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Abstract 1 

Using an information criterion to evaluate models fitted to spike train data from chinchilla 2 

semicircular canal afferent neurons, we found that the superficially complex functional 3 

organization of the canal nerve branch can be accurately quantified in an elegant mathematical 4 

model with only three free parameters.  Spontaneous spike trains are samples from stationary 5 

renewal processes whose interval distributions are Exwald distributions, convolutions of Inverse 6 

Gaussian and Exponential distributions.  We show that a neuronal membrane compartment is a 7 

natural computer for calculating parameter likelihoods given samples from a point process with 8 

such a distribution, which may facilitate fast, accurate, efficient Bayesian neural computation for 9 

estimating the kinematic state of the head. The model suggests that Bayesian neural computation 10 

is an aspect of a more general principle that has driven the evolution of nervous system design, 11 

the energy efficiency of biological information processing.   12 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.933150doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.933150
http://creativecommons.org/licenses/by/4.0/


3 

Significance Statement 13 

Nervous systems ought to have evolved to be Bayesian, because Bayesian inference allows 14 

statistically optimal evidence-based decisions and actions.  A variety of circumstantial evidence 15 

suggests that animal nervous systems are indeed capable of Bayesian inference, but it is 16 

unclear how they could do this.  We have identified a simple, accurate generative model of 17 

vestibular semicircular canal afferent neuron spike trains.  If the brain is a Bayesian observer 18 

and a Bayes-optimal decision maker, then the initial stage of processing vestibular information 19 

must be to compute the posterior density of head kinematic state given sense data of this form. 20 

The model suggests how neurons could do this.   Head kinematic state estimation given point-21 

process inertial data is a well-defined dynamical inference problem whose solution formed a 22 

foundation for vertebrate brain evolution.  The new model provides a foundation for developing 23 

realistic, testable spiking neuron models of dynamical state estimation in the vestibulo-24 

cerebellum, and other parts of the Bayesian brain.  25 

  26 
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Introduction 27 

The vestibular organs enable agile movement and perceptual acuity by providing the brain 28 

with sense data for spatial orientation and postural stability.  Among the five sensory epithelia 29 

within the mammalian vestibular labyrinth, three semi-circular canal cristae each detect head 30 

rotation around a single axis.  Dedicated branches of the vestibular nerve transmit Information 31 

from each semicircular canal to the brain (Goldberg et al., 2012).  Early recordings indicated that 32 

the population firing rate within each nerve branch encodes the rate at which the head is turning 33 

around the canal axis (Lowenstein & Sand, 1940), but single-unit recordings later revealed 34 

systematic, correlated statistical and dynamical heterogeneity within each population (Goldberg 35 

& Fernandez, 1971b).  The pattern of vestibular afferent neuron behaviour is similar in all 36 

vertebrates and has been described using a variety of mathematical models (Paulin & Hoffman, 37 

2019), but remains unexplained. Why is low-dimensional sensory information about head rotation 38 

around a single axis distributed across such a large number of channels in parallel?  Why are the 39 

spike trains so noisy?  Why are the statistical and dynamical properties of these neurons so 40 

diverse, and why are they correlated?  At first sight information transmission in the vestibular 41 

nerve seemed simple: Firing rate encodes stimulus strength. But it turns out to be much more 42 

complicated than that. Why?  43 

We hypothesized that these questions can be answered by modelling the activity of vestibular 44 

sensory afferent neurons as observations for a Bayesian observer, whose goal is to infer what in 45 

the world is causing the observations. In this paper we explain how we identified a Bayesian 46 

generative model of spontaneous firing in vestibular semi-circular canal afferent neurons, and 47 

how it may provide a foundation for modelling neural mechanisms of perception as Bayesian 48 

inference.   49 

A Bayesian observer represents relevant states of the environment and themselves using a 50 

probability distribution, called the Bayesian posterior distribution.  They apply Bayes rule to infer 51 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.933150doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.933150
http://creativecommons.org/licenses/by/4.0/


5 

the posterior, the conditional probability distribution of states given what they observe (Gelman et 52 

al., 2013; Jaynes & Bretthorst, 2003; Kruschke, 2015).  Bayesian inference allows statistically 53 

optimal evidence-based decisions and actions (Berger, 1985). This has led to speculation that 54 

our nervous systems ought to have evolved to be Bayesian, with selective fitness as an 55 

optimization criterion (Doya, 2007; Knill & Pouget, 2004; Knill & Richards, 1996; Kording, 2007; 56 

Kording & Wolpert, 2006; Levy, 2006; O'Reilly, Jbabdi, & Behrens, 2012; Ramirez & Marshall, 57 

2017; Yuille & Kersten, 2006).  The behaviour of humans and other animals is consistent with this 58 

“Bayesian brain” hypothesis (Ostwald et al., 2012; Valone, 2006). However, because Bayesian 59 

inference is conditional not only on observations but also on a model of how observations depend 60 

on states, and optimality criteria can be arbitrary, it is possible to reverse-engineer a Bayesian 61 

explanation for any observed behaviour (Bowers & Davis, 2012; Jones & Love, 2011).  Thus 62 

realistically modelling neural computation for Bayesian inference, and testing the Bayesian brain 63 

hypothesis, requires neurobiological model systems whose performance can be quantified 64 

independently and for which observer models can be determined empirically.  We suggest that 65 

the vestibular system, including the vestibulo-cerebellum, which has long been proposed as a 66 

locus of Bayesian neural computation for dynamical estimation of head kinematic state variables 67 

(Borah, Young, & Curry, 1988; de Xivry, Coppe, Blohm, & Lefevre, 2013; MacNeilage, Ganesan, 68 

& Angelaki, 2008; Paulin, 1989, 1993, 2005; Paulin & Hoffman, 2011; Selva & Oman, 2012; 69 

Young, 2011), is suitable for this purpose.  70 

Except in some classical special cases, dynamical Bayesian inference requires a generative 71 

model, a model capable of generating simulated observations with the same statistical distribution 72 

as the data.  Given such a model, sequential random sampling methods can be used to infer the 73 

Bayesian posterior density of the model parameters from data (Doucet, De Freitas, & Gordon, 74 

2001).   Mathematical parameters of a realistic generative model will map onto to kinematic state 75 

variables of the head, the physical parameters of vestibular afferent neuron spike trains. Thus a 76 
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first step towards a realistic model of Bayesian neural computation for optimal dynamical head 77 

kinematic state estimation in the vestibulo-cerebellum is to identify a generative model of 78 

vestibular sensory afferent neuron spike trains. 79 

 80 

Methods 81 

All procedures involving animals were approved by the UCLA Chancellor’s Animal Research 82 

Committee, and conformed to guidelines mandated in the NIH Guide for the Care and Use of 83 

Laboratory Animals (National Institutes of Health Publication, revised 2011), and the Guidelines 84 

for the Use of Animals in Neuroscience Research (Society for Neuroscience). 85 

Animal preparation 86 

Adult male chinchillas (n=27; body mass 450 – 650 grams) were used in these experiments.  87 

