin concentration was not independent of treatment (MA vs. PS), so we treat it as an 239 

experimental trait rather than a control (see Results). 240 

(i) ADK concentration 241 

The antibody used was Abcam’s Anti-ADK antibody – C-terminal (Abcam, ab226187), which 242 

was designed and tested in mouse and humans and which is homologous with the C. elegans 243 

ADK protein, R07H5.8 .The assay resulted in multiple binding sites, with distinct bands at 244 

~100kd, ~37kd, ~25kd, and ~18kd (Supplemental Figure S2). To determine which of these 245 

binding sites represented the C. elegans ADK, samples of each band were extracted from the 246 

gel and analyzed using protein mass spectroscopy. Results were then analyzed using Scaffold 247 
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4; only the sample at ~37kd contained the worm ADK homolog (R07H5.8, molecular weight = 248 

37.5 kd; Wormbase).  112 of the 246 samples did not contain sufficient ADK to be measured by 249 

Western blot.  These lines were tested in duplicate and failed to produce ADK bands both times, 250 

so the low concentration of ADK is presumably a true property of the sample and not an 251 

experimental artifact.  252 

(ii) Adenosine deaminase (ADA) concentration: 253 

The primary anti-body used was Abcam’s Anti-ADAT2 antibody (Abcam, ab122280). This 254 

antibody is homologous with the C. elegans ADA protein ADR-1 which is known to code for 255 

ADA in worms (Wormbase).  The assay resulted in multiple binding sites, with distinct bands at 256 

~100kd, ~60kd, and ~22kd (Supplemental Figure S3). Samples of each band were extracted 257 

from the gel and analyzed using protein mass spectroscopy as for ADK.  The band at ~100kd 258 

contained the worm ADA homolog ADR-1, isoform D (101.8kd). 202 of the 246 samples 259 

contained ADA in sufficient concentration to be quantified by Western blotting. 260 

 261 

Metabolomics: 262 

To assess the relationship between enzyme concentration and activity and the concentration of 263 

their associated metabolites, we targeted four metabolites in the adenosine metabolic pathway: 264 

adenosine, inosine, AMP, and adenine. Several other metabolites not in the adenosine pathway 265 

were also measured, including GMP, guanine, guanosine, hypoxanthine, xanthine, and uric acid 266 

because they were part of a routine panel that included the metabolites of interest. Metabolite 267 

quantification was performed using liquid chromatography/mass spectroscopy (LC-MS), 268 

calibrated with known standards at the Southeast Center for Integrated Metabolomics at UF. 269 

Internal standards were prepared as follows: Adenine-15N2 (Cat #A2880477), guanine-270 

4,5-13C2 7-15N (Cat #G836003), hypoxanthine-13C2 15N (Cat #H998504) and xanthine-271 

13C 15N2 (Cat #X499954) were purchased from Toronto Research Chemicals (Toronto, ON). 272 

Adenosine-15N5 5′-monophosphate (Cat #662658), adenosine-15N5 5′-triphosphate (Cat 273 
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#707783), guanosine-15N5 5′-monophosphate (Cat #900380) and guanosine-13C10 5′-274 

triphosphate (Cat #710687) were purchased from Sigma-Adrich (St. Louis, MO). The labeled 275 

adenosine and guanosine triphosphates were dephosphorylated with alkaline phosphatase 276 

(Promega, Madison, WI; Cat #M1821) according to the manufacturer’s directions to produce the 277 

corresponding labelled nucleosides. Uric acid-13C 18O was synthesized from urea-13C 18O 278 

(Cambridge Isotopes, Andover, MA; Cat #COLM-4861) and 5,6-diaminouracil sulfate (Sigma-279 

Aldrich; Cat #D15103) according to methods of Cavalieri et al (CAVALIERI et al. 1948). 280 

For the purine assay, internal standard (10µl) was added to 50µl worm homogenate and 281 

acetonitrile (100µl) was added to precipitate proteins for LC-MS/MS analysis.  Samples were 282 

chromatographed on a Waters Cortecs UPLC HILIC column (2.1 x 150 mm, 1.6µm) eluted with 283 

an acetonitrile-water gradient: Buffer A) 5 mmol/L ammonium acetate and 0.1% acetic acid in 284 

acetonitrile: water (:: 98: 2); Buffer B) 10 mmol/L ammonium formate and 0.5% formic acid  in 285 

water. Mass spectrometric detection was on a Bruker EvoQ Elite MS/MS in positive ion mode, 286 

using heated electrospray ionization. 287 

Stock solutions of the purines analyzed were prepared from authentic standards, and 288 

their concentrations determined by absorbance (UMBREIT et al. 1960). The stock solutions were 289 

then mixed to give an appropriate working standard, which was then serially diluted to produce 290 

