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Abstract 
 
Neuropsychiatric phenotypes have been long known to be influenced by heritable risk factors. The 

past decade of genetic studies have confirmed this directly, revealing specific common and rare 

genetic variants enriched in disease cohorts. However, the early hope for these studies—that only a 

small set of genes would be responsible for a given disorder—proved false. The picture that has 

emerged is far more complex: a given disorder may be influenced by myriad coding and noncoding 

variants of small effect size, and/or by rare but severe variants of large effect size, many de novo. 

Noncoding genomic sequences harbor a large portion of these variants, the molecular functions of 

which cannot usually be inferred from sequence alone. This creates a substantial barrier to 

understanding the higher-order molecular and biological systems underlying disease risk. Fortunately, 

a proliferation of genetic technologies—namely, scalable oligonucleotide synthesis, high-throughput 

RNA sequencing, CRISPR, and CRISPR derivatives—have opened novel avenues to experimentally 

identify biologically significant variants en masse. These advances have yielded an especially 

versatile technique adaptable to large-scale functional assays of variation in both untranscribed and 

untranslated regulatory features: Massively Parallel Reporter Assays (MPRAs). MPRAs are powerful 

molecular genetic tools that can be used to screen tens of thousands of predefined sequences for 

functional effects in a single experiment. This approach has several ideal features for psychiatric 

genetics, but remains underutilized in the field to date. To emphasize the opportunities MPRA holds 

for dissecting psychiatric polygenicity, we review here its applications in the literature, discuss its 

ability to test several biological variables implicated in psychiatric disorders, illustrate this flexibility 

with a proof-of-principle, in vivo cell-type specific implementation of the assay, and envision future 

outcomes of applying MPRA to both computational and experimental neurogenetics. 

 

Introduction 

Psychiatric diseases are genetically influenced by common and rare heritable variation, as well as by 

non-inherited, de novo mutations. Liability to disease through common variants (allele frequency ≥ 

1%) ranges from 10-25% for psychiatric disorders including major depressive disorder (MDD) (1–3) 

and schizophrenia (1,4). Rare variants have likewise been shown to confer disease risk, particularly 

in neurodevelopmental and psychotic (5,6) domains. While loci containing both types of variants have 

been associated with neuropsychiatric phenotypes, two major hurdles have prevented use of this 

knowledge to better understand disease mechanisms: 1) a large volume of GWAS associations and 

rare variant discoveries to test for functionality/causality; and 2) the lack of means to predict a 

variant’s functional consequences. These hurdles confound the identification of shared features 

across functional variants that converge on common phenotypes.  
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Defining specific causal variant(s): problems of linkage and numbers 

The identification of candidate genetic variants with disease associations relies on correlational 

methodologies. Genome wide association studies (GWAS) identify loci with overrepresented blocks 

of linked variants, comprising numerous single nucleotide polymorphisms (SNPs). Similarly, family 

studies (e.g., trio studies) identify many proband-specific (de novo) or -enriched (rare, inherited) 

variants in each patient, though only 1-2 may be causal. Further, while consequences of coding 

variants (e.g., nonsense mutations) can be reliably predicted, the vast majority of GWAS loci fall 

outside of transcribed sequences(7). Rare and de novo variation, on the other hand, is more broadly 

distributed across the genome, including untranslated and translation-regulating sequences, well-

illustrated by autism spectrum disorders (ASDs): over 255,106 distinct de novo variants (including 

142 stop codon gains, 3,402 in untranslated regions (UTRs), and 6,787 upstream gene/promoter 

variants) were recently identified in 1,902 ASD subjects (8). However, these discovery-oriented 

approaches are incapable of identifying the minority of associations corresponding to variants with 

biological/disease-pertinent functions. 

 

Challenges in predicting a variant’s functional consequences 

Predicting whether and how a noncoding variant is functional is a nontrivial enterprise. The majority of 

these variants, and their linked neighbors, bear indirect indication(s) of transcriptional regulatory 

function in annotations such as expression quantitative trait locus (eQTL) associations, chromatin 

accessibility, or histone marks (7,9,10). However, even within a cell or tissue type, such data are 

often mutually discordant: one study examining six epigenomic datasets in K562 cells found that 49% 

of functional regulators did not overlap any of the six annotation sets, and another 40% only 

overlapped one of the six (11). Similarly, the Roadmap Epigenomics Consortium (12) inferred cell 

type-specific regulatory elements using chromatin marks, but only a minority of GWAS SNPs overlap 

these elements (except in blood) (13). Therefore, epigenomic data alone are inadequate for 

predicting functional regulatory variants in a given cell type. 