They were first anesthetized with isoflurane, after which an intravenous cannula was secured 88 

within a jugular vein through which maintenance doses of sodium pentobarbital (0.05cc, 50 mg/cc) 89 

were administered.  A tracheotomy was performed into which a catheter delivering 100% O2 was 90 

loosely placed.  Heart and respiratory rates, as well as O2 saturation levels, were monitored 91 

throughout the surgical preparation and recording session.  Core body temperature was 92 

maintained between 38° - 38.5°C with a custom servo-controlled heater and rectal thermocouple 93 

probe.  Animals remained physiologically stable throughout the long electrophysiologic recording 94 

sessions, which at times lasted longer than 12 hours. 95 

Upon achieving a surgical plane of anesthesia animals were fit into a custom head holder 96 

fixed to a turntable.  Surgical procedures were similar to those utilized in previous investigations 97 

of vestibular afferent electrophysiology (Baird, Desmadryl, Fernandez, & Goldberg, 1988).  The 98 

right middle ear was exposed by removing the bony cap of the tympanic bulla.  The bony ampullae 99 

of the superior and horizontal semicircular canals were identified, which provided landmarks to 100 
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the internal vestibular meatus channelling the superior vestibular nerve between the labyrinth and 101 

brainstem.  The superior vestibular nerve was exposed at this site, approximately 1 – 2 mm from 102 

the landmark ampullae, using fine diamond dental drill bits.  Final exposure of the nerve was 103 

achieved by gently teasing the epineurium from the nerve with electrolytically sharpened pins. 104 

Single afferent electrophysiology 105 

Spontaneous discharge epochs from 330 semicircular afferents within the superior vestibular 106 

nerve were recorded with high-impedance microelectrodes (40 – 60MΩ) driven by a piezoelectric 107 

microdrive.  Spontaneous discharge was detected as the electrode approached an afferent, and 108 

generally improved with subtle adjustments in electrode position achieved by small manipulations 109 

of the microdrive (e.g. small forward and reverse displacements, in addition to gentle tapping of 110 

the drive).  Upon achieving stable recording, manual turntable displacements were used to identify 111 

the epithelium from which the afferent projected.  Afferents innervating the horizontal and superior 112 

cristae increased their discharge to rotations resulting in utriculofugal and utriculopetal endolymph 113 

flow, respectively, and would decrease in discharge in response to turntable rotations in the 114 

opposite direction.  Afferents projecting to the utricle were generally unresponsive to rotations, or 115 

increased their discharge during application of rotations in both directions (centripetal 116 

displacements of the otolithic membrane concomitant with rotation in either direction).  These 117 

afferents were excluded from the present dataset. 118 

Spiketrain analysis and model fitting 119 

Data acquisition, Summary Statistics and Exploratory Analysis 120 

Single-unit spike times were acquired in 20-second records with 300s resolution, and 121 

imported into MATLAB as arrays of interspike interval (ISI) lengths in seconds.  Plots of spike time 122 

data and ISIs were visually inspected to identify trends, discontinuities and outliers indicating 123 

possible miss-triggering during data acquisition.  We tested for serial correlation in interval length 124 
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using a Wald-Wolfowitz runs test (MATLAB function runstest).  Records with detectable artefacts 125 

or non-stationarity were removed, leaving 306 (of the initial 330) selected records for further 126 

analysis and modelling.   127 

Mean (�̅), standard deviation (�), coefficient of variation (�� = �/�̅) and Pearson’s moment of 128 

skewness (� = �[(� − �)�]/��) were computed for the intervals in each spiketrain, using MATLAB 129 

functions mean, std and skewness. Standard deviations of interval length for the most regular 130 

units in our sample are comparable to the resolution of spike time data acquisition (300us).  131 

Because of this, estimates of CV and skewness for very regular units may be less reliable than 132 

estimates for irregular units. CV is a scale-invariant measure of variability. It is near zero for highly 133 

regular spike trains, near 1 for completely random or Poisson-like activity, and becomes larger 134 

than 1 for clumped or bursting activity.  By convention, neurons whose CV falls in the lowest 1/3 135 

of a sample of vestibular afferents are deemed “regular”, neurons whose CV falls in the largest 136 

1/3 are deemed “irregular”, while neurons with intermediate CV are deemed “intermediate” 137 

(Goldberg & Fernandez, 1971b).   138 

 139 

Candidate Models 140 

The selected records are observations from a stationary renewal process (no correlation or 141 

trends in interval length over time), which can be modelled as sequences of samples from a fixed-142 

parameter probability distribution of interval lengths.  This is a complete model because the event 143 

times themselves, up to an arbitrary start time, can be recovered from the sequence of intervals 144 

between them.  Since interval lengths must be positive and can have arbitrary length, candidate 145 

models must be probability density functions �(�;  �) defined on � > 0 with parameters �.   146 

Previous studies have shown a consistent pattern of ISI distributions in vestibular afferent 147 

spike trains.  ISI distributions of the most regular afferents have narrow distributions which are 148 

nearly symmetrical and approximately Gaussian, with standard deviations much smaller than 149 
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mean interval length (� ≪ �).  A Gaussian with � ≪ � > 0 has essentially no probability mass 150 

below zero and can be treated as a density on � > 0.  ISI distributions of more irregular neurons 151 

tend to be more right-skewed with larger CVs, while interval distributions of the most irregular 152 

neurons resemble exponential distributions, with standard deviation similar to mean interval 153 

length (CV=1).  Differences between the most regular and the most irregular neurons are so great 154 

that it has often been suggested that there are distinct populations within the nerve, but there is 155 

a continuum of behaviour between these extremes (Paulin & Hoffman, 2019).  Suitable candidate 156 

models therefore are positive-valued, continuously-parameterized probability densities whose 157 

shape transforms continuously between limiting cases resembling Gaussian and Exponential 158 

distributions.   159 

Our candidate models fall into three groups.  The first group (1.1-1.5 below) were all initially 160 

derived as models of simple physical processes that are at least somewhat analogous to the 161 

canonical “noisy integrate-and-fire” model of a stochastic neuron (ref), and have all been applied 162 

previously to model spiking statistics of neurons, including vestibular semicircular canal afferent 163 

neurons (refs). This group contains the Weibull, Log-normal, Erlang (Integer Gamma), Birnbaum-164 

Saunders (cumulative damage) and Inverse Gaussian or Wald distributions.  They are available 165 

in the MATLAB Statistics Toolbox. 166 

1.1 Weibull  167 

���(�;  �, �) = �
�

�
�

�

�
�

���

��(� �⁄ )�
     � ≥ 0

0                                       � < 0

 168 

is the distribution of intervals between events when event rate is proportional to a power of the 169 

waiting time since the last event.  This is a birth-death model with “aging”.  When � = 1 (constant  170 

event rate) the Weibull reduces to an Exponential distribution.   171 

1.2 Log-normal  172 

���(�;  �, �) =  
1

��√2�
�

��
(�� ���)�

��� �
 173 
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is the distribution of outcomes of a growth process involving multiplicative interactions among 174 

many small random effects.  Multiplicative interactions are additive on a log scale, so the log of 175 

the outcome has a Gaussian or normal distribution because of the Central Limit Theorem.   176 

1.3 Erlang  177 

����(�;  �, �) =
������� �⁄

��(� − 1)!
 178 

where the shape parameter, �, is a positive integer and the scale parameter, �, is a positive real 179 

number, is the distribution of waiting times for � events in a Poisson process when the average 180 

waiting time is � (such that the average waiting time in the underlying Poisson process is � �⁄ ).  181 

When �=1 the Erlang reduces to an Exponential distribution, the waiting time distribution for 182 

events in a Poisson process.  This has been a popular model of neuronal firing variability, 183 

including for vestibular afferent neurons, because of its flexible shape which resembles empirical 184 

interval distributions, and because it has a simple mechanistic interpretation as the waiting time 185 

for the accumulation of quantal events occurring at random times to reach a threshold (Lansky, 186 

Sacerdote, & Zucca, 2016; Shimokawa, Koyama, & Shinomoto, 2010). 187 

1.4 Birnbaum-Saunders  188 

����(�;  �, �) =  
�� �⁄ + �� �⁄

2��√2�
�

��
��� �⁄ ��� �⁄  �

�

��� �

 189 

is the distribution of waiting time for the accumulation of events with a Gaussian distribution of 190 

amplitudes occurring at random times to reach a threshold.   It is also known as the Cumulative 191 

