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ABSTRACT

In the past two decades neuroscience has offered many popular methods for the analysis of mental disorder, such as seed-
based analysis, ICA, and graph methods. They are widely used in the study of brain network. We offer a new procedure
that can simplify the analysis and has a high ROC index over 0.9. This method uses the graph theory to build a connectivity
network, which is characterized by degrees and measures the number of effective links for each voxel. When the degree is
ranked from low to high, the network equation can be fit by the power-law distribution. It has been proposed that distinct and
yet robust exponents of the power law can differentiate human behavior. Using the mentally disordered SHR and WKY rats as
samples, we employ chi2 algorithm and Decision Tree to classify different states of mental disorder by analyzing different traits
in degree of connectivity.

Introduction

Recent studies showed that human brain actions can be expressed by different network equations' with the aid of graph method
by fMRI samples®. Power law has been reported for many complex physical systems. Examples are the city population?,
world wide web?*, fluctuations in financial market’ et al. In this paper, we discuss the power law trait of authorized®’® rat
samples with SHR and WKY. Isoflurane is used to further divide our samples into four states: high isoflurane WKY=HW, high
isoflurane SHR=HS, low isoflurane SHR=LS, and low isoflurane WKY=LW. The format of our sample is 11 slices, 525 times,
64 x 64, FOV=30mm, and slice thickness=1 mm. And each state contains 20 data.

We use the same procedure as ref.1 to obtain the power-law distribution for the fMRI data of rats. Pearson correlation
defined in Eq.1 plays an important role because this calculable quantity can reflect the strength of positive correlation between

any two voxels:

r(xi,x2) = [v(x1,8)v(x2,2) —v(x1,t) X v(x2,1)]/[0(x1) 0 (x2)] 1

where a voxel at position x and time 7 is denoted as v(x,¢) while o represents the standard deviation. When Eq.1 exceeds a
threshold value, chosen to be 0.7, these two voxels are regarded as being linked. After statistically analyzing all different degree
of connectivity in the whole brain, we can obtain the power law distribution. Figure 1 shows the average distribution of these
four states. Power law distribution is extremely useful because it sheds light on the difficult problem of analysing mental states.
But it is insufficient to merely use its exponent to distinguish samples because ROC index is always less than 0.7. Based on this
reason, chi2 algorithm will be quoted to help us select the significant difference from a group of degrees. After chi2 algorithm,
C4.5 decision tree can help us produce a tree structure. Our purpose is to demonstrate whether C4.5 can offer a better way to
help us observe and detect power law. Decision tree is a very popular tool for classification in data mining, which is widely used
in deep-learning and machine learning®-'?, industrial application'!"'2, medical treatments!31413and bioinformatics'®17-18, To
familiarize the readers with how decision tree can be of use in practical problems, let’s imagine if we want to know who was
dead among the passengers who boarded the Titanic. First, we can quote the list of passenger, such as gender, age or level of
class on the boat. Second, using this list to make decision tree. Finally, decision tree will tell us which condition can effect
the fate of each passenger. Obviously, in this paper power law is the analogy of the list - different degrees are like the factors.
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Figure 1. The count versus degrees of connectivity shows a power-law behavior. Each state has 20 samples. Hw and Hs are
represented by blue and orange circles, while Lw and Ls are yellow and purple stars.
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Figure 2. These figures show the power law distribution after chi2 algorithm.

In the Result section of this paper, we will ensure the relation between C4.5 decision tree and the power law, such as a bar
code and detector. This method can be a good starting point to establish a dynamical system to describe different mental states
by evolution of degree. For processing, we use MATLAB to deal with fMRI raw data. The GPU and CPU mixing program
allows us to increase the execution efficiency. The former transforms the 4D (3D voxel space and time) into a 2D matrix (voxel
position and time), while the latter handles the calculation of correlation. As for the decision tree, we save the MATLAB matrix
file by csv format, input the data into Excel, and output to Java to build the decision tree for the final calculation of the outcome
of 10-fold cross-validation.