 

While there is a clear excess of de novo variation in coding sequences in ASD and other 

neurodevelopment disorders, substantial additional burden is estimated to be borne by other 

elements, such as transcriptional (8) and translational regulators (e.g., splicing 5’/3’ untranslated 

regions; UTRs) (14,15). These regions function to regulate transcript stability and miRNA interactions 

(16); they may also mediate nuclear retention/export of transcripts in the brain, which has only 

recently been explored (17). Coding variation carries a minority of heritable risk for schizophrenia, 
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bipolar disorder, and attention deficit hyperactivity disorder (18).  The occurrence of most disease-

linked variation in the least-well understood features of the genome/transcriptome thus obstructs 

understanding of disease biology. 

 

Collectively, these two problems necessitate high-throughput assays with functional readout for 

putative regulatory regions and variants. Such assays enable identification of functional variants and 

of the biological and environmental contexts in which they act. This knowledge, in turn, can begin 

shaping hypotheses regarding the shared mechanisms by which seemingly disparate genetic factors 

converge on shared phenotypic endpoints. 

 

Here, we will primarily discuss MPRAs in terms of their potential for high-throughput parcellation of 

genetic studies. This technology relies on pairing genomic features (e.g., an allelic pair of a variant-

containing region) to a reporter gene bearing unique, transcribed barcodes, allowing an RNA-level 

readout of features’ activities in a multiplex setting (19,20). This approach can be flexibly 

implemented allowing study of transcriptional regulators (e.g., promoters), as well as splicing, protein 

translation, and post-transcriptional regulators. Critically, the potential for MPRAs to dissect roles of 

variants from neuropsychiatric genetic studies is far from fully realized. Here, we aim to illustrate that 

MPRAs are a methodologic “low-hanging fruit” for neuropsychiatric genetics. In the first part of this 

review, we discuss the importance of cellular, biological, and environmental contexts in the design 

and execution of MPRA, exemplify uses of the approach to date, and discuss complementary/follow-

up methods to further validate functional variants nominated by MPRA. In the second part, we 

discuss multiple features of MPRA that are well-suited to parsing polygenic architecture—both for 

dissecting linked blocks of multiple functional variants, and for identifying convergent variant 

mechanisms across the genome. 

 

Part 1: MPRAs for Identification of Sequence Variants with Functional Consequences 

MPRAs quantify activity of putative regulatory elements by coupling them to a reporter gene 

and counting transcribed, element-specific tags (“barcodes”), using sequencing to determine 

the ratio of (expressed RNA barcode)/(delivered DNA barcode). This experimental framework has 

been applied to human splicing (21–23), RNA editing (24), protein translation (25), UTRs (26–30), 

and, most broadly, transcriptional (i.e., cis-) regulators. MPRAs thus offer a flexible framework to 

study regulatory phenomenon, including transcription factor (TF) and RNA binding protein (RBP) 

actions, transcript stability, and ribosome occupancy. MPRAs have been most broadly applied to 

explore and computationally model “regulatory grammar” of transcriptional regulators: how sequence 
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features such as binding motifs, their abundance, and arrangement affect regulatory capacity (31–

38). More recently, these approaches have been applied to identify the transcriptional consequences 

of SNPs and rare variants (39–45). 

 

As shown in Figure 1A-B, a canonical ‘enhancer’ MPRA utilizes a promoter with candidate elements 

either immediately upstream or in a 3’UTR (STARRseq) (same approach as Figure 1D) (46). Each 

sequence element is paired to multiple, unique barcodes, which are transcribed into UTRs and 

sequenced as quantitative readout. Expression—representing transcription or RNA stability—is 

typically measured as the counts of RNA barcode per encoding DNA barcode (Figure 1G). To define 

active or differentially active elements, expression levels can be normalized to e.g., a minimal-

promoter only set of barcodes (31,34,37,47–49), compared between alleles (39–45), or compared to 

shuffled parent sequence(s) (32,37) 

 

MPRAs also enable study of post-transcriptional regulatory elements. As shown in Figure 1C and 

1D, the same architecture and RNA/DNA expression metric can be used to assess UTR effects on 

transcript stability. UTR MPRAs have yet to be implemented to study regulatory variants directly, but 

have been used to study the regulatory grammar of the ASD/ID-implicated CELF proteins and related 

RBPs (26,50,51), features conferring transcript stability via 3’UTRs (27,28,30), and 5’UTR influences 

on translation (52) and prediction of functional 5’UTR variants (29). Across enhancer and UTR 

MPRAs, several key forms of disease-associated noncoding variation can be assessed for functional 

consequences using a variety of model systems and delivery approaches (Figure 1E-F). 