Damage distribution because of its application to modelling time-to-failure of a system subjected 192 

to impacts with random magnitudes occurring at random times.  It is a physically plausible model 193 

of time to threshold for a neuron receiving EPSPs with Gaussian amplitudes, which fits spike train 194 

data from real neurons and biophysically realistic computational neural models (Leiva et al., 195 

2015).   196 

1.5 Inverse Gaussian or Wald  197 
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����(�;  �, �) = � 
�

2���
�

��
�(���)�

����
�
 198 

is the distribution of waiting times for Gaussian noise with mean 1/� with and variance 1/� to 199 

integrate to a threshold at 1.  It models the first passage time (time to hit a barrier) of a drift-200 

diffusion process, i.e. Brownian motion in constant flow (Chhikara & Folks, 1989; Folks & 201 

Chhikara, 1978). 202 

As discussed in the Results section, a second group of candidate models was constructed by 203 

adding a fixed latency (time offset) parameter to some of the candidates in Group 1. This group 204 

contains Erlang, Wald and Birnbaum-Saunders distributions, each with an additional time-shift 205 

parameter, �. 206 

2.1 Offset Erlang 207 

����(�;  �, �) = � +
������� �⁄

��(� − 1)!
 208 

2.2 Offset Wald 209 

����(�;  �, �) = � + � 
�

2���
�

��
�(���)�

����
�
 210 

2.3 Offset Birnbaum-Saunders 211 

����(�;  �, �) =  � +
�� �⁄ + �� �⁄

2��√2�
�

��
��� �⁄ ��� �⁄  �

�

��� �

 212 

For reasons discussed in Results, a third group of models was constructed by replacing the 213 

constant offset parameter � in the Group 2 models with an Exponentially-distributed random time 214 

offset having mean �.  In each case this creates a new random variable as the sum of two random 215 

variables, whose distribution is the convolution of the distributions of the components. 216 

3.1 Exerlang  217 

����(�;  �, �, �) =
1

��1 −
�

�� �
� ��

�
� gammainc �� �

1

�
−

1

�
� , �� 218 
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This expression for the convolution of an Exponential distribution and an Erlang distribution 219 

was obtained using Mathematica (Wolfram Research, Illinois, USA).   gammainc is the MATLAB 220 

incomplete gamma function, a MATLAB built-in special function.  The incomplete gamma function 221 

is defined slightly differently in MATLAB and Mathematica, so the result derived by Mathematica 222 

requires adjustment to obtain the formula given above.  223 

3.2 Exwald 224 

����(�;  �, �, �) =  

⎩
⎪
⎨

⎪
⎧ �(� �⁄ �� �⁄ ) ((erfc(� − �) ) � + �(erfc(� + �))⁄ ) (2�),   if � ≥ 0⁄

�(� �⁄ �� �⁄ )����������� ���√−�� + ����

�
,                                 if � < 0

 225 

where � = � (2��)⁄ − 1 �⁄ , � = �� (2�)⁄  and � = √��.  erfc is the complementary error function, � 226 

is the Fadeeva scaled complex complementary error function (Abramowitz & Stegun, 1964), � =227 

 √−1 and ��(�) is the real part of the complex number �.  This expression was modified from 228 

formulae given by Schwarz (ref), by setting the barrier distance/threshold level parameter in the 229 

Wald component of Schwarz’s derivation to 1 and scaling the other parameters accordingly.   We 230 

found that this expression can be numerically unstable when � ≪ � (diffusion negligible compared 231 

to drift) or � ≪ � (Exponential component negligible compared to Wald component). In the former 232 

case we reduced the Wald drift-diffusion component to a pure drift, approximating the Exwald 233 

using an Exponential distribution with fixed time offset, �.  In the latter case we removed the 234 

Exponential component, approximating the Exwald using only the Wald component.  None of our 235 

data were fitted by models with parameters in regions of parameter space where these 236 

approximations were applied, but it was necessary to include these approximations to prevent 237 

numerical instability when the fitting algorithm explores the parameter space before converging. 238 

3.3 Exgaussian 239 

����(�;  �, �, �) =
1

2�
���(���)��� �⁄ �erfc(� − � +

��

�
) 240 

 241 
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This expression for the convolution of a Gaussian distribution with mean �  and variance �� 242 

and an Exponential distribution with mean interval parameter � was derived analytically using 243 

Mathematica (Wolfram Research, Illinois, USA). In this expression, erfc(x) = 
�

√�
∫ ����

��
�

�
, is the 244 

complementary error function, a MATLAB built-in Special Function.  245 

 246 

Fitting Criterion 247 

Given an observed probability distribution, �(�), and a model �(�), the Kullback-Liebler 248 

divergence from �(�) to �(�), also known as entropy of �(�) relative to �(�), is 249 

 ���(�‖�) = ∫ �(�)����
�(�)

�(�)
�� (1). 250 

It measures the bits of information lost when �(�) is used to approximate the empirical distribution, 251 

�(�).  Given a set of candidate models, minimum ��� identifies the candidate that  minimizes the 252 

expected information in future observations, given what has been observed (Jaynes & Bretthorst, 253 

2003; Kullback & Leibler, 1951; Paulin & Hoffman, 2001).   254 

Given N observations ��, ��, ⋯ , ��, the empirical distribution can be represented as a 255 

normalized frequency histogram, with probability �� = �� �⁄  in the k th bin, where �� is the number 256 

of observations in the k th bin. Assuming that �(�) ≈ �� is constant in the kth bin, the expression 257 

for ��� reduces to a sum, 258 

 ���(�‖�) = ∫ �(�)����
�(�)

�(�)
�� =  ∑ �� ����

��

��
 (2). 259 

If each bin is very narrow and contains at most one observation then �(�) = �� and the 260 

normalized histogram reduces to a particle model, with probability �(��) = 1 �⁄  at the observed 261 

points �� and zero elsewhere. In that case the expression for ��� reduces to 262 

 ���(�‖�) = ∫
�(����)

�
���� �

�(����)

� �(�)
� �� = −

�

�
∑ ����(�(��)/�)   (3). 263 

Thus 264 

  ���(�‖�) = −
�

�
∑ ������(��)� +  ����(�)  (4), 265 
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is negative log-likelihood with a logarithmic penalty on sample size.  266 

Since the sample size is fixed in each record, fitting a model by minimum ���is equivalent to 267 

fitting a model by maximum likelihood for any given neuron.  However, across neurons KLD scales 268 

the log-likelihood by the entropy of the empirical distribution, giving a measure of model 269 

performance which is independent of differences in variability of spike time data from different 270 

neurons. For example, regular neurons have narrow ISI distributions with high probability 271 

densities, and generate more spikes during the 20-second recording period because they fire 272 

faster.  As a result, the likelihood for any given model is generally larger for more regular neurons, 273 

and using maximum likelihood would bias section in favour of candidates that are better at fitting 274 

regular neurons. ��� avoids this problem. Having said that, we found that using maximum 275 

likelihood as a model-selection criterion leads to qualitatively similar results as using ���, and 276 

does not change our conclusions.   277 

 278 

Model Fitting 279 

Models were fitted using the MATLAB function fminseachbnd 1.4.0 (D'Errico, 1965), which 280 

implements the Nelder-Mead simplex algorithm (Nelder & Mead, 1965) with constraints.  The 281 

constraints were applied to prevent the algorithm from stepping outside the region of parameter 282 

space in which a model is defined (e.g. negative mean interval length), which would produce 283 

meaningless results and/or numerical instability.  284 

Analysis of Fitted Models 285 

Candidate models have at most 3 parameters meaning that fitted parameters for each neuron 286 

can be visualized as a point in 3D, and parameters fitted to all records form a cloud in 3D space.  287 