Results

Table 1 shows the important features from chi2 algorithm, while Fig.2 shows the degree distribution after chi2 algorithm. By
comparing with Fig.1, one can see that Fig.2 manages to widen the separation between degree distributions. Now we can input
important features into C4.5 by 10-fold cross-validation before selecting the tree whose ROC approaches 0.9. Table 2 shows
that three of our results in fact manage to obtain ROC > 0.9. Figure 3A explains how the four states are distinguished. Initially,
data are categorized into two groups, based on whether the dosage of isoflurane(iso) > 2.0. Figures 3B and 3C show results
from different situations of high ios and low ios groups. Our data are processed by 10 fold cross-validation to achieve good
results with ROC > 0.8. We double-confirm that power law has high sensitivity to symbolize rat problem. The result turns out
to be positive which implies that power law is indeed a good representation for analysis.
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Table 1. Selected data by chi2 algorithm from the power law.

Proposition Degrees (after chi2 algorithm)
4 groups (high/low iso WKY and SHR) | Highiso: 128, 52, 41, 23, 10, 21, 19; Low iso: 1, 103, 16, 19, 24
2 groups (high iso WKY and SHR) 1,103
2 groups (low iso WKY and SHR) 63, 31, 51, 29, 3, 35,23, 13,3

Table 2. ROC index for three different Decision Trees.

Proposition Degrees (after chi2 algorithm) | Number of samples
4 groups (high/low iso WKY and SHR) 0.997 80
2 groups (high iso WKY and SHR) 1.000 40
2 groups (low iso WKY and SHR) 0.900 40

Discussion

Figure 4 shows some representative properties of graph method of L which is defined as the length of links between any two
nodes with the unit of mm and is important in small-world structure!*2°. We found that, regardless of whether the sample is of
high or low ios, the average and maximum L-values of SHR are always larger than those of WKY, as demonstrated by Fig.4A
and 4B. The average nonzero degrees between 1 and 200 in Fig.4C and the link number in Fig.4D also appear to be greater than
those of WKY. These observations may explain why SHR samples are more hyperactive than their WKY counterparts.

Figure 5 shows that all states have different degree distribution. Only the most representative result is selected among 20 rat
samples for each state. In general, SHR has more degrees and covers more brain regions than WKY. The degree distribution for
low iso samples has more degrees and covers more regions than high iso. Table 3 shows the rank of activated brain region.
Whenever the brain develops disorder, it exhibits a different functional network that consequently gives rise to a new exponent
for the power law in Fig.1. This is similar to the finding of Ref.1 that the exponent may vary as the trial subject engages in
different activities. We can find that the most active brain regions are the same. However, if we just focus on the samples
of SHR, we discover that the secondary motor?! will fall to rank four. This is the reason why LS rat is more active than HS
rat. More details will rely on more biological experiments in the future. The prefrontal cortex of ADHD patients has been
reported to show abnormalities?>?3. In our case, we can check two important regions in the prefrontal cortex to take states
apart. These regions, Prl** and Fra®, are related to the self-control and ADHD. The prefrontal cortex of SHR rat has been
studied®®?7-28, Figure 6 shows the number of degrees connecting other brain regions. We expect either Prl or Fra can give
specific evidence expressing different characteristics for the four states in Table 4 by t-test. We found in Table 4 that Prl and Fra
should be combined in order to give p-value that is less than 0.1. Figure 6 shows the average of degrees in Prl and Fra. Note
that the stimulus interaction for LS being lower than LW in Fra is contrary to our expectation. Future biological experiments
are needed to clarify the source of this problem.

Clustering coefficient C is a measure to gauge how likely different nodes will form a cluster. This index is common for
describing network structures, such as Fig.7. The definition for C is C=2N/[D(D-1)] where D denotes the degree for each
voxel, while N is the maximum number of links among its neighbors. From the different clustering coefficients in Fig.8, we can
conclude that the arrangement of nodes and edges are sensitive to the nature of mental disorder states.

HS (d128>0) Hw (d41>0) HW(d10<1)  HW(d19>1)
== High iso (I5022.0)=>|—|—=:> I = I—-:J_ HS (d19<1)

Sample HW (d52>0) HS (d23>0) HW (d2150)
ROC=0.997 L= Low iso (Iso<2.0)=>—|—=>—|—=>—|—=> = LW(d2<24)

LS(d1>123) LS(d103>1) LW(d16>1) LS(d19>2) LS(d2>24)

HW (d51>0) HS(d23>0) HW (d3<21) LS (d1>123)

Sample ——=>> - = L L s a3>21) Sample —es—les- 15 (d10351)
ROC=1.000 HS(d63>0) HS(d31>0) HS (d29>1) HW(d35>0) Hs (d13=0) ROC=0.900

LW (d103<1)

Figure 3. 3A: Decision tree of HS, HW, LS, and LW states. 3B: Decision tree of HS and HW states. 3C: Decision tree of LS
and LW states.
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Figure 4. Important information of L between any two nodes that share a common connection. Panel A shows the average L,
B the maximum L for each state, C the average degree, and D the average number of links. Each state has 6 samples.

