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Summary
Aging is a complex process with poorly understood genetic mechanisms. Recent studies have sought to

classify genes as pro-longevity or anti-longevity using a variety of machine learning algorithms. However,
it is not clear which types of features are best for optimizing classification performance and which
algorithms are best suited to this task. Further, performance assessments based on held-out test data
are lacking. We systematically compare five popular classification algorithms using gene ontology and
gene expression datasets as features to predict the pro-longevity versus anti-longevity status of genes for
two model organisms (C. elegans and S. cerevisiae) using the GenAge database as ground truth. We find
that elastic net penalized logistic regression performs particularly well at this task. Using elastic net, we
make novel predictions of pro- and anti-longevity genes that are not currently in the GenAge database.

1 Introduction
Identifying the genetic and molecular basis of aging is a longstanding goal in medical science (Johnson &
Lithgow, 1992; Remolina, Chang, Leips, Nuzhdin, & Hughes, 2012). Many studies have investigated whether
individual genes are pro-longevity or anti-longevity on a case-by-case basis (Ailion, Inoue, Weaver, Holdcraft,
& Thomas, 1999). Typically, an intervention such as a knockout/knockdown or overexpression is applied
to a small number of genes in a model organism such as nematode worm (Caenorhabditis elegans) or yeast
(Saccharomyces cerevisiae) followed by quantification of lifespan. A gene is considered pro-longevity if its
expression is directly related to lifespan — for instance, if overexpression increases lifespan or underexpression
decreases lifespan (Tacutu et al., 2018). Conversely, a gene is considered anti-longevity if its expression is
inversely related to lifespan. Meanwhile, many genes do not fall clearly into either category, for instance, a
gene might have no discernable effect on lifespan. The GenAge database (Tacutu et al., 2018) contains a
catalogue of putative pro- and anti-longevity genes based on current evidence.

Pro/anti-longevity genes can be identified by intervening on individual genes, but this is slow and expen-
sive. Alternatively, a common technique is to randomly knock out or disrupt many genes in a population
of organisms, screen for the longest living individuals, and then determine which genes were disrupted in
these individuals. This screening technique can rapidly identify anti-longevity genes, but systematically
identifying pro-longevity genes is less straightforward. Indeed, among the small number of genes annotated
as having some impact on longevity in worms and yeast, there are considerably more anti-longevity genes
than pro-longevity genes.

To prioritize which genes to investigate and speed up the discovery process, recent studies have sought
to computationally predict the effect of gene interventions on aging, using annotations like Gene Ontology
(GO) terms (Gene Ontology Consortium, 2019) as predictors. A survey of such efforts is provided by Fabris,
de Magalhães, and Freitas (2017). However, these recent studies suffer from several limitations. First,
annotations like GO may be biased by the scope of the existing literature (Haynes, Tomczak, & Khatri,
2018). Second, it is difficult to compare results across studies since there is a lack of consistency in the
choice of algorithms, feature sets, and predictive target/outcome. Finally, most recent studies do not report
predictive performance on a held-out test dataset, leading to possible overestimation of performance.

We address these gaps by systematically assessing the performance of five popular machine learning
algorithms on the task of predicting the pro- versus anti-longevity status of genes in S. cerevisiae and C.
elegans. We use a consistent outcome in all comparisons based on GenAge annotations (Tacutu et al., 2018).
We compare the efficacy of GO terms versus gene expression profiles as feature sets for prediction. Further,
we predict possible pro/anti-longevity genes that are not currently annotated in GenAge to suggest directions
for future experimental studies.

2 Results
2.1 Data sources and algorithms
We compare the performance of five machine learning classification algorithms: elastic net penalized logistic
regression (pglm) (Friedman, Hastie, & Tibshirani, 2010), support vector machine with radial basis function
(svm) (Karatzoglou, Smola, Hornik, & Zeileis, 2004), gradient boosted trees (xgb) (T. Chen et al., 2019),
naive Bayes (nb) (Majka, 2019), and k-nearest neighbors (knn) (Schliep & Hechenbichler, 2016).
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We define the outcome (that is, the target of prediction) to be the pro- versus anti-longevity annotation
of individual genes from GenAge. After data cleaning, we identified 398 yeast genes and 848 worm genes
with unambiguous annotations. Of these, the majority were labeled as anti-longevity (347 for yeast and 565
for worm). For validation and comparison, in yeast, we also consider replicative lifespan (RLS) outcome data
for a comprehensive set of 4,698 single-gene deletions (McCormick et al., 2015). (In yeast, it is more common
to use replicative lifespan rather than chronological lifespan to study aging (McCormick et al., 2015)).

As features for prediction, we consider using GO terms (Gene Ontology Consortium, 2019) and ARCHS4
gene expression profiles (Lachmann et al., 2018) for both yeast and worm. For yeast only, we also consider
using the Deleteome dataset (Kemmeren et al., 2014), which contains gene expression profiles for nearly 1500
single-gene deletions. For worm only, we also consider using the Worm Cell Atlas dataset (Cao et al., 2017),
which contains gene expression profiles for around 50,000 cells. We write GXP to signify Deleteome and
Worm Cell Atlas for worm and yeast, respectively. Altogether, we compare the performance of five feature
sets for each species: (1) ARCHS4 alone, (2) GO alone, (3) GXP alone (Deleteome for yeast, Worm Cell
Atlas for worm), (4) GO combined with ARCHS4, and (5) GO combined with GXP. Normalization, filtering,
and other preprocessing steps are described in the Methods section.

