
 1

A Hierarchical Approach Using Marginal Summary Statistics for Multiple 

Intermediates in a Mendelian Randomization or Transcriptome Analysis  

Lai Jiang1, Shujing Xu1, Nicholas Mancuso1, 2, 3, Paul J. Newcombe4, David V. Conti1, 2, 3 * 

1 Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, 

University of Southern California, Los Angeles, California 

2 Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, 

Los Angeles, California 

3 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 

California 

4 MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom 

* Corresponding author. Department of Preventive Medicine, 2001 N. Soto St, SSB 202, Los 

Angeles CA 90032. Email: dconti@usc.edu 

Abstract 

Background: Previous research has demonstrated the usefulness of hierarchical modeling for 

incorporating a flexible array of prior information in genetic association studies. When this prior 

information consists of effect estimates from association analyses of single nucleotide 

polymorphisms (SNP)-intermediate or SNP-gene expression, a hierarchical model is equivalent 

to a two-stage instrumental or transcriptome-wide association study (TWAS) analysis, 

respectively.  

Methods: We propose to extend our previous approach for the joint analysis of marginal 

summary statistics (JAM) to incorporate prior information via a hierarchical model (hJAM). In 

this framework, the use of appropriate effect estimates as prior information yields an analysis 
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similar to Mendelian Randomization (MR) and TWAS approaches such as FUSION and S-

PrediXcan. However, hJAM is applicable to multiple correlated SNPs and multiple correlated 

intermediates to yield conditional estimates of effect for the intermediate on the outcome, thus 

providing advantages over alternative approaches.  

Results: We investigate the performance of hJAM in comparison to existing MR approaches 

(inverse-variance weighted MR and multivariate MR) and existing TWAS approaches (S-

PrediXcan) for effect estimation, type-I error and empirical power. We apply hJAM to two 

examples: estimating the conditional effects of body mass index and type 2 diabetes on 

myocardial infarction and estimating the effects of the expressions of gene NUCKS1 and 

PM20D1 on the risk of prostate cancer.  

Conclusions: Across numerous causal simulation scenarios, we demonstrate that hJAM is 

unbiased, maintains correct type-I error and has increased power.  

Key words: Mendelian randomization, transcriptome-wide association studies, hierarchical 

model, joint analysis of marginal summary statistics (JAM) 

Key Messages: 

• Mendelian randomization and transcriptome-wide association studies (TWAS) can be 

viewed as similar approaches via a hierarchical model. 

• The hierarchal joint analysis of marginal summary statistics (hJAM) is a multivariate 

Mendelian randomization approach which offers a simple way to address the pleiotropy bias 

that is introduced by genetic variants associated with multiple risk factors or expressions of 

genes. 
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• hJAM incorporates the linkage disequilibrium structure of the single nucleotide 

polymorphism (SNPs) in a reference population to account for the correlation between 

SNPs. 

• In addition to Mendelian randomization and TWAS, hJAM offers flexibility to incorporate 

functional or genomic annotation or information from metabolomic studies. 

Introduction 

Instrumental variable analysis with genetic variants has been widely used as a general 

framework for estimating effects of risk factors and gene expression on an outcome (Figure 1)1-4. 

Within this framework using single-nucleotide polymorphisms (SNPs) as instrumental variables, 

the intermediates � can be modifiable risk factors, expression of genes, or other potential 

intermediates such as methylation, metabolites or proteomics. To be a valid instrumental variable 

and to yield a causal effect of a risk factor, the genetic variants selected as the instruments must 

satisfy three assumptions: (1) they must not be associated with the outcome except through the 

intermediate, (2) they must be at least moderately associated with the intermediate, and (3) they 

must be independent of potential confounders of the association between the intermediate and 

the outcome (Figure 1). The violation of the first assumption results in a bias estimate due to 

pleiotropy. Weak instrument bias will be introduced if the second assumption is violated since 

the random error may mask the effect of the intermediate on the outcome5. Previous work has 

demonstrated that weak instruments may lead to a large bias in estimators even though the first 

assumption is only slightly violated6. Finally, the law of independent assortment of genetic 

variants within a homogeneous population or the ability to adequately control for potential 
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confounding due to population structure, often leads genetic variants fulfilling the third 

assumption.  