Figure 5. Panels A to D illustrate the activated region in LW, HW, LS, and HS states, respectively. The grade of brightness
signifies different degrees of connectivity in the cross section. We just show the brain section with points.
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Table 3. According to Fig.5, we list the name of brain areas that are activated. The brain area that exhibits the same activated
frequency is noted in the parentheses.

Rank LW HW

1 Secondary motor cortex Secondary motor cortex

2 Primary motor cortex Primary motor cortex

3 Cingulate cortex, area 1 Cingulate cortex, area 1

4 Retrosplenial agranular cortex Primary somatosensory cortex, barrel field

5 Retrosplenial granular b cortex Primary somatosensory cortex, jaw region (rank 4)
Rank LS HS

1 Secondary motor cortex Primary motor cortex

2 Primary motor cortex (rank 1) Retrosplenial agranular cortex

3 Cingulate cortex, area 1 Cingulate cortex, area 1

4 Retrosplenial agranular cortex Secondary motor cortex

5 Primary somatosensory cortex, dysgranular region Retrosplenial granular b cortex (rank 4)

Table 4. The p value for different states is calculated from Fra or/and Prl brain region.

T-test p-value of Fra | p-value of Prl | p-value of mixing Fra and Prl
HN - HS 0.239 0.000 0.000
HN - LW 0.000 0.000 0.000
HN - LS 0.000 0.000 0.000
HS - LW 0.000 0.345 0.000
HS - LS 0.000 0.000 0.000
LW -LS 0.156 0.000 0.000
120 T T T T 120

Average of degree (Prl) (°c)
Average of degree (Fra) (°c)

States States

Figure 6. The average of degrees is calculated for Prl and Fra. Both figures give a higher average for low iso, as expected. But
only Prl gives the right trend of a higher average for LS than LW.
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Figure 7. Comparing C and network structure for HS, LS, HW, and LW states. SHR has more functional connections than
WKY.
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Figure 8. The relation between count and C is revealed in this full-log plot for HS, LS, HW, and LW states. Each state

contains 20 samples. Hw and Hs are represented by blue and orange lines, while Lw and Ls are yellow and purple. C4.5 can be
used to analyze the clustering distribution to make a new decision tree.
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Table 5. AIC values are used to select the preferred probability distribution for five mental states.

Data AIC of single power | AIC of double power | Preferred distribution
Healthy humans in resting state 729564 722132 Double
Low iso WKY 2265.964 2266.234 Single
High iso WKY 1036.1354 1025.7714 Double
Low iso SHR 5904.362 5908.362 Single
High iso SHR 4016.756 4020.304 Single

One common method in RS-fMRI (Resting state-fMRI) is Seed-based Correlation Analysis (SCA). SHR and WKY have
been studied 2°. In general, SCA requires the choice of a ROI (Region Of Interest) to be a priori assumption, and needs to
average over seed regions before calculating connectivity. In contrast, we forgo this step to avoid any subjective and abnormal
seed from affecting the outcome. Instead, we upgrade and simplify the graph theory by numerical representations. Whether this
approach is applicable to all states of mental disorder and has operating restrictions are important questions to answer in the
future. In this work we have managed to establish that the power-law distribution carries enough information to deal with the
trial subjects in this case. To locate the characteristics of any mental state, one only needs to use chi2 algorithm to pick out
important degrees filtered from the power-law distribution.

In the past, researchers found that brains have two large opposing systems in the resting state. One is the DMN (Default
mode network), while the other is composed of attentional or task-based systems>". This motivates us to check whether double
power laws may turn out to describe the degree distribution better than the usual simple power law. In other words, can it
be that each of these two systems contributes independently and gives rise to two different exponents. In Table 5, we show
the outcome of four states and human resting-state by AIC (Akaike information criterion)3!. AIC is a statistical method to
distinguish the best fitting function among multiple candidates. Basically it balances the principles of accuracy (i.e., minimum
loss of information) and frugality, as shown in Table 5.