standard curves. Peak area ratios were calculated by dividing the metabolite peak area by the 291 

peak area of its isotopically labeled internal standard. Metabolite concentrations were calculated 292 

by comparing these peak area ratios to the standard curves. 293 

 294 

Data Analysis: 295 

(i) Estimation of mutational parameters 296 

To quantify the cumulative effects of mutation on individual traits, we calculated the per-297 

generation change in the trait mean (ΔM, the "mutational bias") and the per-generation rate of 298 

increase in genetic variance (VM, the "mutational variance"). Mutational bias is calculated as: 299 
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∆𝑀𝑀 =
𝑧𝑧�̅�𝑀𝑀𝑀 − 𝑧𝑧0̅
𝑡𝑡𝑧𝑧0̅

 300 

where zMA and z0 are the means of the MA lines and the G0 PS lines, respectively, and t is the 301 

number of generations of MA (t=250) (LYNCH AND WALSH 1998). 302 

The mutational variance (VM) is calculated as: 303 

𝑉𝑉𝑀𝑀 =
𝑉𝑉𝐿𝐿,𝑀𝑀𝑀𝑀 − 𝑉𝑉𝐿𝐿,0

2𝑡𝑡
 304 

where VL,MA is the among-line variance of the MA lines, VL,0 is the among-line variance of the PS 305 

lines, and t is the number of generations of MA.  The among-line variance of the PS lines 306 

includes the effects of any residual segregating genetic variance, but also heritable epigenetic 307 

effects and the heritable effects of genotype-environment correlation (LYNCH 1985).  308 

 The mutational covariance between traits (COVM) is estimated analogously to VM, with 309 

the among-line components of variance (VL) replaced with the among-line components of 310 

covariance (i.e., the off-diagonal elements in the variance-covariance matrix).   311 

(ii) Statistical analyses 312 

Our primary interest is in the two enzymes, ADA and ADK.  The enzyme activity assays 313 

measure the composite effects of enzyme activity per se (i.e., the inherent kinetic properties of 314 

the protein) and the concentration of the enzyme in the sample.  For a given sample, the rate at 315 

which substrate is converted to product depends on both the amount and the inherent activity of 316 

the enzyme present.  Because we have an independent measure of the amount of enzyme 317 

present in the sample (from the Western blots), we can statistically partition the effects of 318 

inherent activity from those of concentration by including enzyme concentration as a covariate in 319 

a general linear model (GLM).  The concentration of protein measured in the Western blot is 320 

standardized by the total protein in the sample, so enzyme activity also needs to be 321 

standardized relative to the total protein in the sample, which can be similarly included in a 322 

GLM.  The ADA activity assay includes total protein in the calculation of activity, so total protein 323 

is not included in the GLM.  The full GLM can be written as:  324 
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 yijkl = μ + ci + pi + bj + ak + Ll|j + εijkl, 325 

where yijkl is the measured activity of the enzyme in sample i, μ is the overall mean, ci is the 326 

effect of the concentration of the enzyme in sample i (estimated from the Western blot of the 327 

same sample), pi is the total protein concentration in sample i, bj is the random effect of assay 328 

block j, ak is the fixed effect of MA group k (MA or PS), Ll|j is the random effect of line l given MA 329 

group k, and εijkl is the residual effect.  Variance components (VL and VE) and their standard 330 

errors were estimated separately for each MA treatment group by restricted maximum likelihood 331 

(REML), with degrees of freedom determined by the Kenward-Roger method (KENWARD AND 332 

ROGER 1997).  Significance of the fixed effect of MA treatment group was tested by F-test on 333 

Type III sums of squares.  ΔM was calculated from mean values of the two groups estimated by 334 

least squares. Model analysis was preformed using the lme4 package in R ((BATES et al. 2015).                    335 

 Protein concentrations (ADA, ADK, tubulin) were calculated relative to a predetermined 336 

amount of total protein (see section V above).  Mutational statistics for protein concentrations 337 

were calculated from the same linear model as above without the covariates.  Protein 338 

concentration data were log-transformed to meet the assumptions of the GLM, and statistical 339 

inferences are based on the transformed data.  Mutational statistics are reported on the 340 

untransformed scale.   341 

 Metabolite concentrations were normalized relative to an internal standard.  Mutational 342 

statistics were estimated from the same linear model as above, with total protein included as a 343 

covariate.  344 

 Among-line correlations were estimated from pairwise correlations of line means, using 345 

the R package corr.test (REVELLA 2019).  Correlations of line means were used rather than 346 

among-line components of covariance because some analyses failed to converge.  Five of the 347 

57 lines were excluded from the analysis due to missing data.  Trait values were standardized 348 

relative to the G0 mean across all PS lines.    349 

 350 
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RESULTS 351 

Per-generation change in trait means (ΔM): 352 

Of the seventeen traits, four declined significantly over the course of 250 generations of MA 353 