The cloud of points fitted to our data is roughly ellipsoidal in log-log axes. We computed the major 288 

axes of this ellipsoid using the pca function in the MATLAB Statistics Toolbox.  We computed the 289 

convex hull of parameter estimates in 2D projections (the smallest polygon enclosing all points) 290 
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using the MATLAB built-in function convhull.  We used the first principal component axis to 291 

generate curves in parameter space showing the predicted value of a parameter given some other 292 

parameter.  For example, to show how a model parameter � relates to the summary statistic 293 

CV= � �̅� , we find parameters on the first principal component axis corresponding to a  model with 294 

this CV.  Simple closed expressions can be found in all cases, i.e. it is not necessary to use 295 

numerical optimization/search procedures to compute these curves.   296 

Results 297 

Summary Statistics 298 

Figure 1 about here 

 299 

 300 

Figure 1: (a) Mean inter-spike interval length vs coefficient of variation (CV) of spontaneous 301 

activity. Normalized inter-spike interval (ISI) histograms shown for a regular, intermediate and 302 

an irregular afferent.  Aspect ratios are adjusted to show differences in shape between the 303 

distributions.  Horizontal scale bars are 12ms. Vertical scale bars represent relative frequency 304 

0.05.  Inset (lower right) shows the three histograms overlaid with a common aspect ratio. (b) 305 

Average Kullback-Liebler divergence (information loss in bits) for candidate models relative to 306 

Exwald, the loss-minimizing candidate.  Group (i) Random walk models; (ii) Fixed time-offset 307 

random walk models; (iii) Exponential random offset random walk models.  Vertical bars are 308 

standard errors of means. 309 
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Figure 1(a) is a scatterplot of conventional ISI summary statistics, mean and coefficient of 310 

variation.  It shows the heterogeneity of spontaneous discharge characteristics, and the tendency 311 

for neurons with shorter mean intervals (higher firing rates) to have more regular firing patterns.  312 

The average mean interval is 16.9 ms (± 13.0ms) and the average CV is 0.17 (± 0.22).  This plot 313 

closely resembles scatterplots of mean ISI vs CV in previous reports of vestibular afferent neuron 314 

spiking activity (e.g. Baird et al. (1988) figure 1; Honrubia, Hoffman, Sitko, and Schwartz (1989) 315 

figure 6b; Goldberg (2000) figure 3A; Hullar et al. (2005) figure 1).  The scatterplot shows the wide 316 

variation in mean interval length and CV with no indication of distinct groups within the population.   317 

ISI histograms for three selected afferents are overlaid on the scatterplot.  They closely 318 

resemble ISI distributions previously reported in vestibular afferents in various species (Paulin & 319 

Hoffman, 2019).  The inset shows these three distributions plotted on common axes. This 320 

illustrates that while mean and CV reveal substantial diversity in spontaneous behaviour of these 321 

neurons, these descriptive statistics fail to characterise the shapes of ISI distributions and the 322 

large, systematic shape changes across the population.  Regular afferents, with faster mean firing 323 

rates tend to have narrow, approximately Gaussian ISI distributions, while irregular, slower-firing 324 

afferents tend to have positively skewed ISI distributions. The most irregular afferents, with CVs 325 

near 1, have ISI distributions that resemble right-shifted or left-censored Exponential distributions.  326 

Exponential interval distributions are characteristic of Poisson processes, for which the average 327 

time between events is fixed but event times are random (Haight, 1967; Landolt & Correia, 1978). 328 

These distributions have the unique property that removing intervals shorter than some specified 329 

duration (left-censoring) is equivalent to right-shifting the distribution by that duration.  330 

 331 

Model Fitting 332 

 Initial candidate models were continuous probability distributions defined on positive 333 

intervals: Weibull, Log-normal, Erlang or Integer Gamma, Inverse Gaussian or Wald, and 334 

Birnbaum-Saunders or Cumulative Damage Distribution (See methods).  For brevity, we refer to 335 
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the Birnbaum-Saunders/Cumulative Damage Distribution as the Damage distribution. These 336 

candidates were selected because they possess the requisite property of having Gaussian-like 337 

shapes in some subregion of their parameter space and Exponential-like shapes in some other 338 

subregion.  Weibull and Lognormal candidates were quickly eliminated because of large 339 

qualitative discrepancies between the shapes of data and model distributions, evident by 340 

inspection of plots.  341 

The remaining candidates, Erlang, Wald and Damage distributions, all seem capable of 342 

generating the shapes of the empirical interval distributions.    In addition, they are all waiting time 343 

distributions for random counting or integrating processes to reach a threshold, and can be 344 

interpreted in terms of simple models of physical mechanisms that underlie neuronal spiking. All 345 

have previously been proposed as models of neuronal spiking variability (See Methods).  Each of 346 

these distributions has two free parameters.   347 

The relative goodness of fit for these three models is shown in the left column of figure 1(b).  348 

The vertical axis in this figure (DKL) is the mean difference between Kullback-Leibler Divergence 349 

from model to data for each model, and the Kullback-Leibler Divergence from model to data for 350 

the model that was ultimately identified as the best model according to the minimum Kullback-351 

Leibler criterion (See Methods).  Error bars represent the standard error of mean DKL.  According 352 

to the minimum DKL criterion, the Damage distribution is the best of these candidates, followed 353 

by the Wald and the Erlang.  354 

Inspection of plots of best-fitting models overlaid on the empirical interval distributions showed 355 

that in many cases a fitted model deviated systematically from the data, while manual adjustment 356 

of parameters indicated that the model should be capable of fitting the shape of the empirical 357 

distribution much more accurately than it did.  We hypothesized that this may be because the 358 

parameters of these models do not affect shape and location independently.  A change in either 359 

parameter is generally accompanied by a change in the location (mean) and the shape of the 360 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.933150doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.933150
http://creativecommons.org/licenses/by/4.0/


18 

distribution.    Because the Kullback-Liebler criterion harshly penalizes models that assign 361 

negligible probability to values that are actually observed, minimum DKL favours spreading 362 

probability mass across all observations (i.e. getting the location right) over matching the shape 363 

of the empirical distribution, when it is not possible to do both.  364 

We tested this hypothesis by adding a time-offset parameter, allowing each model distribution 365 

to shift arbitrarily along the time axis independently of shape changes.   The second panel in 366 

figure 1(b) shows that this additional offset parameter improves the fit of each model.  Visual 367 

inspection of plots showed that all three offset models can accurately locate and match the shapes 368 

of the empirical distributions.  The performance improvement due to the additional free parameter 369 

is similar for each model, so that their ranking remains the same.  The offset Damage model is 370 

the best, followed by the offset Wald and offset Erlang.   371 

Introducing a time offset parameter confirmed that there is (at least) a degree of freedom 372 

missing in each of the group 1 statistical models.  However, a pure time offset in a model of 373 

neuronal spiking is implausible, not simply because it would imply the existence of a biophysical 374 

clock mechanism capable of producing precisely-timed intervals of different lengths in different 375 

neurons, but because some of the fitted time offset parameters in the group 2 models are 376 

negative.  This would imply that in some neurons the clock must trigger the counting/integrating 377 

process that generates a spike at a precise time before the preceding spike. This would violate 378 

causality.   379 

The simplest way to extend the group 1 models in a way that adds a degree of freedom in 380 

location is to include a Poisson process in series.  A Poisson process has only one parameter, 381 

the mean interval length, and has an Exponential distribution of interval lengths (ref).  The effect 382 

of adding an Exponentially-distributed random delay term to each of the Erlang, Damage and 383 

Wald models is shown in the third panel of figure 1(b).  This term improves the fit of all three group 384 