 

MPRAs Enable Identification of Functional Regulators and Variants In Specific Cellular Contexts 

Perhaps the most exciting—if underappreciated—property of MPRAs is the ability to assay regulators 

of interest in the relevant cell types and conditions. Functional elements both define—and are defined 

by—a given cell type’s unique milieu of expressed TFs, chromatin modifiers, miRNAs and RBPs, 

which in turn specify regulatory element functionality. The importance of cell type is strikingly 

illustrated by a cis-regulatory MPRA of random sequences performed in parallel using U87 

glioblastoma and neural progenitor cells. Comparison of the most active enhancers across the two 

cell types yielded entirely different motifs and sequence features correlated with expression (49). This 

sensitivity to cellular context highlights that MPRAs can be designed to assay and compare 

genetic regulation in cell types known—or predicted to—mediate disease. This also highlights 

the fact that careful consideration needs to be given to the appropriate cellular context when 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.02.02.931337doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.931337
http://creativecommons.org/licenses/by-nc-nd/4.0/


designing assays for psychiatric genetics: the array of variant-interacting TFs and RBPs expressed in 

neural cells may not be present in convenient cell lines (e.g., HeLa or HEK-293).  

 

While cell type overwhelmingly influences outcomes in regulatory assays, additional conditions could 

equally alter outcomes (Figure 2). Age, sex, pharmacology, and environment (e.g., stress)—all, like 

cell type, can shape or reshape regulatory activity. This capacity of MPRAs has recently been applied 

in neurogenetics—specifically in determining the temporal patterns of regulatory element activity over 

the course of differentiation of human neural progenitor cell (NPC) differentiation to neurons (53).  

 

In addition to context-specific element activity, MPRAs can also identify context-specific functional 

variants. This follows from findings that the influence of genomic variants on epigenomic marks is 

also cell type dependent, even within a developmental lineage: approximately 80% of SNPs with 

allelic associations to chromatin accessibility in human NPCs or neurons only carry such an 

association in one of these two cell types (54). Thus, experimental study of putative disease-

associated variants requires firm hypotheses on where (cell type), when (development/differentiation), 

and how the regulators are expressed/active and biologically relevant. For example, a hypothetical 

study of regulatory variants affecting action of a candidate ASD gene like CHD8—expressed most 

highly in early development (55)—using mature neurons may not detect any effects because, while 

matched on cellular context, the temporal context is inappropriate for examining the candidate gene. 

The importance of cell type in identifying regulatory variants is explicitly highlighted by the enrichment 

of GWAS SNPs with tissue-specific associations to gene expression (56,57). MPRAs are thus 

poised to be applied to study of cell type-specificity of regulatory variation both in vitro and, 

as we will demonstrate, in vivo. 

 

Work toward assessing and predicting the effects of biological context on genomic variation has been 

recently illustrated in computational genomics. The Critical Assessment of Genome Interpretation 5 

(CAGI5) consortium performed an MPRA of saturation-mutagenized human regulatory elements and 

disease-associated promoters in numerous cell types. A subset of these data were provided to 

analysts, who were then challenged to computationally predict functionality and effect sizes of held-

out variants (58). The end project focused on identifying the most informative datasets (e.g., 

chromatin modification data from ENCODE) for cell-type specific regulatory variant prediction. A key 

finding was that the most informative datasets often came from the same or similar cell types as that 

for which predictions were made.  
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Complimentarily, MPRAs focused on neuropsychiatric disorder associated variation stand to benefit 

from high-information datasets by aiding variant prioritization for assay inclusion. Several datasets on 

synthetic UTRs (27,29), RNA binding proteins (59,60), and postmortem human brain multi-omics (61–

70) have become available in recent years. Integrative computational analyses have brought these 

datasets together predict functional variation in SCZ, bipolar disorder, and ASDs (71,72); however, 

these predictions have not yet been systematically tested. These constitute high-priority candidates 

for experimental validation by MPRA. Finally, inclusion of MPRA data with regulatory-epigenomic 

annotations improves machine learning predictions of functional variants (73). As such, MPRAs and 

omics form a symbiotic loop whereby MPRA results refine regulatory omics data, improving variant 

prioritization for future computational and functional investigations.  