Figure 1 The direct acyclic graph (DAG) for instrumental variable analysis with genetic 

variants.  

This DAG describes the framework for several approaches. Arrow denotes a causal effect in the 
direction of the arrow. Solid line refers to moderate or strong association and dashed line refers 
to uncertain association.  

Mendelian randomization (MR) and transcriptome-wide association studies (TWAS) are 

the two major approaches within the instrumental variable analysis framework using genetic 

variants. MR approaches focus on the modifiable risk factors while TWAS approaches adopt 

gene expression as the intermediate. One advantage of using these tools is the ubiquity of 

publicly-available genome-wide association studies (GWAS), such as UK Biobank7, facilitates 

researchers to initiate investigation of complex traits and diseases nearly immediately8. The 

existing approaches differ in their strategies to combine the summary data from GWAS or RNA 

sequencing data. 

In this paper, we propose an approach that leverages the joint analysis of marginal 

summary statistics (JAM)9, a scalable algorithm designed to analyze published marginal 

summary statistics from GWAS under a joint multi-SNPs model to identify causal genetic 

variants for fine mapping. Here, we extend JAM with a hierarchical model to incorporate SNP-

intermediate association estimates and unify the framework of MR and TWAS approaches when 

multiple intermediates and/or correlated SNPs exist.  
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Methods 

Unify the framework of Mendelian Randomization and TWAS 

Instrumental variable analysis with individual-level genotype data can be viewed as a 

two-stage hierarchical model. Using linear regression, the first stage models the outcome as a 

function of the genetic variants: 

 � � �� � �. (1) 

Here, � denotes a 	-length vector of a continuous outcome, � denotes an 	 
 � genotype 

matrix with � SNPs and n individuals and � denotes the residuals. The second stage models the 

conditional effect estimates � as a function of prior information10-13, �
 � ���� : 

 � � �
� � �. (2) 

where � � ���� denotes the parameter of interest, the vector of effects for the intermediates � 

on outcome � and � is the number of intermediates �. We can join these two-stage models into 

a single linear mixed model by substituting Eq. 2 into Eq. 114: 

 � � ��
� � �� � � � ��
� � �, (3) 

assuming there is no direct effect from the genetic variants to the outcome (i.e. � � 0�. The 

estimate of � from Eq. 3 is equivalent to the result from the two-stage least square (2SLS) 

regression, which is employed by PrediXcan15 and others16. The prior information �
 is the 

association estimates between the genetic variants and the intermediate and can be applied to 

impute the intermediate with the genetic variants: 
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 �� � ��
. (4) 

Note that Eq. 4 is the stage-2 in the 2SLS regression and that MR approaches with 

summary data are developed based on Eq. 2. One key aspect of the instrumental variable analysis 

with genetic variants is that the �
 matrix is computed from a separate data, i.e. 

�
 � ����, ���, . . . , �����, where ���  denotes the vector of association estimates between genetic 

variants and ��	 intermediate from external data. Two different �� vectors have been used by 

previous methods. Marginal estimates �� are widely employed by MR where marginal summary 

statistics from GWAS are being used17-19. Conditional estimates of ��, which adjust for the 

correlations between estimates, can also be incorporated into the framework. One way to 

construct a conditional estimate �� is to apply regularized regression in individual-level data, such 

as the PredictDB developed for PrediXcan15. Another way is to convert the marginal estimates 

�� into conditional ones by incorporating the linkage disequilibrium (LD) block among the SNPs 

using the JAM approach20. To model multiple intermediates, we construct an �
 matrix by 

combining the vectors of effect estimates of the SNPs on each intermediate, ��� , into a matrix 

with the number of columns equal the number of intermediates (i.e. �): 

�
��� � ����� … ����� � ���
� … ��
� . 