1 models.  As might be expected, since the time-offset models fit quite precisely and the Poisson 385 

series element must introduce a shape change in addition to a time offset, the Poisson element 386 
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doesn’t improve the fit of the Erlang or Damage models as much as a pure time offset does.  387 

Surprisingly, however, it improves the fit of the Wald model by even more than a pure time offset 388 

does.  Evidently a series Poisson process not only provides an additional degree of freedom 389 

allowing the Wald distribution to locate itself over the probability mass of the data, it improves the 390 

ability of the Wald distribution to match the shape of the empirical distribution when it gets there. 391 

An Exponential distribution in series with a Wald distribution is called an Exwald distribution 392 

(Schwarz, 2001, 2002).  Analogously, we refer to the Exponentially-extended Erlang and Damage 393 

distributions the Exerlang and Exdamage distributions respectively.   394 

 Wald components of fitted Exwald models consistently resemble narrow Gaussians with 395 

small positive skewness.   Positive skew in an empirical distribution is invariably fitted by 396 

increasing the interval parameter of the Poisson component of the model, not by altering the skew 397 

of the Wald component.  This raises the possibility that positive skew in empirical ISI distributions 398 

can be explained entirely by the Poisson component of an Exwald model.   399 

We tested this possibility by adding an Exponential-Gaussian series model to the candidate 400 

set. This model is labelled Exnormal in the third panel of figure 1(b).  It fits almost as well as the 401 

Exwald model on average. The relatively small standard error shows that the Exnormal model fits 402 

the data uniformly almost as well as the Exwald model does.   403 

 404 

  405 

 406 

 407 

Figure 2 about here 
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Figure 2:  Fitted Exwald models overlaid on empirical ISI histograms for (a) a regular (b) an 408 

intermediate and (c) an irregular neuron.  The Exwald (pink) decomposes into an Exponential 409 

(brown) and a Wald (teal) distribution.  Scales are different on each axis because of the large 410 

differences in the shapes of the empirical distributions (See inset, figure 1(a)).   411 

 412 

Figure 2 shows Exwald models fitted to ISI histograms for a regular, an intermediate and an 413 

irregular unit. These are the same example units shown in figure 1(a).    Components of the 414 

intermediate model, for which the decomposition is easiest to see, are labelled.  All neurons, not 415 

just these three examples, have a refractory period of 10-12ms during which the probability of 416 

spiking is essentially zero. The refractory period appears to be determined by the Wald 417 

component, while the extent of the tail, corresponding to spiking irregularity, appears to be 418 

determined by the Exponential or Poisson component.  Shape and location parameters of the 419 

Wald components are similar for all three neurons, while the interval parameter of the Poisson 420 

component is larger for more irregular neurons.  421 

Analysis of the Exwald model. 422 

The Exwald is the distribution of intervals generated by an Inverse Gaussian process in series 423 

with a Poisson process.  Each sample from the Exwald is the sum of a sample from the Wald 424 

component and a sample from the Exponential component.  It has three parameters:  �  and �, 425 

which are the mean interval and shape parameters of the Wald distribution, and �, which is the 426 

parameter of the Exponential interval distribution of the Poisson process.  The parameters are all 427 

positive quantities with dimensions of time, reported here in milliseconds.  428 

 429 Figure 3 about here 
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 430 

Figure 3: Principal component analysis of Exwald model parameters.  (a-c) show the 3D cloud of 431 

fitted parameters projected into each of the coordinate planes on log-log axes.  The aspect ratio is 432 

the same on all axes, such that each grid unit represents a tenfold change in magnitude for any of 433 

the parameters.  Almost all of the variability is in  and , which both vary over several orders of 434 

magnitude, while  is similar, averaging 12.7ms, in all afferents.   435 

 436 

Figure 3 shows the result of principal component analysis (PCA) of Exwald model parameters. 437 

The fitted parameters form a flattened, elongated ellipsoidal cloud of points when plotted on log-438 

log axes in 3D.  PCA was used to find the major axes of an ellipsoid fitted to this cloud.  Panels 439 

a-c show the parameter cloud and the principal component axes projected into the three 440 

coordinate planes of the parameter space.   441 

Panels (a) and (b) show that the first principal component axis (PC1), the major axis of the 442 

parameter distribution, is almost parallel to the � - � plane, with values of � clustered around the 443 

mean value of 12.7ms.  � varies over roughly 4 orders of magnitude while � varies over roughly 2 444 

orders of magnitude.   445 

Panel (c) shows that most of the variation among parameters, and correspondingly most of 446 

the differences between interval distributions, can be explained by only two parameters,  � and �.  447 

PC1 has a slope near -0.5 in the � - � plane.  A slope of -0.5 on log-log axes would indicate an 448 

inverse square relationship between these parameters, � ∝ 1 √�⁄ .   449 

 450 
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Relationship between Exwald model parameters and conventional summary statistics 451 

 452 

 453 

Figure 4:  Relationship between parameters  and  of the Exwald model and the conventional 454 

summary statistics of spontaneous activity, mean inter-spike interval and CV.  (a) Scatterplot of mean 455 

ISI vs CV (c.f. figure 1(a)).  Curve shows CV of the Exwald model on PC1 with a given mean ISI.  (b) 456 

Scatterplot of vs CV. Curve shows CV of the Exwald model on PC1 for a given .  (c) Scatterplot of 457 

vs mean ISI. Curve shows the mean ISI of the Exwald model on PC1 for a given .   458 

 459 

Figure 4 shows how the parameters of fitted Exwald models are related to the conventional 460 

summary statistics that have historically been used to describe the statistical diversity of 461 

vestibular afferent firing patterns, mean ISI and CV.  The curve in figure 4(a) shows the Exwald 462 

model-predicted CV for parameters on the first principal component axis corresponding to a 463 

model with the specified mean ISI.  It is a projection of PC1 from log(�) − log (�) parameter 464 

space into mean ISI - CV parameter space.  It shows that PC1 predicts the nonlinear 465 

relationship between mean ISI and CV.  Similarly, the curves in figure 4(b) and 4(c) show that 466 

� is a good predictor of CV and mean ISI.  These plots show that � characterises not only the 467 

change in mean and variability of ISI distributions over the population, but also the systematic 468 

change in shape of the distributions.  For small values of �, (� ≪ ������� ≈ 12.7��), interval length 469 

is largely determined by the Wald component, while for large values of �, (� ≫ ������� ≈ 12.7��), 470 

interval length is largely determined by the Poisson component.  Thus � by itself characterises 471 

the universally observed pattern in which vestibular afferent neurons show a continuous 472 

Figure 4 about here 
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diversity of statistical behaviour from rapidly firing, regular neurons whose interval distributions 473 

resemble narrow Gaussians to slowly firing, irregular neurons whose interval distributions 474 

resemble right-shifted or (equivalently) left-censored Exponentials.   475 

Distribution of ExWald model shapes in model parameter space. 476 

 477 

 478 

Figure 5: Map of ISI distributions in Exwald parameter space.  Scatterplot of fitted parameters in 479 

the -plane (blue discs), with principal component axes projected onto the plane. Dashed blue 480 

line is the convex hull of data points.   Scaled Exwald models are drawn on a grid.  Inset (lower 481 

left) shows the true proportions for five models along the first principal component axis. Their 482 

parameters are indicated by the five markers along PC1.   483 

Figure 5 is a map of ISI distributions in log(�) − log (�) space.  Parameter values fitted to data 484 

(the same as in figure 3(c)) are plotted here as blue discs. The first two principal component axes 485 