 

In spite of their potential, few MPRAs have examined regulatory variation while considering both cell 

type and –omic predictions. Tewhey, et. al (41) implemented an MPRA in human lymphoblastoid cell 

lines (LCLs) to identify functional regulatory variants among nearly 30,000 eQTL SNPs from LCLs, 

thus maintaining an appropriate cellular context for testing the discovered variants. Over 3,400 active 

regulatory sequences were identified, including 850 activity-modulating variants (24%), detectable 

even though effect sizes generally were under 2-fold. More recently, Choi, et. al (74) prioritized over 

800 SNPs—guided by fine mapping and epigenomic signals—from 16 melanoma GWAS loci, then 

assayed the variants for transcriptional-regulatory activity in melanocytes in vitro. Candidate variants 

with concordant eQTL signal in independent melanocyte data were prioritized for follow-up, ultimately 

enabling their experimental demonstration of biophysical (TF binding), molecular (target gene 

expression), cellular (growth rate), and in vivo (melanoma rate in target over-expressing zebrafish) 

variant mechanisms. These experiments exquisitely illustrate MPRA’s capacity for sensitivity, context 

specificity, and high discovery rates, especially when integrating both association data and multi-omic 

annotations to nominate variants. 

 

However, the ability of MPRAs to address clinically-relevant questions has, to date, largely been 

restricted by in vitro implementations, which can neither model the complex cell-type interactions of 

tissues—especially those of the brain—nor can they model tissues’ full breadth of sex/developmental, 

environmental, or pharmacological complexity (Figure 2). Critically, even the most complex in vitro 

models of brain tissue—organoids—lack almost 50% of cell type-specific accessible chromatin 

regions found in their in vivo counterpart (fetal brain) (75), suggesting that in vitro MPRAs alone 

cannot dissect functional variation in neuropsychiatry. As preclinical research tools, in vivo MPRAs 

would greatly expand the ability to assess regulatory activity in native cellular and physiologic 

contexts. Two in vivo MPRA studies to date from Shen, et. al, confirm that MPRA is plausible for the 
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brain (mouse cortex) in vivo. In the first, a library 45,000 barcodes corresponding to human brain 

open chromatin regions were packaged in adeno-associated virus 9 (AAV9) and transduced into adult 

mouse brain by stereotaxy (45). Consistent with open chromatin as a proxy for transcriptional 

regulation, many of the strongest accessibility peaks also drove gene expression in the mouse brain. 

In the second study, a single candidate SNP from a locus associated with bipolar disorder was 

prioritized by epigenomic data and ultimately demonstrated to have functional consequences; the two 

alleles of this sequence region were paired to 20 barcodes each, delivered by electroporation of 

embryonic mouse brains, which were explanted, maintained ex vivo for two days, and then assayed 

(44). While the two studies represent a major step toward assessing gene regulation in intact tissues, 

the barcode readout nonetheless comes from ‘bulk’ tissue RNA, leaving a limitation (albeit 

acknowledged) regarding cell-type effects on regulation. 

 

The frontiers of context-driven MPRA: A Proof of Principle In Vivo, Cell-Type Specific MPRA  

To determine whether MPRA can be used to assay cell-type specific gene regulation in the in vivo 

setting of the brain, we generated four barcoded sets of AAV-compatible plasmids, containing a 

human promoter from pan-cellular (PGK2) (76), excitatory-neuronal (CAMK2A), or astrocytic (GFAP) 

(77) genes, or a minimal promoter (mouse Hsp68) (34) alone. 

 

First, CAMK2A, GFAP, and minimal-promoter-only (Hsp68) viruses were individually injected into P1 

mice to give widespread transduction of the brain (78). Brains were collected and sliced at P21 to 

examine cell-type expression patterns of dsRed under each promoter, confirming the neuronal, 

astrocytic, and non-specificity of these three promoters, respectively (Figure 3).  

 

Subsequently, the viruses were mixed at a titer of 1:1:1:1 and injected into the P1 brain of SNAP25-

TRAP mice (n=2), from which neuronal RNAs can be selectively enriched using the TRAP method 

(79,80). At P28, brains were collected for TRAP to obtain neuronal and brain-wide RNAs for barcode 

sequencing alongside DNA from the viral mix delivered. 

 

As expected, the neuronal TRAP fractions relative to the whole brain homogenate displayed 

increased RNA/DNA ratio (i.e., expression) of the CAMK2A-driven barcodes, and relative depletion of 

the astrocytic GFAP-driven barcodes (Figure 4F), indicating that we were able to successfully identify 

cell-type differential activity of these regulators. The calculated expression on a per-barcode basis 

was highly replicable between the two animals (R2 > 0.99) (Figure 4D and 4E). In all, this experiment 

demonstrates that MPRAs are not restricted to tissue culture models and have the capacity to be 
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executed in specific cell types in model organisms, enabling functional assessment of gene regulation 

in higher-fidelity developmental, hormonal, and physiologic contexts. 