(i.e., ΔM<0), two increased significantly, and the remainder did not change significantly (Table 354 

1).  Of the traits that did not change significantly, the point estimate of ΔM for ADK concentration 355 

was the largest of any trait, but ADK concentration also had the largest sampling variance in 356 

both MA and PS lines.  Mean total protein concentration, by which the other trait values were 357 

standardized, was nearly identical in the G0 ancestor and in the MA lines.  The close 358 

concordance in the average amount of total protein in a sample indicates that the average 359 

number of worms in a sample did not differ consistently between ancestor and MA lines.  A 360 

caveat is in order, however.  Although samples were synchronized by bleaching and were 361 

cultured to the same qualitative stage of development ("a few" eggs were present on the plate), 362 

subtle differences in the distributions of developmental stages may exist at any hierarchical level 363 

in the experiment (PS vs. MA; among lines; among replicates within a line).  It is known that 364 

there are consistent changes in the genome-wide transcriptional profile over the course of a few 365 

hours of development (FRANCESCONI AND LEHNER 2014; ZALTS AND YANAI 2017), and there is 366 

reason to expect that changes in metabolite levels would change at least as fast.     367 

implies, however, that the measured output of the reaction depends on factors other than the 368 

enzyme itself, because in the PS lines the protein sequence is presumably identical in all 369 

samples (transcriptional and translational errors notwithstanding).    370 

 Unexpectedly, the mean (normalized) concentration of tubulin decreased with MA.  371 

Tubulin is commonly included as a quantification control in studies of enzyme activity (RYBAK-372 

WOLF et al. 2014; DYSHLOVOY et al. 2017), although it is notoriously variable (FERGUSON et al. 373 

2005; YU et al. 2011; EATON et al. 2013; LEE et al. 2016; MORITZ 2017).Tubulin concentration 374 

was separately quantified in the assays of ADA and ADK concentration, and the estimates of 375 

the mean decrease were nearly identical (Table 1).  There is not an obvious explanation for why 376 
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Trait MMA M0 ΔM 
ADA Activity 0.01 (0.01, 1.20E-02) 0.004 (0.003, 4.3E-03) 0.0085 (0.007, 0.0102) 

ADK Activity 0.02 (0.02, 2.27E-02) 0.02 (0.02, 2.58E-02) -0.0003 (-0.0009, 0.0005) 

ADA Concentration 0.27 (0.19, 0.36) 0.44 (0.25, 0.65) -0.0014 (-0.0026, 0.0006) 

ADK Concentration 3.10 (1.31, 5.32) 0.78 (0.41, 1.16) 0.0131 (0.0023, 0.032) 

Tubulin Conc. (ADA) 0.13 (0.11, 0.15) 0.17 (0.14, 0.19) -0.0009 (-0.0014, -0.0002) 

Tubulin Conc. (ADK) 0.14 (0.12, 0.17) 0.18 (0.14, 0.19) -0.001 (-0.0024, 0.001) 

Total Protein 0.70 (0.64, 0.76) 0.70 (0.63, 0.77) 0.0000215 (-0.0005, 0.0006) 

AMP 14.40 (12.39, 16.50) 21.24 (16.41, 26.19) -0.0012 (-0.0019, -0.0004) 

Adenine 0.49 (0.38, 0.61) 0.45 (0.32, 0.61) 0.0004 (-0.011, 0.0025) 

Adenosine 2.77 (1.25, 4.75) 6.52 (1.70, 12.71) -0.0018 (-0.0034, 0.0029) 

GMP 4.69 (3.71, 5.97) 7.17 (5.56, 9.05) -0.0013 (-0.0021, -0.0002) 

Guanine 2.59 (2.08, 3.24) 3.47 (2.40, 4.57) -0.0009 (-0.0019, 0.0006) 

Guanosine 3.19 (1.45, 5.66) 4.84 (1.99, 8.44) -0.001 (-0.003, 0.0033) 

Hypoxanthine 6.45 (5.06, 7.91) 7.38 (5.36, 9.56) -0.0004 (-0.0015, 0.0011) 

Inosine 1.73 (1.12, 2.43) 2.59 (1.29, 4.39) -0.0011 (-0.0027, 0.0018) 

Uric Acid 22.98 (17.84, 29.18) 26.06 (19.60, 35.08) -0.0004 (-0.0016, 0.0011) 

Xanthine 4.71 (3.93, 5,59) 6.73 (5.30, 8.42) -0.0012 (-0.0019, -0.0003) 