Table 5 includes five different mental states: (1) Healthy humans in resting-state for which double power laws fit better. (2)
Single power law wins out by a small margin for low iso rats, It is worth noting that this result should be treated with cautions
because LW and LS rats are hard to remain still during fMRI scanning. (3) High iso WKY rats also favor the double powers. (4,
5) Single power law is a better fit for SHR rats. Recent studies found that SHR (ADHD) children usually exhibit abnormal
DMN network>2. It has also been reported that mental disorder such as Alzheimer>33*, depression®>, schizophrenia®, and
ASD?7 can render DMN abnormal. It remains a pressing task to clarify whether the transition of double powers to single power
correlates with abnormal DMN. In summary, power-law distribution can not only reflect the mental condition of our samples,
but also reveal detail information about their network properties.

It is desirable to have more samples to optimize our use of Decision Tree to select power law from MRI data of mentally
disordered rats. Although our results have demonstrated that the power-law distribution can be analyzed by Decision Tree
to classify dosage of IOS and SHR vs. WKY, to vindicate its versatility more propositions are needed, e.g., depression,
hypertension, or transient ischemic attack. We have two ideas to improve current understandings of the dynamics of brain: first,
establish a relationship between observers (i.e., Decision Tree) and the objects being observed (i.e., power law from different
states.). Once this relationship is available, it may function as a starting point to reveal possible connections among different
observed objects.

Materials and Methods

Process

Step 1: Using Pearson correlation to transform 4D fMRI to power law distribution. Step 2: Using chi2 algorithm to select
important features from degrees. Step 3: Using the outcome of step 2 as an input to c4.5 to do training and testing. Step 4:
Selecting the better one with accuracy over 0.9.

Animals: Rat
All the experimental animals were admitted by the National Tsing Hua University Institutional Animal Care and Use Committee
and complied with experimental guidelines. The important information of rat is listed in Table 6.

Animals: Human

We used six normal human subjects to test single and double power law from Teng-Yi Huang’s Lab. The ADHD database
are available to download through the ADHD-200 Consortium[a, b]. All resting-state fMRI scans were performed in New
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Table 6. Information of rat

state number | age (week) | isoflurane
Low iso WKY 20 4—8 <2.0%
High iso WKY 20 4-—38 >2.0%
Low iso SHR 20 4—-10 <2.0%
High iso SHR 20 5—10 >2.0%

York University Child Study Center [b]. Our retrospective study using the ADHD-200 database was approved by the in-
stitutional review boards of National Taiwan University that confirmed both our methods and experimental protocols were
in accordance with its guidelines and regulations. Informed consent was obtained from all participants or, if participants
are under 18, from a parent and/or legal guadian. [a] The ADHD4-200 Consortium, Front Syst Neurosci. 2012; 6:62 [b]
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html [c] Growing Together and Growing Apart: Regional and Sex Differ-
ences in the Lifespan Developmental Trajectories of Functional Homotopy, https://www.jneurosci.org/content/30/45/15034.1ong

Magnetic resonance imaging

Our raw data come from the same source in Ref.29, in this section, copyright is owing to the author who wrote "Magnetic
resonance imaging” in the Ref.15. We scanned all animals with 7-Tesla Bruker Clinscan, which had a volume coil for signal
excitation and a brain surface coil for signal receiving. The anesthesia process is operated by 1.4—1.5 % isoflurane mixed with
02 at flow rate of 1 L/minute. We monitored all rats, made sure the respiratory rate in the range of 65—75 breaths/min while the
scanning period, and body temperature maintained at 37 °C by a temperature-controlled water circulation machine. During the
rs-fMRI experiments, we used gradient echo echo-planar-imaging (EPI) getting the 300 consecutive volumes with 11 coronal
slices. The EPI specification is TE/TR = 20 ms/1000 ms, matrix size is 64 x 64, FOV= 30 x 30mm? and slice thickness = 1
mm. We get the anatomical images by turbo-spin-echo (TSE) with scanning parameters of TE/TR= 14 /4000, matrix size =
256 x 256, FOV= 30 x 30mm?, slice thickness = 1mm, number of average = 2. To inspect the result of deep anesthesia, we
applied 2.5 2.7% isoflurane mixed with O2, and monitored respiratory rate in the range of 40-45 breaths/min during the whole
scanning period.