Hierarchical JAM (hJAM) with summary data 

We can employ the same hierarchical model to marginal summary data. Following 

Newcombe et al.9, we use the marginal summary statistics, !�, which are obtained from a GWAS 
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and the minor allele frequency (MAF) of the genetic variants, "̂, to construct a vector $ 

representing the genotype weighted effect for each genetic variant �:  
$� � 2&�"̂��1 ( "̂��!��, 

assuming Hardy-Weinberg Equilibrium. The MAF can be extracted from the same GWAS or 

using external populations such as 1000 Genomes Project21 as reference data. Using standard 

linear algebra, we can express the distribution of $ as  

$~*+&
��
��
�, ,���
��
�, 
where �
��
 denotes the � 
 � genotype variance-covariance from a centered reference data set 

(e.g. 1000 Genome21) to obtain the conditional effects of SNPs on the outcome, �. Details are 

described in Newcombe et al.9. To simplify the likelihood, we perform a Cholesky 

decomposition transformation -�- � �
��
. Then, we transform $ into $� with the inverse of -. as 

$� � -���$. When - is positive semi-definite, we add a ridge term, i.e. a small positive element, 

on the diagonal to enforce it to be a positive definite matrix. The regularization term has a very 

small effect on the estimates while guaranteeing the invertibility of the - matrix. Then, the $� is a 

vector of independent statistics that can be expressed as 

 $�~*+&
/-�, ,��0
1. (5) 

Similar to above, we then fit a hierarchical model by incorporating the second-stage model (Eq. 

2) into Eq.5 and construct the hJAM model as 

 $�~*+&
/-�
�, ,��0
1, (6) 
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assuming no direct effect from genetic variants to the outcome. Here, �� denotes the association 

parameter of interest between the intermediate and outcome and is estimated using maximum 

likelihood and the statistical significance is given by a Wald test. The estimate of  �� and 

corresponding variance are 

�� � 2/-�
1�/-�
13�� /-�
1�$� 
and 

Var���� � 2/-�
 1�/-�
 13�� ,��.  
Egger-type approaches can be implemented in this framework by allowing an intercept in Eq. 6 

by adding a column of ones to �
 matrix, which is analogue to MR Egger regression22. 

Simulation studies 

 To assess the performance of hJAM, we performed an extensive set of simulation studies. 

For each simulation, we simulated three standardized individual genotype matrices ��, ��, and 

��, an intermediate matrix �, and an outcome vector �. We then generated the summary 

statistics, including marginal effects !�, �
, and the reference LD structure, from the individual-

level data.  

For each genotype matrix, we had two inter-block relationships: no LD and moderate LD 

(7 � 0.6). Each SNP block (i.e. ��, , �� and �� in Figure 2) contains 10 SNPs, in which we set 3 

SNPs to be causal to the intermediate with 7�,�� � 0.1. The MAF was sampled from a uniform 

distribution (0.05, 0.3). Sample size for each genotype data set was set to be &��= 1000, &��  = 
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5000, and &��  = 500, respectively. We simulated two �’s and four scenarios representing 

different causal models for the two intermediates likely to be encountered in epidemiologic 

studies (Figure 2). For scenario A, ��and �� were independent. For scenarios B and D, ��and �� 

were correlated through a shared SNPs set G3. The coefficient 9 in the causal scenarios (Figure 2 

(C) and (D)) was simulated by 7��,��� � 0.2. These simulation scenarios are similar to those 

described in Sanderson et al.23. 

The primary objective was to estimate �� with each true �� being set to null (�� � 0) or a 

positive effect (�� � 0.1). To mimic applied applications and to ensure selection of at least two 

or more SNPs, a forward selection on �
 was performed to exclude the noninformative variants 

with a threshold � : 0.2 in the analysis step. We compared the performance of our approach to 

inverse-variance weighted MR (IVW MR)17, multivariate inverse-variance weighted MR 

(MVIVW MR)18, and S-PrediXcan24 (see Appendix). All simulation analyses were performed in 

R version 3.4.0. Results were calculated from 1000 replications for each scenario. All tests were 

two-sided with a type-I error of 0.05. 

Figure 2 Simulation scenarios of different relationships between X’s.  

(A) �� and �� are independent. (B) �� and �� are correlated. (C) �� causes ��. (D) �� causes �� and correlated. 