 

Complementary methods in high-throughput study of DNA and RNA regulatory elements 

A primary limitation of MPRA is the inability to test regulators in their endogenous genomic position 

and sequence context. This prevents identification of target genes (for transcriptional regulators or 

their variants) and confirmation of a variant or element’s relevance in its native genomic context. 

Sequence-specific targeting methods using CRISPR/Cas9 have enabled several additional 

techniques for probing molecular and cellular effects of regulatory variation, with the caveat that, in 

contrast to MPRA, these techniques do not currently allow for the multiplexed study of post-

transcriptional/translational regulators. Nonetheless, these techniques complement MPRA well in that 

they enable study of the host genome directly. Perturb-seq (81) combines genewise perturbation by 

CRISPR with single-cell RNA-seq to identify gene sets dysregulated by loss of function of each 

candidate gene. These have, for example, been used to discover co-transcribed gene networks 

involved in neuronal remodeling (82), and for in vivo assessment of a set of genes discovered to 

harbor de novo loss of function mutations in ASDs (83). CRISPR editing has been used in vitro to 

assess single transcript variant effects by comparing reference and allelic RNA and genomic DNA 

abundances in edited cultures(84). While this approach currently requires a separate culture of cells 

for each assayed variant, it still enables practicable validation/follow-up of MPRA candidates by the 

dozens using, e.g., 96-well plates. To our knowledge, such assays have not been conducted at a 

genome-wide scale in psychiatric disease, but have been used to identify genes that alter expression 

of the Parkinson’s-associated PARKIN (85). 

 

Cis-regulatory MPRAs do not disentangle target gene(s) from functional regulators. Fortunately, 

CRISPR-derived methods using a mutagenically-‘dead’ Cas9 (dCas9) conjugated to a transcriptional 

activator or repressor allow an experimenter to target and potentiate or repress endogenous genomic 

regulatory elements (CRISPRa and CRISPRi, respectively) to assess altered gene expression and 

other outcomes. These technologies are already online in state-of-the-art human neuroscience 

models: a recent CRISPRi study knocked down over 2000 genes by targeting their promoters in 

iPSC-derived excitatory neurons, defining gene roles in their survival, differentiation, and proliferation. 

Like MPRAs, such assays retain the ability to assess cellular context—in this case, a subset of cells 

were co-cultured with astrocytes, revealing that knockdown of certain genes had different 

consequences on neuronal survival in co-culture conditions (86). The cell-type specificity of CRISPRi 

has also been leveraged to study ASD-associated gene knockdown effects in an etiologically relevant 
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cell type, NPCs (87). A recently introduced extension of CRISPRi targets intergenic regulators along 

with fluorescent in situ hybridization against genes in the same chromodomain to identify regulator-

target pairs. Fluorescence-intensity sorting into bins and subsequent RNA sequencing of stained cells 

then could be used to pair regulators (via guide RNA sequence) and target genes (altered fluorescent 

intensity associated to a guide RNA’s presence) (88). While this assay was performed in K562 cells, it 

is not hard to envision its extension to neural cell types in vitro or in vivo. Altogether, CRISPR-based 

follow-up of MPRA candidates to define target genes and verify of genomic activity of 

regulators/variants will be key to developing insights in psychiatric genomics. 

 

Part 2: MPRAs as an avenue to dissect multiallelic and polygenic mechanisms of 

neuropsychiatric traits 

While MPRAs cannot intrinsically scale up to functional demonstration of cell-, tissue-, or behavior-

level phenotypes, they have the potential to provide key information to guide molecular hypotheses 

for how these higher-order phenotypes emerge from large sets of regulators and/or their target 

genes. We will divide this discussion into a brief examination of cis variation—that is, the study of 

multiple elements in the same linkage block —and examination of variants in trans space—that is, 

defining shared and recurrent features among MPRA-nominated functional variants across the 

genome that may collectively underlie large portions of polygenic disease risk. 