Figure 5 about here 
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are shown. The dashed line is the convex hull, the smallest polygon enclosing all of the fitted 486 

parameter points.  Shapes of Exwald model interval distributions are drawn on a grid in PC1-PC2 487 

coordinates, aligned with the log(�) − log (�) axes.  For each distribution, t=0 is plotted at the grid 488 

point and the time scales are all the same.  The vertical (probability density) axes are scaled so 489 

that all distributions have the same height on the plot.  In reality the distributions for the most 490 

regular neurons (upper left of the map) are very much taller than the distributions for the most 491 

irregular neurons (lower right).  The inset (lower left) shows the true shapes of five distributions 492 

spaced along PC1.    493 

This figure indicates that the first principal component measures ISI variability, which is 494 

strongly predictable by � (c.f. figure 4(b)), The second principal component measures variability 495 

of the refractory period, which is strongly predicted by �, as evidenced by the increasingly steep 496 

onset of spiking probability after a refractory period, in the PC2 direction.   497 

According to the principal components analysis, 91.7% of parameter variance is explained by 498 

PC1, 7.6% is explained by PC2 and 0.7% by PC3.  This suggests that differences in the statistical 499 

properties of afferents are mostly controlled by changes in a single degree of freedom in the 500 

underlying physical process(es), and are almost entirely, if not entirely, controlled by changes in 501 

at most two degrees of freedom.   502 

Neural Computation for Bayesian Inference Given Exwald Data 503 

The form of the Exwald model suggests an elegant natural mechanism that neurons could 504 

employ in inferring the posterior density of stimulus parameters given samples from a point 505 

process with Exwald interval statistics.  Sequential or dynamical Bayesian inference entails 506 

computing the likelihood function for the parameter(s) given the most recent observation, 507 

multiplying this by the probability inferred from previous observations (the prior probability) at each 508 
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parameter value, then (re)normalizing to obtain a function that integrates to 1 over the parameter 509 

space (Doucet et al., 2001).  510 

The most recent observation for a stationary renewal process at any time, the latest available 511 

information, is the elapsed time since the most recent event.   Many models have been proposed 512 

to explain multiplicative gain or sensitivity adjustments and normalization of activity levels across 513 

neural populations (Bastian, 1986; Beck, Latham, & Pouget, 2011; Capaday, 2002; Carandini & 514 

Heeger, 2012; Eliasmith & Martens, 2011; Louie, Khaw, & Glimcher, 2013; Mejias, Payeur, Selin, 515 

Maler, & Longtin, 2014; Nelson, 1994; Olsen, Bhandawat, & Wilson, 2010; Silver, 2010), and we 516 

will not consider possible mechanisms for these operations in the vestibular system beyond noting 517 

that it is widely accepted that neurons are capable of such computations. The key additional 518 

computational capability that neurons would require to implement dynamical Bayesian inference 519 

in the vestibular system is the ability to compute parameter likelihoods given the elapsed time 520 

since the most recent event. 521 

The likelihood function for the parameters �, �, and � of an Exwald process given elapsed 522 

time  � since the most recent event is, by definition, the probability of observing an interval of 523 

length � if the parameters are �, �, and �.  The Exwald distribution is a convolution of an Inverse 524 

Gaussian and an Exponential, 525 

   �(�, �, �;  �) = � ∫ ��(� − �;  �, �)
�

��
 ���/���, 526 

where � is an arbitrary constant (because a scaled likelihood function is a likelihood function). 527 

For Bayesian inference given spike train data from a vestibular afferent neuron, (some) central 528 

neurons must be able to compute �(�, �, �;  �) given � > 0. 529 

The electrical response of a neuronal membrane compartment to a transient depolarizing 530 

current input with waveform �(�;  �, �) is the convolution of the exponential impulse response of 531 

the membrane compartment with the input waveform,  532 

 �(�, �, �;  �) = � ∫ �(� − �;  �, �)
�

��
 ���/���,  533 
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where �(�) is voltage referenced to resting membrane potential, � is the electrical time constant 534 

of the membrane compartment, and � is an arbitrary constant (because current and voltage can 535 

be measured in arbitrary units) (Bower & Beeman, 1998; Koch, 1999).  Thus a neuronal 536 

compartment with membrane time constant �� and a synapse whose EPSP shape is controlled 537 

by two parameters, � and  �, with values �� and  ��, is a natural analog computer that 538 

instantaneously computes the likelihood for the parameters (�, �, �) at the point (��, ��,  ��) , at 539 

time t after the preceding synaptic input.   By postulating that EPSP waveforms �(�) mimic the 540 

shape of Inverse Gaussian distributions ��(�) - which, on the face of it, they do - neuronal 541 

compartments could compute parameter likelihoods from point process data with Exwald 542 

interval distributions. 543 

It may be non-trivial to arrange neurons capable of these basic operations (amplification, 544 

normalization and evaluating likelihoods) into circuitry capable of inferring the Bayesian 545 

posterior density given vestibular afferent neuron spike trains, and will not attempt here to show 546 

how it may be done. However, the remarkable isomorphism between equation 1, representing 547 

an abstract probability computation which is fundamental for dynamical Bayesian inference, and 548 

equation 2, representing a physical model of the electrical behaviour of a neuron, is worth 549 

mentioning, because it shows that mechanisms capable of implementing all of the mathematical 550 

operations required for dynamical Bayesian inference occur naturally in neurons, and would be 551 

available to be co-opted by evolution if there was selection pressure on nervous systems to be 552 

Bayesian.   553 

Discussion 554 

The diversity of vestibular afferent neuron firing behaviour has been characterised in the past 555 

using the coefficient of variation (CV) of inter-spike intervals as a signature that predicts other 556 

statistical, dynamical and anatomical characteristics of these neurons (Goldberg, 2000; Goldberg 557 

et al., 2012).  Using an information-theoretic model selection procedure, we found that 558 
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spontaneous activity patterns of chinchilla semicircular canal afferent neurons can be accurately 559 

modelled using a simple, three-parameter model.  The first principal component axis of fitted 560 

parameters lies almost parallel to the τ − � plane and in log-transformed axes has slope close to  561 

-½ in that plane, indicating that � and � are related by a power law that is approximately an inverse 562 

square law, � ∝ 1 √�⁄ .   Because there is a unique point on the first principal component axis for 563 

any given �, more than 90% of parameter variation among neurons can be explained by � alone.  564 

Adding a second parameter, �, accounts for more than 99% of parameter variation. The third 565 

parameter, �, contributes less than 1% of parameter variation and is essentially constant for all 566 

neurons.   567 

The Exwald parameters, �, � and �, can be used to compute the conventional summary 568 

statistics of spontaneous activity, mean ISI, CV and skewness, if needed.  Because CV is a noisy 569 

invertible function of � (figure 4(b)), � by itself should be a good predictor of statistical, dynamical 570 

and anatomical properties of vestibular afferent neurons. The Exwald parameters appear to 571 

characterise the diversity of spontaneous activity at least as well as the conventional summary 572 

statistics do, but in addition they accurately describe the interval distributions themselves.   573 

Because event times can be recovered from the intervals between them, the Exwald model 574 

provides a complete stochastic process model of spontaneous activity in these neurons.  It can 575 

be regarded as a descriptive or phenomenological model whose parameters supersede the 576 

conventional summary statistics.  Its efficacy as a descriptive model raises the question of 577 

whether it is, or may lead to, an explanatory model of vestibular afferent neuron behaviour.  578 