Table 1. Means. Bold values of ΔM are significantly different from zero (P<0.05); empirical 95% bootstrap confidence 377 

intervals in parentheses.  See Methods for details of the estimation of trait means.378 
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the concentration of tubulin should decrease relative to total protein in MA lines.  A subtle, but 379 

consistent, difference in the distribution of developmental stages, perhaps associated with the 380 

cell cycle, seems as likely as any.   381 

 382 

Mutational variance (or the Lack Thereof):  383 

As mutations accumulate over time, MA lines are expected to diverge in trait values, leading to 384 

a consistent, long-term increase in the among-line component of variance (VL).  Scaled per-385 

generation, this increase is the "mutational variance", VM (LYNCH AND WALSH 1998, p. 330).  For 386 

various reasons, however, some fraction of the among-line variance may be due to factors other 387 

than the accumulation of new mutations.  Possible reasons include residual segregating 388 

variation in the ancestor of the MA lines, genotype-environment correlations (sometimes 389 

unknown or unknowable), and heritable epigenetic effects (RECHAVI AND LEV 2017; PEREZ AND 390 

LEHNER 2019).  To account for potential non-genetic contributions to the among-line variance, it 391 

is necessary to include a set of "pseudolines" (PS) of the ancestor, which are treated both 392 

experimentally and statistically as if they were MA lines (LYNCH 1985; TEOTÓNIO et al. 2017).   393 

 To our considerable surprise, for most traits the among-line variance of the PS lines is of 394 

the same order of magnitude as that of the MA lines (Table 2).  We report two different 395 

standardizations of VM.  First, the difference in the among-line variance between the PS and MA 396 

lines is divided by the square of the mean of the PS lines (VM,0); this is equivalent to the squared 397 

coefficient of variation, standardized by the ancestral mean.  This quantity is often called the 398 

"evolvability" (HOULE 1992), and is the customary way of scaling mutational variance.  However, 399 

if the trait mean changes over the course of evolution, scaling the MA lines by the ancestral 400 

mean will underestimate the true mutational variance if mutational effects are multiplicative (i.e., 401 

the CV is constant; FRY AND HEINSOHN 2002; BAER et al. 2006).  Because several traits changed 402 

significantly, we also report VM scaled by the group mean (VM,MA; i.e., PS lines are scaled by the 403 

square of the PS mean and MA lines are scaled by the square of the MA mean).  When scaled 404 
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 Trait VL,MA VL,PS VM,0 VM,MA VE,MA VE,PS 

ADA Activity 
1.41E-07 
 (0, 5.07E-07) 

3.332E-09 
 (0, 2.18E-08) 

2.18E-08  
(0, 8.51E-08) 

7.18E-08  
(0, 2.64E-07) 

3.83E-06 
 (2.91E-06, 4.85E-06) 

6.49E-06  
(3.95E-06, 9.16E-06) 

ADK Activity 
3.86E-10  
(0, 4.99 E-09) 

6.277  
(0, 3.19E-07) 

5.99E-09  
(0, 0.00E+00) 

0 
 (0, 0.00E+00) 

5.95E-07  
(4.28E-07, 7.78E-07) 

7.66E-07  
(4.11E-07, 1.18E-06) 

ADA Concentration 
0.053  
(0.013, 0.103) 

0.096 
 (0.007, 0.186) 

4.25E-05 
 (0, 0.0003) 

0 
 (0, 0.0004) 

0.05  
(0.03, 0.08) 

0.05  
(0.02, 0.09) 

ADK Concentration 
3.239  
(0, 8.064) 

0.0412 
 (0,0.133) 

0.002  
(0, 0.006) 

0.008  
(0, 0,027) 

77.94  
(4.68, 192.73) 

0.97  
(0.16, 2.26) 

Tubulin Conc. (ADA) 
0.0007  
(0, 0.002) 

0.0004  
(0, 0.003) 

5.76E-06  
(0, 2.97E-05) 

3.38E-06  
(0, 2.27E-05) 

0.007  
(0.004, 0.01) 

0.008  
(0.005, 0.015) 

Tubulin Conc. (ADK) 
0.007  
(0.0003, 0.021) 

0.000003309  
(0,0) 

9.63E-05  
(5.87E-06, 0.003) 

8.06E-05  
(4.33E-06, 0.0002)  

0.010  
(0.005, 0.015) 

0.014  
(0.008, 0.021) 

Total Protein 
0.023  
(0.010, 0.037) 

0  
(0, 0) 

6.68E-05  
(3.02E-05, 0.0001) 

6.74E-05 
 (2.9E-05, 0.0001) 

0.06  
(0.04, 0.08) 

0.09  
(0.05, 0.13) 

AMP 
16.11  
(7.642, 27.21) 

10.89 
 (0, 24.03) 

0.001  
(0,0.003) 

0.0005  
(0, 0.002) 

27.76  
(17.89, 39.55) 

49.29  
(30.57, 69.71) 