 

The utility of MPRAs for parsing linked variation  

One challenge in parsing loci implicated in common variant association studies is that multiple 

variants in the region are equally statistically associated, and thus equally plausible functional 

mediators of risk. Indeed, in statistical genetics, repeating a GWAS or eQTL association analysis after 

conditioning on the lead SNP within a block often reveals one or more additional independent variants 

associated with traits or gene expression, respectively (e.g., (70,89,90)); in fact, nearly half (~8,000) 

of brain expressed genes have ≥1 conditional eQTL (91)Reporter assays have been used to 

systematically evaluate such linked sets of variants. One disease-oriented, small scale example used 

epigenomic data to identify 16 enhancers spread over a few hundred kilobases near the Ret gene, 

known to be downregulated in Hirschsprung’s disease (failure of terminal colonic nerves to form in 

utero). The 16 putative regulators were assayed for allele-differential activity in neuroblastomas to 

model regulatory activity in the disease-relevant cell type, neural crest cells. These were likewise 

assayed with transient expression in mouse embryos driving a LacZ reporter to identify the crest-

relevant regulatory sequences. They also validated roles for regulator-binding TFs via siRNA 

knockdown. In all, this identified three functional SNPs in linkage disequilibrium(92). While this was a 
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small scale example, it is easy to imagine how MPRAs might be used to dissect the large and 

numerous blocks of common variation associated with psychiatric disease (3,4). 

 

While the RET SNPs were several hundred kilobases apart, another challenge is with variants in very 

close proximity, potentially within the same regulatory element. While oligo synthesis is limited in 

length, MPRA-based assay of such variants spanning up to 700bp is now possible with use of PCR 

amplification of oligos with uniquely complimentary ends (93). Likewise, ‘capture-and-clone’ MPRA 

designs, often using STARR-seq architecture to simplify cloning, fragment genomic DNA or capture 

e.g. ChIP-seq DNA fragments to test larger fragments than attainable via oligonucleotide 

synthesis(45,94–96). Altogether, MPRAs allow for discovery of multiple functional variants per linkage 

region, as well as close-proximity discovery and disentanglement of multi-variant regulatory effects. 

 

It is worth mentioning that MPRA could be of utility in the longer term as a technical tool to improve 

GWAS methods. Unusual linkage patterns in genomic regions such as the major histocompatibility 

complex confound localization of trait associations, leaving the region excluded from analyses or 

nebulously associated in others—over 200 traits (64), with MDD among them (65). Comprehensive 

MPRA of variants from this region across a broad panel of cell types would enable identification of 

cell/tissue-specific functional variants, which could then be placed on SNP genotyping arrays, partially 

sidestepping linkage limitations in understanding this region by collecting genotype information at the 

functional variant positions. Such efforts at a consortium scale could likewise characterize 

functionality and properties of broader sets of both untranscribed and untranslated variants in the 

same manner in each of several cell types. 

 

The utility of MPRAs in identifying commonalities from variants across the genome 

The most vexing question that remains after individual functional variant mechanisms are elucidated 

is how variants collectively contribute to phenotypic risk. MPRAs provide several ways to begin 

addressing this question: 1) by identifying shared regulatory features across several functional risk 

variants; 2) identifying functional modules enriched for genes dysregulated by disease-associated 

variants; 3) by providing functional annotations to variants that can be integrated into computational 

genomic approaches; and finally, 4) by enabling study of variant-by-environment interactions using 

the same MPRA libraries across conditions. 

 

Firstly, MPRA experiments running the gamut from basic regulatory genomics to human traits and 

variation have defined scoping ‘regulatory grammars’ of assayed contexts. Identification of functional 
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variants in the MPRA setting enables similar establishment of the “regulatory grammar” of a trait or 

disease. Functional variants identified by MPRA across several UTRs may feature a specific RBP’s 

binding site, for example. Likewise, variants associated with a trait could be more likely to fall in 

particular TF binding sites or be enriched cell-type specific marks of genomic regulation. Evidence of 

this convergence is seen in de novo variants associated with ASD: several distinct variants disrupt 

binding sites for a single TF, NFIX (97). Such an approach was taken in a recent MPRA of lupus-

associated SNPs, where identified functional variants were intersected with TF ChIP-seq datasets 

from pertinent cell types (leukocytes), identifying sets of recurrently disrupted TF binding sites (98). 

Assays of downstream consequences of variation also confirm biological convergence across 

association loci. A four-gene-target CRISPRi/a assay revealed that schizophrenia risk genes act 

synergistically via shared influence on synaptic activity, and concurrent alteration of expression of all 

four genes results in a cellular transcriptome more accurately reflective of postmortem schizophrenia 

brain tissue(99). For both rare and common variants, identifying common regulators among risk 

genes provides information which can refine predictions of disease-related cell types based on their 

expression of such TFs, RBPs, or epigenomic marks. 