Data processing for distribution of degree

Here we analyze our raw data from fMRI Grayscale image. Afterward, we transform them to scalar value matrix by MATLAB
2015a and 2018 version. This matrix is four dimensional, 64 x 64 x 11 x 525 where the first three components denote spatial
position, while the last component refers to the time section in the scanning. Four dimensions render the matrix hard to
manipulate, and it costs a lot of computer time. One can use GPU computing to disassemble it to two-dimensional form
(45056 x 525). After using Eq.1 to calculate all voxels of degree in whole brain, we can get the distribution of degree for any
sample. We calculate all 80 rats (each state has 20 samples) in order to obtain the degree distribution form.

Chi2 algorithm

The feature selection on this study stems from chi2 algorithm3® which is designed to discretize numeric attributes based on the
X? statistic, and consists of two phases. In the first phase, it begins with a high significance level (sigLevel), Phase 1 is, as
a matter of fact, a generalized version of ChiMerge of Kerber. Phase 2 is a ner process of Phase 1. Starting with sigl.evelO
determined in Phase 1, each attribute i is associated with a sigLevel[i], and takes turns for merging. Consistency checking is
conducted after each at- tribute’s merging. At the end of Phase 2, if an attribute is merged to only one value, it simply means
that this attribute is not relevant in representing the original data set. As a result, when discretization ends, feature selection is
accomplished.

Data processing for C4.5 decision tree

In this study, we propose a set of new algorithms to enhance the Identifying effectiveness of SHR and WKY. The proposed
classifier algorithms are a combination of chi2 algorithm and C4.5 decision tree (C4.5), the chi2 algorithm evaluates the
worth of a subset of attributes and C4.5 speculate the mental disorder. The chi2 algorithm is commonly used for testing

relationships between categorical variables. The calculation of the chi2 algorithm is follows X*> =¥, (fo;i.f“)z, where fy = the
observed frequency (the observed counts in the cells) and f, = he expected frequency if NO relationshipeexisted between the
variables.The decision tree algorithm is well known for its robustness and learning efficiency with a learning time complexity
of O(nlogyn)*, C4.5 has been listed in the top 10 algorithms in data mining °. It is a popular statistical classifier developed
by Ross Quinlan in 1993. Basically, C4.5 is an extension of Quinlan’s earlier ID3 algorithm. In C4.5 the Information Gain
split criterion is replaced by an Information Gain Ratio criterion which penalizes variables with many states. C4.5 can be
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used to generate a decision tree for classification. The learning algorithm applies a divide-and-conquer strategy *! to construct
the tree. The sets of instances are accompanied by a set of genes (attributes). This classifier has additional features, such as
handling missing values, categorizing continuous attributes, pruning decision trees, deriving rules, endotestae Information gain
(S, A) of a feature A relative to a collection of examples S, is defined as Gain(S,A) = Entropy(S) — (¥, STV x Entropy(Sy)),
where Values (A) is the set of all possible values for attribute A, and Sv is the subset of S for which feature A has value v (i.e
Sy ={s € S| A(s) = v}), Note the first term in the equation for Gain is just the entropy of the original collection S and the
second term is the expected value of the entropy after S is partitioned using feature A. The expected entropy described by
the second term is the direct sum of the entropy of each subset Sv, weighed by the fraction of samples % that belong to Sy,

Gain (S, A) is therefore the expected reduction in entropy caused by knowing the value of feature A. The Entropy is given by
Entropy(S) = Xi —Filogalog(2F).

Data processing for testing single and double power law
We choose the same method and procedures described in Ref.41. Details can be found in Sec.IV#?.

Data processing for calculating L

When we calculated the degree for any voxels, the path length (L) between two voxels is defined as the minimum number
of links necessary to connect each other. Also, we collect L from data of six rats for each state at the same time. Afterward,
MATLAB 2018a is employed to find the max path and average L.

Data processing for C and structure network patterns

First, we print out all connection information between two voxles for any sample in txt format. Then, insert the data in
MATLAB 2018a to obtain the functional brain network pattern. If interested at calculating the clustering coefficient for any
voxel linked, you have to get information of degree and the number of links connecting the neighbors. Finally, the average C
can be determined from this equation C = m where N is the number of voxels and i the voxel number.
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