Because CV is computable from parameters of an Exwald model and CV is correlated with 579 

dynamical response parameters of vestibular afferent neurons, the Exwald model may 580 

characterise more than just spontaneous activity patterns of these neurons. 581 

Mechanosensory hair cells and related acousticolateralis receptor cells can transduce signals 582 

with power levels smaller than thermal noise power in the transduction mechanisms (Denk & 583 
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Webb, 1988; Denk, Webb, & Hudspeth, 1986; Markin & Hudspeth, 1995), and such signals are 584 

perceptible (Bialek, 1987; Devries, 1948; Torre, Ashmore, Lamb, & Menini, 1995).   This implies 585 

that stochasticity in spontaneous activity is driven by thermal noise in transduction, synaptic and 586 

spike-generating mechanisms.   Spontaneous firing is, however, a laboratory artefact, imposed 587 

by clamping an animal’s head so that it cannot move. Under natural conditions the head is always 588 

moving, and the ecological function of “spontaneous” firing is to provide high acuity sense data 589 

for postural stability, compensatory reflexes and acuity of other senses when the animal is not 590 

actively moving its head.  A completely motionless head is not natural, but it is the limiting case 591 

of an ecologically important state.   Generalized fluctuation-dissipation theorems then imply that 592 

the response to intrinsic thermal noise characterises the system’s dynamical responses to small 593 

stimuli (Dinis, Martin, Barral, Prost, & Joanny, 2012; Marconi, Puglisi, Rondoni, & Vulpiani, 2008; 594 

Prost, Joanny, & Parrondo, 2009).  It follows that an Exwald model fitted to the spontaneous 595 

interval distribution of a neuron should be able to predict the neuron’s dynamical responses, at 596 

least during small head movements.  597 

When the average firing rate of a vestibular afferent neuron is held at a constant level above 598 

its spontaneous rate by applying prolonged unidirectional acceleration, the variability of interval 599 

length as measured by CV also increases (Fernandez & Goldberg, 1976; Goldberg, 2000; 600 

Goldberg & Fernandez, 1971a).  The change in CV as a function of mean interval is approximately 601 

a power law ��(�������) = ��������� with exponent � = 1/2 (Goldberg & Fernandez, 1980; Paulin & 602 

Hoffman, 2019).  Since CV is the square root of variance divided by the mean, this relationship 603 

implies that the variance of interval length scales with the cube of mean interval length, �� ∝ ��.  604 

This scaling law is a unique signature of an Inverse Gaussian or Wald distribution (Chhikara & 605 

Folks, 1989).  Thus a simple auxiliary assumption - that vestibular stimulation alters the parameter 606 

� - can extend the Exwald model to explain the statistics vestibular afferent neuron responses 607 

under constant stimulation.   608 
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Instantaneous firing rates of semicircular canal afferents responding to broad-band, 609 

naturalistic head motion exhibit a simple, fractional order dynamical relationship to head angular 610 

velocity, of the form � −  �� =  
���

��� , where 0 < � < 1 (Paulin & Hoffman, 1999; Paulin & Hoffman, 611 

2019). This suggests that the Exwald model of spontaneous activity may be extended to a 612 

stochastic dynamical model by making its parameters depend on head angular velocity in this 613 

manner.  Further investigation and testing is required in order to determine if and how the Exwald 614 

model might be extended to describe the dynamics and statistics of spiking beyond the quasi-615 

static state of small head movements. 616 

The Inverse Gaussian or Wald is the distribution of time taken for Gaussian white noise with 617 

mean  � = � �⁄  and power �� = � �� ⁄ to integrate to a threshold at � (ref).  We set � = 1 without 618 

loss of generality (equivalent to choosing units in which � = 1).  A very simple neural model can 619 

explain why the distribution of interval lengths for a stochastic spiking neuron might contain a 620 

Wald distribution:  If � is the mean rate of depolarization, then intervals generated by an integrate-621 

and-fire neuron which resets to zero membrane potential after each spike will have a Wald 622 

distribution.  An Exwald is the distribution of the sum of samples from a Wald and an Exponential 623 

distribution, hinting that vestibular afferent neurons spikes may be generated by a Poisson 624 

process in series with a noisy integrate-and-fire process.  Poisson distributions occur as limiting 625 

cases in many stochastic process models, analogous to the way that Gaussian distributions occur 626 

as limiting cases when independent observations are combined (Arratia, Goldstein, & Gordon, 627 

1990; Chen, 1975).  Poisson data can be generated simply by threshold triggering in a stationary 628 

noise process (Basano & Ottonello, 1975).  For example, spontaneous thermal-noise driven 629 

opening times of sensory receptor channels are Poisson-distributed, with exponential interval 630 

distributions (Sigg, 2014; Smith, 2002).  631 

The existence of very simple mechanisms that can produce events with Inverse Gaussian and 632 

Exponential interval distributions then suggests a very simple possible explanation for the 633 
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superficial statistical complexity of vestibular afferent neuron behaviour.  Exwald distributions 634 

could have evolved because combining processes with Inverse Gaussian and Exponential 635 

interval statistics in series is a simple, feasible way to translate microscopic, low-power stochastic 636 

molecular transduction events into high-power electrochemical events carrying the same 637 

information but which can be transmitted rapidly over macroscopic distances to the brain (Sterling 638 

& Laughlin, 2015). In other words, evolution found a simple way to transmit information from 639 

mechanoreceptors to the brain using existing mechanisms, and this happened to produce spike 640 

trains with Exwald interval distributions.   641 

However, the molecular mechanisms that mediate signal transmission from transduction in 642 

receptor hair cells to spiking in vestibular afferent neurons are prodigiously complex (Glowatzki, 643 

Grant, & Fuchs, 2008; Hudspeth, 1983; McPherson, 2018; Vollrath, Kwan, & Corey, 2007).  644 

Natural selection appears to have put a great deal of effort into constructing intricate mechanisms 645 

that transduce tiny deflections of hair cell cilia into electrical signals, and amplify the transduced 646 

signal into spiking events in afferent neurons.  The pathway from transduction to spiking is 647 

evidently not a simple juxtaposition of two simple molecular mechanisms.  On the contrary, it 648 

comprises a byzantine conglomeration of structures that collectively behave as if this were the 649 

case.  That the net behaviour of such complex machinery can be accurately modelled in such a 650 

mathematically elegant way suggests that the machinery must have been selected to produce 651 

this behaviour.  That is, there must be some selective advantage in transmitting vestibular 652 

information to the brain using spike trains with Exwald-distributed intervals, or some similar 653 

distribution. 654 

As discussed in the introduction, there are several ubiquitous characteristics of vestibular 655 

afferent neuron behaviour requiring explanation.  As noted above, noisiness or stochasticity in 656 

afferent spike trains can be explained by specialization to detect and transmit small signals.  657 

Spontaneous activity in afferents is driven by thermal noise in molecular mechanisms, which are 658 

amplified to produce spike train stochasticity because the peripheral vestibular system has 659 
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evolved to gather information about signals that are small compared to thermal noise, and amplify 660 

them into spike trains (Denk & Webb, 1989, 1992; Denk et al., 1986; Torre et al., 1995; van Netten 661 

& Kros, 2000). 662 

The distribution of low-dimensional signals across thousands of afferents can be explained by 663 

selection for energy efficiency.  The energy cost of spiking neurons, which is dominated by the 664 

cost of spiking (Aiello & Bach-y-Rita, 2000; Cohen, 2005; Niven, 2016; Yu & Yu, 2017), is a major 665 

constraint on nervous system evolution (Hasenstaub, Otte, Callaway, & Sejnowski, 2010; 666 

Laughlin, 2001; Lewis, Gilmour, Moorhead, Perry, & Markham, 2014; Niven & Laughlin, 2008; 667 

Sterling & Laughlin, 2015). Because spiking neurons are so energetically expensive, there is 668 

strong selection pressure for neurons to maximize channel capacity per unit energy cost.  Sterling 669 

and Laughlin (2015) suggest that the performance of neural communication and computation 670 

should be measured in bits per second per Watt, or bits per Joule, rather than channel capacity, 671 

or bits per second, which has been the conventional measure of performance in communication 672 

and information processing systems.  Using bits per Joule as a proxy for the evolutionary fitness 673 

of nervous systems can explain many features of nervous system structure and function (Sterling 674 