Simulation results 

The average estimate and standard error for � across the four simulation scenarios are 

presented in Figure 3 and supplementary Table 1 to Table 4, respectively. Supplementary Figure 

1 (independent SNPs) and Figure 4 (correlated SNPs) present results for empirical power.  
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Results from the base scenario A, where �� and �� were independent, demonstrate that 

the estimates from most methods were unbiased. However, when IVW MR and MVIVW MR do 

not incorporate the LD structure, there is a slightly inflated type-I error under simulation 

scenarios with correlated SNPs. IVW MR with and without correlation had a less precise 

estimate and lower power compared to the other methods in scenario A (Table 1). When a 

pleiotropic effect was simulated for each intermediate (scenario B to D), the estimates from 

hJAM and MVIVW MR with LD were unbiased and had a correct type-I error for the 

corresponding intermediate (Figure 4). The estimates from MVIVW MR without LD were 

unbiased but showed an inflated type-I error due to a smaller estimated standard error in 

scenarios in which SNPs were correlated (Figure 4). IVW MR and S-PrediXcan had a biased 

estimate and an inflated type-I error regardless of the correlation structure of the SNPs. The 

results for MVIVW MR and IVW MR reflect specification of the LD structure for the 

instruments when using the MedelianRandomization25 package. Results without the LD structure 

showed a poor performance as indicated by increased type-I errors.  

Supplementary Table 1 The estimate and its standard error of simulation scenario A: 
independent ;’s. 

Supplementary Table 2 The estimate and its standard error of simulation scenario B: 
correlated ;’s. 

Supplementary Table 3 The estimate and its standard error of simulation scenario C: ;� 
causes ;�. 

Supplementary Table 4 The estimate and its standard error of simulation scenario D:  ;� 
causes ;� and ;� and ;� are correlated. 

Figure 3 Average estimates and 95% confidence intervals of the correlated SNPs scenarios 

across 1000 replications. 
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(A) �� and �� are independent. (B) �� and �� are correlated. (C) �� causes ��. (D) �� causes �� and correlated. The black solid line refers to the default Type-I error, � � 0.05. 

Figure 4 Empirical Power of the correlated SNPs scenarios across 1000 replications. 

(A) �� and �� are independent. (B) �� and �� are correlated. (C) �� causes ��. (D) �� causes �� and correlated. The black solid line refers to the default Type-I error, � � 0.05. 

Supplementary Figure 1 Empirical Power of the independent SNPs scenarios across 1000 

replications. 

(A) �� and �� are independent. (B) �� and �� are correlated. (C) �� causes ��. (D) �� causes �� and correlated. The black solid line refers to the default Type-I error, � � 0.05 

Data Examples  

To demonstrate hJAM on real data, we applied various methods to two examples: 1) for 

body mass index (BMI) and type 2 diabetes (T2D) on myocardial infarction (MI); and 2) gene 

expression and prostate cancer risk. As the study populations for both examples include 

individuals of European ancestry, we used the 503 European-ancestry subjects from the 1000 

Genomes Project21 as our reference data for the LD structure. 

Causal effect of BMI and T2D on myocardial infarction 

Previous studies have shown that obesity26, 27 and T2D28, 29 are two important risk factors 

for MI. In addition, the association between obesity and T2D is well-established30, 31. A directed 

acyclic graph (DAG) shows the relationships between the two risk factors and MI (Figure 5).  

Figure 5 Direct acyclic graph (DAG) of the relationship between BMI, type 2 diabetes and 

myocardial infarction. 

To examine the conditional effects of the two risk factors, we extracted the summary 

statistics for MI, BMI, and T2D from the UK Biobank (n = 459,324)7, GIANT consortium (n = 
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339,224)32,  and DIAGRAM+GERA+UKB (n = 659,316)33, respectively. In total, 75 SNPs and 

136 SNPs were identified as genome-wide significant for BMI and T2D, respectively 

(supplementary Figure 2 and supplementary Figure 3). In this set of SNPs, there was one 

overlapping SNP in both the instrument sets for BMI and T2D (rs7903146, �BMI  = -0.016, �BMI 
= 1.4 
 10���, �T2D = 0.319, and �T2D = 1.7 
 10��
�). This SNP is a well-known T2D 

associated SNP and has being identified as a BMI-associated hit in GIANT. Additionally, four 

correlated pairs of SNPs exist between the two sets (supplementary Table 5). We re-orientated 

the effects of all SNPs but one (except the effect of the overlapping SNP rs7903146 on BMI) to 

have a positive effect and we used MR Egger regression22 and hJAM Egger to detect a potential 

directional pleiotropy effect.  