Adenine 
0.013 
 (0.005, 0.021) 

0.006  
(0, 0.016) 

2.33E-05 
 (0, 7.19E-05) 

2.91E-05 
(0, 9.06E-05) 

0.04  
(0.03, 0.06) 

0.08  
(0.02, 0.16) 

Adenosine 
22.96  
(1.043, 47.29) 

63.77  
(0.117, 137.8) 

0  
(0, 0.018) 

0  
(0, 0.026) 

6.84 
(0.73, 15.05) 

66.03 
(9.58, 130.22) 

GMP 
3.322  
(0.157, 8.804) 

1.237  
(0, 3.021) 

0.001  
(0, 0.003) 

0.0006 
 (0, 0,002) 

6.88  
(3.98, 10.23) 

9.25 
(4.74, 14,58) 

Guanine 
0.792  
(0.135, 1.829) 

0.967  
(0.291, 1.670) 

1.26E-05  
(0, 0.001) 

0  
(0, 0,0007) 

0.89 
(0.61, 1.21) 

1.54  
(0.81, 2.48) 

Guanosine 
16.54  
(2.314, 35.09) 

24.52  
(2.771, 53.69) 

1.92E-05  
(0, 0.008) 

0  
(0, 0,016) 

9.34  
(1.21, 20.93) 

15.36  
(1.98, 30.91) 

Hypoxanthine 
5.518  
(1.482, 10.79) 

4.554  
(0, 12.12) 

0.0005  
(0, 0.003) 

0.0003  
(0, 0,003) 

17.22 
(11.45, 23.32) 

20.75  
(11.35, 31.38) 

Inosine 
2.759  
(0.546, 4.835) 

5.293  
(0.034, 9.856) 

0  
(0, 0.004) 

0  
(0, 0.005) 

2.68  
(0.61, 5.47) 

10.28  
(0.44, 28.20) 

Uric Acid 
38.29 
 (17.57, 59.97) 

41.94  
(5.871, 99.22) 

0.0003 
 (0, 0.0035) 

0  
(0, 0,004) 

83.36  
(48.54, 126.80) 

81.95  
(39.29, 132.79) 
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Xanthine 
2.719  
(0.475, 5.329) 

2.039  
(0, 5.214) 

0.0005  
(0, 0.002) 

0.0002  
(0, 0,001) 

6.23  
(3.61, 9.77) 

11.38  
(6.09, 17.00) 

 405 

Table 2. Variances. Column headings are: VL,MA, among-line variance of the MA lines; VL,PS, among-line variance of the 406 

PL lines; VM,0, the mutational variance standardized by the ancestral mean; VM,MA, the mutational variance standardized 407 

by the mean of the group; VE,MA, the residual (within-line) variance of the MA lines; VE,PS, the residual (within-line) variance 408 

of the PS lines. Values of VL and VM in bold are significantly greater than zero; empirical 95% bootstrap confidence 409 

intervals are shown in parentheses.  See Methods for details of the estimation of variance components.  410 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.05.935197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.935197
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

by the ancestral mean (VM,0), 3/17 traits have significant mutational variance (tubulin 411 

concentration in the ADK assay, total protein, and ADA activity).  When scaled by the group 412 

mean (VM,MA), only tubulin concentration in the ADK assay and total protein remain significant.  413 

Importantly, the general lack of mutational variance is not because there is little among-line 414 

variance in the MA lines; in 13/17 cases VL in the MA lines is significantly greater than zero.   415 

Conceivably, technical variance associated with enzyme or metabolite assays could 416 

swamp biological variation and lead to a spurious partitioning of variance.  However, several 417 

lines of evidence suggest this is not the cause of the substantial variance among PS lines.  418 

Technical replicates (i.e., samples of extracted material were split and assayed independently) 419 

for some of the 290 biological samples were run for ADK activity, ADK concentration, and 420 

tubulin concentration (in the ADK assay).  In every case, the among-technical replicate variance 421 

was much less than the within-line variance (Supplemental Figure S4).  Based on previous 422 

experience with our metabolomics screen, technical replicate variance for the metabolic pools is 423 

expected to be less than 5% for all metabolites except for GMP and uric acid which are 424 

expected to be less than 10% (Eoin Quinlivan, Southeast Center for Integrative Metabolomics, 425 

personal communication). 426 

It is also extremely unlikely that residual segregating genetic variance could explain the 427 

similar magnitudes of the among-line variance in the PS and MA lines.  First, any residual 428 

genetic variation would be equivalently partitioned among PS lines and MA lines, and would 429 

contribute equally (on average, sampling variance notwithstanding).  The MA lines were initiated 430 

in March, 2001, at which time the G0 ancestor was expanded to large population size (three 431 

generations) and cryopreserved.  Over the intervening 16 years, the ancestor has been thawed, 432 

re-expanded, and re-frozen several times.  We do not know exactly how many times the 433 

ancestor has been thawed/expanded/re-frozen, but five is a conservative (high) estimate.  If we 434 

assume that each expansion takes three generations and there have been five such 435 
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expansions, then any two PS lines will have diverged for 2x5x3=30 generations.  In contrast, 436 

any two MA lines have diverged for 2x(250+3)≈500 generations.   437 

If technical and/or residual genetic variation cannot explain the among-line variance of 438 