 

Secondly, genes and gene networks affected by statistically associated variation are often predicted 

using MAGMA (100), which in essence scores genes based on proximity to an associated variant and 

its linkage partners. Resulting gene sets are subjected to analyses such as Gene Ontology 

enrichment or are examined for enrichment in WGCNA (co-transcriptional) networks from candidate 

tissue types to identify pathways and mechanisms on which these genes converge. While its use is 

ubiquitous in genomic studies, standard MAGMA gene association statistics for psychiatric disorders 

only modestly correlate to those from a tissue-specific, chromatin configuration-aware modification of 

MAGMA (101), suggesting that biological hypotheses from MAGMA gene sets may miss disease-

associated genes in brain. Being able to refine implicated genes by functional validation using—or in 

follow-up to—MPRA will help to benchmark such approaches and refine prediction convergence with 

‘truly’ dysregulated candidate genes. 

 

Thirdly, epigenomic data alone is not comprehensively predictive of active regulators. However, well-

informed analyses of human genetic findings rely heavily on such annotations to convert associations 

into biological hypotheses. Critically, these epigenomic data—unlike MPRA data—can be collected 

from postmortem human tissue. However, a symbiotic loop is possible wherein verified regulators 

implicated by MPRA could be used to train and improve annotation of epigenomic algorithms —which 

in turn could be assessed by MPRA and used as another training set. Refined interpretation of 

epigenomic data and variant-expression association can then improve myriad analyses, such as 
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variant enrichment in classes of genomic features, as well as disease gene identification. Other high-

order analyses, such as TWAS (102) and Predixcan (103) intersect gene expression QTLs (eQTL) 

with trait-associated variants to predict expression differences between cases and controls, thus 

identifying dysregulated gene sets. MPRA data can disentangle which eQTL SNPs are truly functional 

from those associated only due to LD. Layering in MPRA data as weights or qualifiers of SNPs 

included in these analyses ought to refine disease-gene set associations much as discussed above. 

Altogether, MPRA can serve to refine both epigenomic and genic definitions of truly causal disease 

features. 

 

Finally, the context-specificity of MPRA (Fig 2) represents a newfound ability to assess variant effects 

on gene regulation en masse under different biological and environmental contexts, including with in 

vivo models. While issues of convergent disease effects across genes and regulators are indeed 

complex, environmental effects—perhaps most canonically, stress—on these regulators are 

questions at the forefront of understanding polygenic risk in neuropsychiatric disorders. 

Pharmacologic variables have been successfully tested in MPRA, namely in the identification of 

glucocorticoid-responsive (104) and p53-responsive (96) regulatory elements. MPRAs could further 

be layered with concurrent gene perturbations (e.g., knockdown of a putative regulator) or cell culture 

conditions for in vitro identification of variant-environment interactions. However, the most exciting 

function of MPRAs may be the opportunity to study disease-associated factors that cannot be (well) 

modeled in vitro, such as sex or stress, by moving these assays in vivo. Such studies can clarify sets 

of variants which depend on specific exogenous (e.g., stress) or endogenous (e.g., sex) contexts. 

Such variants could indicate molecular mechanisms behind conditional disease risk in a disorder 

such as depression.  

 

Conclusion 

MPRA presents unique opportunities to dissect polygenicity of psychiatric disorders via simultaneous 

identification of functional variants across identified risk space. Beyond the primary benefits of 

identifying ‘true positive’ functional variants in specific biological and environmental contexts, MPRAs 

stand to rapidly broaden, deepen, and refine hypotheses and mechanisms of both noncoding disease 

risk and of gene-regulatory architecture itself. 
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Figure 1 | Cloning, Delivery, and Analysis Approaches in MPRA. A) Visual key for subsequent 

panels. B) Enhancer MPRAs most commonly clone a pool of custom oligonucleotide pools containing 

sequences to be assayed, each paired to multiple unique barcode sequences, into a vector. This 

plasmid pool is collected and a promoter-reporter cassette is subsequently inserted between the 

elements and barcodes, such that the element of interest is upstream of a promoter and the barcode 

is in a 3’UTR. In the case of STARR-seq (not shown), the paradigm in panel D is instead used, with 

the cis-regulatory element acting as its own barcode. C) 5’UTR assays likewise use a two-step 

cloning assay, placing elements immediately downstream of a promoter. A reporter gene itself is 

inserted between the element and barcode. D) 3’UTR assays place both the elements of interests, 

immediately adjacent to barcodes, downstream of a promoter-reporter in a single cloning step. E) 

Sequence pools from approaches B-D can then be packaged into AAV or lentivirus (if in a compatible 

vector), or used for assay as plasmid directly. F) The plasmid or viral MPRA library can be delivered 

to cells in culture or in vivo tissue. After transfection/transduction, nucleic material is collected to 

generate sequencing libraries to quantify expression of the delivered elements. G) MPRA analysis 

centers on taking the ratio of RNA/DNA counts (or counts per million), represented by the sequence 

fragments at top left, as a measure of expression. 