Results are shown in Table 1. All methods suggested a significantly increasing risk of MI 

with an increased BMI and the presence of T2D. This agrees with previous studies26, 28. The 

magnitude of hJAM and MVIVW MR were similar while IVW MR and S-PrediXcan showed 

larger estimated values. The odds ratio (OR) from hJAM for the risk of MI was 1.38 (95% 

CI=1.22, 1.56) and 1.16 (95% CI=1.12, 1.20) for per one unit increase in BMI and having T2D, 

respectively. MVIVW MR with LD has similar estimates with 1.37 (95% CI=1.22, 1.54) and 

1.15 (95% CI=1.11, 1.19) for BMI and having T2D, respectively. The difference in estimates 

between the multivariate approaches and the univariate MR/TWAS approaches may be attributed 

to potential pleiotropy not accounted for in the analyses that do not model the intermediates 

jointly. When modeled jointly, results from hJAM Egger suggested that there was no residual 

pleiotropy detected when we incorporated both BMI- and T2D-associated instruments in the 

analysis (� � 0.57). In contrast, the MR-Egger approach applied univariately to T2D resulted in 
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a significant test for the intercept, suggesting the presence of pleiotropy, potentially due to 

association of some of the SNPs to the outcome via BMI.  

Table 1 Causal odds ratios (95% confidence interval) for myocardial infarction per unit in 
body mass index and having type 2 diabetes. 

Methods Odds ratios (95% CI)  P 
BMI 

hJAM 1.38 (1.22, 1.56) 3.19E-07 
MVIVW MR 1.37 (1.22, 1.54) 1.94E-07 
MVIVW MR (w/o LD) 1.34 (1.20, 1.49) 1.65E-07 
IVW MR 1.54 (1.32, 1.79) 2.07E-08 
IVW MR (w/o LD) 1.53 (1.32, 1.77) 1.45E-08 
S-PrediXcan 1.66 (1.58, 1.74) 9.88E-96 
Egger-intercept 0.005 (-0.003, 0.013) 2.00E-01 

T2D 
hJAM 1.16 (1.12, 1.20) 4.12E-11 
MVIVW MR 1.15 (1.11, 1.19) 8.34E-12 
MVIVW MR (w/o LD) 1.16 (1.11, 1.20) 1.29E-11 
IVW MR 1.15 (1.11, 1.20) 1.77E-14 
IVW MR (w/o LD) 1.15 (1.11, 1.20) 1.98E-14 
S-PrediXcan 1.14 (1.11, 1.16) 9.43E-109 
Egger-intercept 0.007 (0.000, 0.013) 0.017 

Abbreviation: w/o LD, without linkage disequilibrium adjustment; s.e., standard error; 95% CI, 
95% confidence interval.  
Note: * For MR Egger (intercept), we showed log odds ratio and its 95% CI. 

Supplementary Table 5 Four correlated pairs of SNPs in the instrument sets of BMI and 
type 2 diabetes. 

Supplementary Figure 2 Scatter plots for the univariate effect estimates  ?@ vs.  AB for BMI 

(A) and type 2 diabetes (B).  

Supplementary Figure 3 Heatmap of the Pearson correlation between the 210 instrumental 

SNPs in data example 1: BMI and type 2 diabetes of myocardial infarction.  

Causal effect of PM20D1 and NUCKS1 on prostate cancer risk 
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To further illustrate the benefit of hJAM, we next considered the gene-prostate cancer risk 

association of two genes on chromosome 1q32.1, gene PM20D1 (Peptidase M20 Domain 

Containing 1) and gene NUCKS1 (Nuclear Casein Kinase and Cyclin Dependent Kinase 

Substrate 1). Both PM20D1 and NUCKS1 are protein coding genes and previous transcriptome 

studies have found a significant effect of both PM20D1 and NUCKS1 on the risk of prostate 

cancer among a European-ancestry population34, 35. Due to the close proximity of the two genes 

along the genome, there is a potential for a univariate approach to result in biased estimates. To 

examine the effects jointly, we applied hJAM to this research question.  