PS lines, the most likely remaining possibility is heritable epigenetic effects.  We cannot rule out 439 

a vertically-transmitted pathogen, such as a virus or an intracellular parasite, e.g., microsporidia.  440 

However, there is no reason to expect variation in such a pathogen in long-term laboratory lines, 441 

whereas there is abundant evidence for heritable epigenetic effects in C. elegans.  Data were 442 

collected on the F4 descendants of the most recent common ancestor of a line (Figure 3B; 443 

Supplementary Table 1), which means that any non-genetic short-term heritable effects that are 444 

common to a line had to have been maintained for at least four generations, and perhaps since 445 

the founder of the PS line six generations back (Figure 3A).  Thus, effects common to a line 446 

meet the definition of "transgenerational" effects (i.e. passed down to at least the F3, RECHAVI 447 

AND LEV 2017).  We return to the topic of epigenetic inheritance in the Discussion. 448 

 449 

Among-line correlations  450 

The absence of significant mutational variance precludes estimation of mutational covariances, 451 

which was one of the underlying motivations of this study.  However, because there is 452 

significant among-line variance for most traits in both the PS and MA lines, it is meaningful to 453 

investigate the among-line correlations over the set of all lines (Figure 4).  Note that these are 454 

not phenotypic correlations in the usual sense.  Presumably, the among-line correlations reflect 455 

what might be thought of as epi-pleiotropy – the effects of an epigenetic variant (whatever it may 456 

be) on multiple traits – as well as the cumulative pleiotropic effects of new mutations. 457 

There were significant positive correlations between the concentration of ADA and its 458 

substrate (adenosine; (r = 0.57, p<0.0001) and product (inosine; r= 0.63, p<0.0001), and 459 

between the pools of adenosine and inosine (r = 0.59, p<0.0001).  ADK concentration was 460 

positively correlated with the concentration of its substrate (adenosine; r = 0.32, p<0.0002), but 461 
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  462 

 463 

Figure 4. Heatmap of Pearson’s correlations between traits. Correlations within the 464 

black box are those traits within the adenosine pathway. Significance levels are shown 465 

as follows: *** = p<0.001, ** = p<0.01, *=p<0.05. 466 
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uncorrelated with its product, AMP.  Pools of AMP and adenosine were uncorrelated.  We were 467 

unable to measure the activity or concentration of adenosine phosphoribosyltransferase 468 

(APRT), which converts Adenine to AMP.  469 

 470 

DISCUSSION 471 

We are confronted with two results which appear contradictory. First, for some traits the means 472 

change significantly over the course of ~250 generations of evolution under MA conditions (4/17 473 

decline, 2/17 increase). However, the mutational variance (VM) does not differ significantly from 474 

zero for any trait.  That trait means change with MA is not unexpected, and there is no a priori 475 

reason to expect every trait to change in the same direction; metabolic traits are not fitness 476 

components per se.  The average absolute ΔM is on the order of 0.1%/generation, consistent 477 

with a wide variety of traits in these lines (summarized in Supplemental Table S2 of DAVIES et 478 

al. (2016)).  Notably, the activity of the two enzymes we investigated remained either 479 

unchanged (ADK) or changed only very slightly (ADA), consistent with the coding sequence of 480 

an enzyme providing a small mutational target.    481 

Conversely, the general lack of significant mutational variance is unexpected, especially 482 

because several traits show clear evidence for the cumulative effects of mutation on the trait 483 

mean.  The lack of mutational variation is not because there is no variation between MA lines. 484 

The cumulative effects of mutation were not swamped by technical or microenvironmental noise 485 

(i.e., residual variance; VE in the parlance of quantitative genetics).  For most traits, the among-486 

line variance of the MA lines is significantly greater than zero (Table 2).  Rather, the variance 487 

among pseudolines of the ancestral control of similar magnitude to the variance among MA 488 

lines.  Again, enzyme activity is an exception; there is no variance in enzyme activity among MA 489 

lines or among PS lines, as expected if enzyme activity is primarily a function of the protein itself 490 

and the coding sequence of the gene remains unmutated.         491 
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 At this point, we must confront an uncomfortable truth.  We chose the adenosine 492 

metabolism pathway for further scrutiny based on two findings of DAVIES et al. (2016).  In that 493 

study, mean adenosine concentration increased by over 4% per generation – one of the largest 494 

values of ΔM reported for any trait in any organism – whereas in this study we found a slight 495 