& Laughlin, 2015). 675 

Spike trains become prohibitively expensive at high average firing rates because when an 676 

action potential occurs within a few milliseconds of another, overlapping sodium and potassium 677 

ion fluxes consume energy without changing the membrane potential.  Efficient neural 678 

computation and communication requires average firing rates below about 100s-1 (Goldberg, 679 

Sripati, & Andreou, 2003; Hasenstaub et al., 2010; Levy & Baxter, 1996).   As illustrated in figure 680 

2, semicircular canal afferents have refractory periods in the order of 10ms, and mean interval 681 

duration around 13ms.  The mean interspike interval for all neurons in our sample is 12.7ms, 682 

corresponding to a rate of 78.7 spikes per second.    683 

The functional bandwidth of transduction in vestibular hair cells and signal transmission in the 684 

vestibular nerve exceeds 1KHz (Bechstedt & Howard, 2007; Eatock, 2018; Hudspeth & Markin, 685 
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1994; Roberts, Howard, & Hudspeth, 1988).  Such high bandwidth vestibular sense data must be 686 

ecologically important because otherwise evolution would not have continued to invest in 687 

molecular biophysical machinery capable of transducing it and delivering it to the brain.  The 688 

prohibitive energy cost of firing at high rates provides strong selection pressure for mammals to 689 

distribute high bandwidth sensory signals over many neurons each firing at average rates in the 690 

order of tens of spikes per second (Balasubramanian, 2015; Sengupta & Stemmler, 2014).   691 

The Exwald is the distribution of the sum of samples from Exponential and Wald distributions, 692 

but because the shape of an Exponential beyond any point is the same as the shape of the whole 693 

distribution, the Exwald is also the shape of an Exponential distribution left-censored by a Wald 694 

distribution.  Thus the Wald component of an Exwald distribution can be interpreted as the 695 

distribution of refractory periods in a refractory-censored Poisson process.  Refractory censoring 696 

with a mean interval around 12.5ms keeps average firing rate below 80s-1.  Censoring with 697 

random rather than fixed refractory periods means that the censored samples are independent 698 

random samples from the uncensored distribution. Many such channels can transmit the same 699 

information in parallel at the same rate as a single neuron firing fast enough (i.e. sampling from 700 

the same distribution fast enough) to transmit the signal at high bandwidth, without incurring the 701 

catastrophic energy cost which that would entail. Thus the functional organization of the vestibular 702 

nerve is consilient with the proposal of Sterling and Laughlin (2015) that sensory neurons evolved 703 

to transmit information about molecular-scale transduction events at the mesoscale of whole 704 

animals, severely constrained by the energy costs of doing this using molecular mechanisms. 705 

The heterogeneity of afferent neuron firing behaviour, i.e. the fact that they sample from 706 

Exwald distributions with different parameters, can be explained by the fact that distributed 707 

signalling on parallel channels can be more efficient if different channels have different 708 

characteristics (Barlow, 1961).  As a specific example, it’s easier to detect larger signals in 709 

noise, and energy can be saved by using specialized channels with different sensitivities (Doi & 710 

Lewicki, 2014; van Hateren, 1992).  This principle has been used to explain the statistical and 711 
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dynamic diversity of retinal ganglion cells, and might also explain statistical and dynamical 712 

diversity among vestibular afferent neurons.  The specific pattern of heterogeneity would 713 

depend on the statistics of natural head motion, which have not been well characterized in any 714 

species.  Further investigation is required to explore and test whether the distribution of 715 

parameters illustrated in figure 5 reflects an optimally efficient way to distribute information 716 

about natural vestibular sense data across parallel channels, when individual channels are point 717 

processes with Exwald interval statistics. 718 

Under general assumptions about spiking energetics, spike trains with Generalized Inverse 719 

Gaussian interval distributions maximize the information capacity of point-process channels 720 

subject to an energy constraint (Berger, Levy, & Jie, 2011; Xing, Berger, Sungkar, & Levy, 721 

2015).  Wald distributions are members of this class, suggesting that selection for energy 722 

efficiency may at least in part explain not only the massive parallelism and heterogeneity of 723 

information transmission in the vestibular nerve, but also the statistical distribution of intervals in 724 

individual neurons.   725 

Natural selection does not act on components independently, but on the contribution of 726 

components to fitness of the organism. Thus the cost of information transmission in a sensory 727 

nerve must be weighed against the cost of processing that information in the brain.     Other 728 

things being equal, we might expect brains to have evolved to be Bayesian (Levy, 2006), 729 

because Bayesian inference is 100% efficient in extracting information about parameters from 730 

data (Zellner, 1988)and is necessary for statistically optimal decision-making and optimal 731 

stochastic control (Berger, 1985).   However, as critics of the “Bayesian brain” hypothesis have 732 

asked, at what cost?  The mathematical efficiency of Bayesian inference does not account for 733 

the energy costs of Bayesian computation.  Current Bayesian methods are computationally 734 

intensive, and indeed Bayesian inference has only recently become feasible beyond a few 735 

classical special cases as a result of massive reductions in the cost of computing (Kruschke, 736 

2015). This suggests that even if were possible for neurons to extract information from sense 737 
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data by Bayesian inference, the very high energy cost of neural computation should have 738 

weighed heavily against it, and should have favoured computationally cheaper heuristic rules 739 

and approximations instead (Bowers & Davis, 2012; Domurat, Kowalczuk, Idzikowska, 740 

Borzymowska, & Nowak-Przygodzka, 2015; Gigerenzer & Gaissmaier, 2011).  Perhaps animals 741 

ought to behave as if they are Bayesians, as they do (McNamara, Green, & Olsson, 2006; 742 

Valone, 2006), but it is far from obvious that they should, could or actually do this by being 743 

Bayesian. 744 

We found that Wald distributions by themselves are poor models, but convolution of Wald 745 

distributions with Exponential distributions produces Exwald distributions, which are excellent 746 

models of semicircular canal afferent neuron behaviour.  The Exwald has an interesting property 747 

that may be relevant to Bayesian neural computation.  A neuronal membrane compartment can 748 

be modelled electrically as a resistor parallel to a capacitor, whose response to impulsive 749 

current injection is an exponential decay function.  Its response to an arbitrary current waveform 750 

is the convolution of that waveform with an exponential. Therefore, as we showed above, a 751 

membrane compartment containing a single synapse is a natural computer which can compute 752 

the likelihood of particular parameters given input pulses with Wald-like waveforms and Exwald-753 

distributed intervals, instantaneously at all times.  This property depends on having a series 754 

Poisson component in the data-generating process, and on synapses that can be 755 

parameterized so that the shape of EPSP matches the shape of the interval distribution of the 756 

other component.  It is not necessary for the other component to have a Wald distribution.  Thus 757 

while Bayesian computations have a reputation for being computationally intensive, slow and 758 

energy-hungry, there may be a simple, fast, efficient way for neurons to compute posterior 759 

densities of the parameters of a point process with Exwald interval distributions, given samples 760 

from the process.  We speculate that Exwald distributions may have been selected for 761 

information transmission by vestibular afferent neurons because this optimizes energy 762 
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efficiency, accounting for the total cost of data transmission and Bayesian inference for optimal 763 

dynamical head-state estimation in the brain.  764 

Our goal was to construct a generative model of vestibular sense data, providing a foundation 765 

for developing testable models of neural computation for Bayesian inference in the vestibular 766 

system.  We found that afferent spike trains are samples from stationary renewal processes with 767 

Exwald interval distributions. This model provides tantalizing hints about possible mechanisms of 768 

neural computation for Bayesian inference, and pointers for further research.   769 

 770 
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