 

Figure 2 | Regulatory assays are influenced by a range of conditions, from environment to 

sequence context. The range of conditions that influence regulatory assays (from top to bottom) 

starts when considering the environment, e.g., sex, time, and pharmacology. These parameters have 

the potential to affect various –omic profiles in a given system. The next level of consideration is the 

organism, which can include human-derived tissue or one of the many model organisms. Human 

genomic context is ideal for studying the biology of human disease – though a comparatively limited 

scope of techniques for human-derived tissues exists. Next, one should consider the selected cell 

type(s) and whether to assay in vitro or in vivo. Each of these provides a unique set of benefits, and 

one approach can be used to verify findings from the other as a form of validation (45,74). In the case 

of modeling the brain and psychiatric genetic variants, cell type-specific/enriched MPRAs in vivo 

constitute the highest-fidelity model of variant effects by accounting for regulatory effects of 

endogenously interacting cell types. Lastly, the sequence context will be influenced by the delivery 

method, which results in transcription from extragenomic or intragenomic MPRA DNAs. In either 

case, only limited length of sequence surrounding a feature of interest is preserved (e.g., in ~120bp 

tiles of genomic sequence in custom oligonucleotide cloning, or ≤ 1kb in clone-and-capture methods), 

preventing assessment of any interactive effects from elements further away. (A recent study 

suggests that size of a tile negatively correlates with reproducibility of expression driven compared to 

that driven by ~120bp tiles, emphasizing the importance of this consideration (93)). While AAV-
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transduced episomes gain histones (105) and chromosome-like nucleosome spacing (106), it is 

unknown whether gene-regulatory histone marks on these episomes mirror those of endogenous 

regulatory chromatin. For these reasons of both local sequence context and chromatin context, we 

suggest corroboration of MPRA findings in native genomic settings, by, for example, introducing the 

variant to the genome of a cell line using CRISPR methods.  

 

Figure 3 | Immunofluorescent confirmation of cell type-specificity of promoters delivered by 

AAV9. All images are from mouse brain transduced with AAV9 at P2 and collected at P27. The AAV 

delivered contained dsRed under the control of the hsp68 minimal promoter, with or without an 

additional promoter upstream. Astrocytes were labeled with anti-GFAP and neurons with anti-NeuN 

antibodies. White arrowheads indicate examples of transduced neurons; white arrows indicate 

example transduced astrocytes. A) Hsp68 alone drives dsRed expression predominantly in neurons 

in both the cortex (top row) and hippocampal granule layer (bottom row). Only three astrocytes (two 

shown) were found expressing dsRed across three examined slices of transduced forebrain. B) The 

CAMK2A promoter exclusively drove neuronal expression, shown in the hippocampal dentate gyrus 

granule layer. C) The GFABC1D promoter (subregion of the GFAP promoter) drove predominantly 

astrocytic dsRed expression, shown near the granule cell layer of the hippocampus. Expression is 

predominantly in astrocytes, such as those ensheathing blood vessels as shown, with rare, 

comparatively low expression in neurons. 

 

Figure 4 | Design, replicability, and cell type-specificity of a small-scale, proof of principle in 

vivo MPRA. A-C) Design of the MPRA plasmids. For each promoter, multiple barcodes were PCR 

coupled to each promoter (A), inserted into plasmid (B), and an hsp68-dsRed construct subsequently 

inserted (C). Plasmid pools were created subsequently packaged in AAV9 for each promoter 

separately. The final library consisted of 32 barcodes across the four promoters. D-E) Mouse brains 

transduced with an equal-titer mixture of all 4 promoter AAV9s and subjected to neuronal (SNAP25) 

TRAP showed strong replicability of barcode-wise expression in both the neuronal-enriched TRAP 

RNA fraction (D, R2=0.9975) and total tissue (E, R2=0.9927). F) Expression across barcodes in each 

replicate confirmed that the TRAP fraction was enriched for Camk2a-coupled barcodes (neuron-

specific) and depleted for GFABC1D-coupled barcodes (astrocytic) as expected. ** p ≤ 5 x 10-4 , *** p 

≤ 5 x 10-8 
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