(non-significant) decline in mean adenosine concentration of about 0.2%/generation in the same 496 

set of MA lines.  Similarly, DAVIES et al. reported a mutational heritability (VM/VE) for adenosine 497 

concentration of about 0.004/generation – toward the high end of mutational heritabilities 498 

(HOULE et al. 1996) – whereas, we found no significant mutational variance.  Clearly, the two 499 

studies are at odds: they can't both be right, although they may both be wrong in different ways. 500 

Admittedly, the methods of quantifying metabolite concentration were different in the two 501 

studies; we used LC-MS in this study, whereas DAVIES et al. used GC-MS, but a poor workman 502 

blames his tools.   503 

For economic reasons (metabolomics is expensive), DAVIES et al. did not include 504 

pseudolines of the G0 ancestor in their study.  As it happens, all but three of the 43 MA lines 505 

included in the DAVIES et al. study had mean adenosine concentrations greater than that of the 506 

G0 ancestor, which was an order of magnitude less than the mean of the MA lines in normalized 507 

units (𝑧𝑧�̅�𝑀𝑀𝑀 = 22.6±3.4, 𝑛𝑛�=3.9; 𝑧𝑧0= 2.1±0.7,n=9; see Figure 1 of DAVIES et al. (2016)).  Because 508 

ΔM is measured relative to the ancestor, if the mean value of the ancestor is atypically small, 509 

ΔM will be atypically large.  We have no reason to doubt the accuracy of the estimate of mean 510 

adenosine concentration of the G0 ancestor in the DAVIES et al. study.  3/43 MA lines had mean 511 

concentrations lower than the ancestor, and another seven MA lines had means less than the 512 

largest of the nine replicates of the ancestor.  Moreover, the average metabolite concentration 513 

of the ancestor was not low relative to the MA lines when all 29 metabolites are considered: the 514 

median rank of the ancestor is 34/44 (data from DAVIES et al. (2016) are archived in Dryad, at 515 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.2dn09).   516 
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It is important to carefully consider the differences between the ways the ancestral 517 

controls were treated in the two studies.  At the outset of the DAVIES et al. study, in 2009, a 518 

single cryopreserved sample of the ancestor was thawed in the Baer lab (Florida) and plated.  519 

From that plate, a "chunk" containing hundreds of worms was transferred onto another plate 520 

and sent to the Leroi lab in England, at which time worms were washed from the plate and 521 

cryopreserved at -80° C.  Later, one tube of the ancestor was thawed and plated onto a 100 mm 522 

plate.  When the population on that plate reached high density (2-3 generations), worms were 523 

washed from the plate and "bleached" (SULSTON AND HODGKIN 1988), and surviving L1 larvae 524 

were chunked onto a new plate.  From that plate, nine replicate plates were initiated from a 525 

single individual, and the populations grown to high density (2-3 generations) and synchronized 526 

by bleaching.  Surviving L1s were plated and grown until worms reached young adulthood, at 527 

which time worms were collected for extraction of metabolites.  In this design, the nine replicate 528 

plates are conceptually identical to the five replicates of each MA line, and the among-replicate 529 

(=within-line) variance is the residual variance, VE.       530 

In this study (depicted in Figure 3A), 15 replicate plates were initiated from a single 531 

individual, grown to high density (two generations), and cryopreserved.  These are the 15 532 

ancestral pseudolines (PS).  Subsequent to thawing (depicted in Figure 3B), the PS lines were 533 

treated identically to MA lines, with five replicate plates per PS line initiated from a single 534 

individual worm taken from the thawed plate.  The replicates then were then propagated to the 535 

F3 descendants of the original founder of the replicate, and their offspring (F4) collected for 536 

analysis.  The variation among replicates is the residual variance, VE.  Any effects that are 537 

common to a PS line (i.e., which contribute to VL) must necessarily have been maintained at 538 

least since the replicates diverged from their most recent common ancestor four generations 539 

previously, and potentially for as many as the six generations subsequent to the founding of the 540 

PS lines.  541 
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We believe the source of the discrepancy in ΔM between the two studies is likely the 542 

same as the source of the discrepancy in VM: short-term heritable, epigenetic variation.  For 543 

example, there is a ~120X difference between the mean adenosine concentrations between the 544 

two most extreme of the 43 MA lines in the DAVIES et al. study.  The conventional interpretation 545 

is (and was) that spontaneous mutations accumulated over a couple of hundred generations 546 

can lead to huge differences in metabolite concentrations (and presumably in the concentrations 547 

of other biological molecules).  However, there is a ~100X difference in the mean adenosine 548 

concentration between the two most extreme of the PS lines in this study, lines that have 549 

diverged for only a few generations.  If the one aliquot of the ancestor sampled in the DAVIES et 550 

al. study just happened by chance to fall in the lower tail of the distribution, voilà: ΔM "among 551 

the largest reported for any trait" (quoting DAVIES et al. 2016, p. 2243).           552 