We constructed the �
 matrix with 114 marginally significant expression quantitative trait 

loci (eQTL) estimates for the two genes from GTEx v736. Among the 114 eQTLs, one eQTL has 

significant associations with both PM20D1 and NUCKS1. To limit the correlation between the 

eQTLs (|7| D 0.9), we used priority pruner37 to prune the eQTLs by limited the absolute 

pairwise correlation coefficient |7| : 0.7 and using the magnitude of the eQTLs association for 

each gene as the priority criteria. After pruning, we had 12 eQTLs in the analysis set 

(supplementary Figure 3). The genome-wide summary statistics for the risk of prostate cancer 

was taken from a published GWAS with more than 140,000 European-ancestry men38.  

Table 2 presents results from hJAM and the competing approaches. hJAM and MVIVW 

MR with LD yield non-significant results for both PM20D1 and NUCKS1 for the risk of prostate 

cancer (����
�� � 0.90 and � !"#$� � 0.21 for hJAM, and ����
�� � 0.90 and � !"#$� �
0.17 for MVIVW MR with LD). However, univariate models, including IVW MR and S-

PrediXcan, results in a significant positive effect for prostate cancer risk for PM20D1 and 

NUCKS1 (����
�� � 0.024 and � !"#$� � 3.53 
 10��% for IVW MR without correlation, and 
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����
�� � 0.003 and � !"#$� � 2.84 
 10��
 for S-PrediXcan). We consider the significance 

in the univariate models was due to the correlation between the two genes and the LD between 

the eQTLs, which could be adjusted for by the hJAM and MVIVW MR with LD models. 

Table 2 Causal odds ratios (95% confidence interval) for prostate cancer risk per unit 
increasing in gene expression reads. 

Methods Odds ratio (95% CI) P 
PM20D1 

hJAM 0.10 (0.92, 1.08) 0.91 
MVIVW MR 0.10 (0.93, 1.07) 0.90 
MVIVW MR (w/o LD) 0.99 (0.94, 1.04) 0.66 
IVW MR 1.02 (0.96, 1.10) 0.49 
IVW MR (w/o LD) 1.03 (1.00, 1.05) 0.02 
S-PrediXcan 1.01 (1.00, 1.01) 0.003 

NUCKS1 
hJAM 1.12 (0.93, 1.36) 0.21 
MVIVW MR 1.12 (0.95, 1.33) 0.17 
MVIVW MR (w/o LD) 1.15 (0.10, 1.33) 0.06 
IVW MR 1.16 (1.10, 1.21) 5.03E-10 
IVW MR (w/o LD) 1.16 (1.12, 1.20) 3.53E-15 
S-PrediXcan 1.10 (1.07, 1.13) 2.84E-10 

Abbreviation: w/o LD, without linkage disequilibrium adjustment; s.e., standard error; 95% CI, 
95% confidence interval. 

Supplementary Figure 4 Heatmap of the Pearson correlation between the 12 instrumental 

SNPs in data example 2: the effect of two gene expressions on the risk of prostate cancer.  

Discussion 

In this paper, we have proposed a two-stage hierarchical model which unifies the 

framework of Mendelian randomization and transcriptome-wide association tools and can be 

applied to correlated instruments and multiple intermediates. We have implemented the method 

in an R package which is available on Github (https://github.com/lailylajiang/hJAM). 
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When only one intermediate or multiple independent intermediates present, hJAM yield 

an equivalent estimate and standard error to alternative approaches (see Appendix). However, 

when intermediates are correlated, only MVIVW MR showed a comparable performance with 

hJAM under the independent SNPs scenarios. For correlated SNPs scenarios, when the LD 

structure is specified, hJAM’s estimates are empirically equivalent to MVIVW MR although the 

two approaches use slightly different weighted matrices – hJAM uses the adjusted variance-

covariance matrix of SNPs from a reference panel while MVIVW MR uses an inverse-variance 

matrix. Nevertheless, we believe that the hJAM formulation offers several advantages in 

flexibility to specify the �
 matrix. As in TWAS, this matrix can specify eQTL estimates or as in 

more classical MR approaches this can specify SNP-intermediate associations. Moreover, it can 

incorporate other types of prior information such as functional or genomic annotation or 

information from metabolomic studies39. Inclusion of this type of annotation information can 

offer potential advantages for characterization of SNP effects as demonstrated in the hierarchical 

modeling context10, 11, 40. Future research needs to be performed on how best to construct this 

matrix for various types of intermediates. 