 Given that the short-term heritability observed here is in fact epigenetic, what might be 553 

the cause(s), both proximate (i.e., mechanistic) and ultimate (e.g., environmental)?  There is a 554 

burgeoning literature on heritable epigenetic effects in C. elegans, which can have a number of 555 

mechanistic causes, including several varieties of small RNA (RECHAVI AND LEV 2017), histone 556 

modifications (FURUHASHI et al. 2010; RECHTSTEINER et al. 2010; TABUCHI et al. 2018), and 557 

possibly 6-methyl adenine in DNA (GREER et al. 2015).  Heritable epigenetic effects have been 558 

shown to affect a wide variety of traits (SCHOTT et al. 2014; DEMOINET et al. 2017; HAN et al. 559 

2017; KISHIMOTO et al. 2017), and in some cases have been shown to last for tens of 560 

generations (ASHE et al. 2012; RECHAVI AND LEV 2017).  Parental age (PEREZ et al. 2017)  and 561 

nutrition status (MIERSCH AND DORING 2012; TAUFFENBERGER AND PARKER 2014; JOBSON et al. 562 

2015) are especially well-documented drivers of epigenetic variation and are obvious potential 563 

sources of variation in the experiments reported here.      564 

 Nailing down the mechanistic cause(s) responsible for the epigenetic variation inferred 565 

here would be both very interesting and very challenging, but it is beyond the scope of this 566 

study.  To do so would involve a multi-omics study, including whole-genome transcriptomics, 567 
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metabolomics, proteomics, and ChIP-seq with a smorgasbord of histone-tag antibodies to 568 

determine the underlying chromatin status.  However, while we do not know the mechanistic 569 

underpinning(s) of the epigenetic variation among the ancestral pseudolines, the fact that we 570 

detected so much epigenetic variation suggests that it is an important consideration in mutation 571 

accumulation studies, and more generally, in any quantitative genetic study in which phenotypic 572 

variance is partitioned within and among genotypes.      573 

 In the only study comparable to this one, CLARK et al. (1995, Table 3) found significant 574 

mutational heritability for the activity of 8/12 metabolic enzymes in a set of Drosophila 575 

melanogaster MA lines that had evolved under MA conditions for 44 generations. However, their 576 

assay conflates variation in enzyme activity per se and variation in enzyme concentration into 577 

the composite category "enzyme activity" (normalized by body weight and total protein 578 

concentration), without correcting for enzyme concentration.  The Drosophila melanogaster 579 

genomic mutation rate is perhaps 3X greater than that of C. elegans (SHARP AND AGRAWAL 580 

2012; SCHRIDER et al. 2013), which suggests that after 44 generations of MA, a Drosophila MA 581 

line would have accumulated approximately half as many mutations as one of our C. elegans 582 

MA lines.  Contrary to our expectation based on the preceding evidence, neither of the two 583 

metabolic enzymes we assayed (ADA and ADK) exhibited among-line variance for activity per 584 

se in either the MA lines or the PS lines.  Thus, for those traits, we cannot attribute the absence 585 

of VM to the confounding effects of among-line variance in the ancestor.  It is interesting that the 586 

activity of these two enzymes is similarly unperturbed by both mutation and epigenetic factors.  587 

However, neither ADA nor ADK was included in the CLARK et al. study; it is certainly possible 588 

that had those enzymes been included in that study, they would have fallen in the group of 589 

enzymes without significant VM.  590 

 We conclude with two thoughts.  First, for this set of metabolic traits (enzyme activity 591 

notwithstanding), a few generations of short-term heritable (presumably) epigenetic effects 592 

swamp the signal of ~250 generations of accumulated mutations.  Perhaps that should not be 593 
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surprising: it is simply phenotypic plasticity, albeit of a different sort than evolutionary biologists 594 

are used to thinking about.  It does strongly suggest, however, that investigators doing MA 595 

experiments need to be especially mindful of how the ancestor is treated.  But also, second: 596 

these findings cast the recent increase in human metabolic complex disease in a different light.  597 

Although we remain skeptical of epigenetic variation as a general cause of "missing heritability", 598 

it may be that metabolic traits are particularly susceptible to epigenetic regulation and are 599 

worthy of closer scrutiny in that regard. 600 

 601 

Data Availability 602 

Raw data are included in online supplemental file Supplemental Data and are deposited in 603 

Dryad (URL XXX).   604 
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