Although hJAM provides an overall improvement over most existing MR methods, it is 

also susceptible to the caveats of these types of approaches. Firstly, it may subject to the bias in 

estimation due to unknown horizontal pleiotropy. hJAM can be extended to include a column of 

ones to the �
 matrix to allow for estimating an intercept term to formally test for directional 

pleiotropy, analogous to MR Egger22. This hJAM-Egger version showed a similar performance to 

the univariate MR-Egger regression with unbiased estimates under simulations in which the 

horizontal pleiotropy is balanced, but bias estimates in the presence of unbalanced pleiotropy 

(results not shown)22. hJAM-Egger can be applied as a sensitivity analysis of a multivariable 
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framework MR analysis41. An extension of the current hJAM approach could include variable 

selection to assess the pleiotropy assumption before incorporating the �
 matrix into the model. 

Several approaches have been proposed, such as JAM MR42 and MR-presso43. Secondly, the 

effects of the SNPs on the intermediates and the outcome, and the causal effect of intermediates 

on the outcome may be non-linear (e.g. interactions). One way to address such limitation is to 

use summary data from stratified GWAS; however, it may attenuate the power due to a smaller 

sample size of the subset GWAS.  

In applied applications, population structure may introduce potential difficulties for 

hJAM, as is similar for all MR and TWAS approaches using summary statistics. First, there is the 

reliance that the association statistics are unbiased due to potential confounding by population 

structure. This includes summary data for the SNPs to intermediate associations in �
 matrix, as 

well as the marginal SNP-outcome associations using within the hJAM model. However, given 

that modern techniques to account for population structure are often sufficient44, 45, this is a fair 

assumption. Additionally, to account for the correlation structure between SNPs, hJAM assumes 

that the LD structure estimated from the reference data is the same as the study data used to 

generate the summary statistics. Since hJAM and MVIVW MR incorporate the correlation 

structure of SNPs in a slightly different weight matrices, there is the potential for this to impact 

these methods differently. Although, in a limited set of simulations we found that both methods 

are fairly robust to scenarios in which the reference data and the association data have modest 

differences in LD structures (results not shown).  

In contrast to most current methods that rely on independent SNPs or analyze 

intermediates in isolation, we propose a two-stage hierarchical model to jointly model summary 

statistics (hJAM) for correlated SNPs and multiple intermediates within Mendelian 
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Randomization and transcriptome-wide association studies. As technology expands the potential 

use of these types of studies to proteomic, methylation and metabolomic data, such flexible 

approaches will be needed to account for the potential increase in complexity in underlying 

relationships between factors. 
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Figure 1 The direct acyclic graph (DAG) for instrumental variable analysis with genetic 

variants.  

This DAG describes the framework for several approaches. Arrow denotes a causal effect in the 

direction of the arrow. Solid line refers to moderate or strong association and dashed line refers 

to uncertain association.  
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Figure 2 Simulation scenarios of different relationships between X’s.  

(A) 𝑋1 and 𝑋2 are independent. (B) 𝑋1 and 𝑋2 are correlated. (C) 𝑋1 causes 𝑋2. (D) 𝑋1 causes 

𝑋2 and correlated. 
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Figure 3 Average estimates and 95% confidence intervals of the correlated SNPs scenarios 

across 1000 replications. 

(A) 𝑋1 and 𝑋2 are independent. (B) 𝑋1 and 𝑋2 are correlated. (C) 𝑋1 causes 𝑋2. (D) 𝑋1 causes 

𝑋2 and correlated. The black solid line refers to the default Type-I error, 𝛼 = 0.05. 
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Figure 4 Empirical Power of the correlated SNPs scenarios across 1000 replications. 

(A) 𝑋1 and 𝑋2 are independent. (B) 𝑋1 and 𝑋2 are correlated. (C) 𝑋1 causes 𝑋2. (D) 𝑋1 causes 

𝑋2 and correlated. The black solid line refers to the default Type-I error, 𝛼 = 0.05. 
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Figure 5 Direct acyclic graph (DAG) of the relationship between BMI, type 2 diabetes and 

myocardial infarction. 
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