To predict whether a particular gene g is pro- or anti-longevity, we construct features in the following
manner. Each GO term is considered a separate binary feature taking a value of one if gene g is annotated
to the term and zero otherwise. For the ARCHS4, Deleteome, and Worm Cell Atlas data each experimental
condition (e.g., a perturbation or tissue sample) is considered a feature and its value is given by the expression
of gene g under that condition. Note that this is the transpose of how gene expression data are usually
investigated. However, by treating experimental conditions as features and genes as observations, this allows
us to exploit arbitrary gene expression data for gene g, not just data from when g is perturbed.

2.2 Comparative performance of algorithms and feature sets
To assess predictive performance, we use the following cross-validation scheme. For each of the two species,
we split the GenAge-annotated genes into five cross-validation folds, and then for each combination of fold,
algorithm, and feature set, we compute the area under the receiver-operator curve (AUC). Thus, in total,
we compute 2× 5× 5× 5 = 250 AUC values, 50 for each algorithm (Figures S1,S2).

To summarize the relative performance of the five algorithms, Figure 1 shows how frequently algorithm
a has higher AUC than algorithm b for each pair a, b. More precisely, for each pair of algorithms, Figure
1 shows the fraction of times algorithm a has higher AUC than algorithm b across the 50 combinations of
species, fold, and feature set. The pglm and svm algorithms consistently outperform the others in terms
of AUC. The ranking of algorithms is unchanged when compared using only yeast data. Using only worm
data, svm slightly outperforms pglm (0.52 instead of 0.46 in Figure 1), and knn slightly outperforms nb (0.56
instead of 0.34 in Figure 1).

To compare the relative performance of the five different feature sets, Figure 2 shows boxplots of the
AUC values over the five cross-validation folds, stratified by species, algorithm, and feature set. For visual
clarity, here we only show the results for pglm and svm (the two best algorithms); see Figure S2 for the other
algorithms. Generally speaking, using GO terms yields better predictions than gene expression features alone
(ARCHS4 or GXP). However, combining GO with gene expression (GO+ARCHS4 or GO+GXP) tends to
increase AUC performance compared to GO alone.

Comparing gene expression feature sets, the ARCHS4 features give better performance than GXP (Worm
Cell Atlas) for worms, but for yeast, GXP (Deleteome) is superior to ARCHS4. This could be simply due to
the fact that the number of features in the worm ARCHS4 data is much larger than in the Worm Cell Atlas
data. Alternatively, it could be due to the greater variation in experimental conditions across Deleteome
features (which covers a comprehensive set of gene knockouts) compared to Worm Cell Atlas features (which
consists of expression profiles of different cell types in normal worms).

Overall, for worms, pglm with GO+ARCHS4 features yields the best performance, whereas for yeast,
pglm with GO+GXP is best (Figure 3).
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2.3 Novel predictions of pro/anti-longevity genes
Given the encouraging performance of pglm for predicting pro/anti-longevity genes in GenAge, we applied
the algorithm to make novel predictions of pro/anti-longevity genes in C. elegans (worm) and S. cerevisiae
(yeast). To do this, for each species separately, we retrained a pglm model on the full GenAge database, using
the combined GO terms plus ARCHS4 gene expression as features (see the Methods section for details on
hyperparameter selection). We then used the trained model to generate a predictive score for the pro/anti-
longevity effect of each gene not in the GenAge database. Specifically, the predictive score is defined to be
the probability that the gene is pro-longevity under the trained model. A score close to 1 indicates that the
gene is predicted to be pro-longevity, whereas a score close to 0 indicates that the gene is predicted to be
anti-longevity. An intermediate score indicates a gene with unclear pro- or anti-longevity status. Table 1
shows the unannotated genes with the highest confidence levels of being pro- and anti-longevity for worm
and yeast, respectively. These genes do not significantly overlap with predictions from the pglm model
trained using only GO terms as features (Tables S2-S5), suggesting that these predictions are not simply
recapitulating the known biology represented in the GO terms.

To assess the accuracy of the predictions, we looked at the literature to see if there is experimental
evidence of pro/anti-longevity effects for these genes. Based on the existing experimental evidence, we find
that the model predictions are remarkably good. It turns out that—even though they are not in GenAge
yet—there is experimental evidence for the pro/anti-longevity status of most of the predicted genes.

2.3.1 Predicted pro-longevity worm genes

For many of the predicted pro-longevity genes in Table 1, there already exists direct experimental evidence
of pro-longevity status. Note that this evidence was not used in making the predictions, implying that the
model is producing reliable out-of-sample predictions. We discuss what is known about the top 10 predicted
pro-longevity genes: CLEC-196, F44E5.4, CEH-13, LPR-3, HIL-7, W04A8.4, TTH-1, GST-1, F44E5.5, and
F20C5.6.

F44E5.4 and F44E5.5 encode members of the hsp70 family of heat shock proteins. The heat shock re-
sponse is well-known to have strong pro-longevity effects in C. elegans. Indeed, knocking in extra copies
of hsp70 extends lifespan (Yokoyama et al., 2002) and knocking down hsp70 via RNAi decreases lifespan
and leads to rapid aging phenotypes (Kimura, Tanaka, Nakamura, Takano, & Ohkuma, 2007). GST-1
(Glutathione S-transferase P) is also involved in stress response—particularly, immune response—and GSTs
are well-known to be pro-longevity. Overexpression (underexpression) of GSTs has been found to increase
(decrease, respectively) lifespan and stress resistance (Ayyadevara et al., 2007, 2005). W04A8.4 is an unchar-
acterized protein that is involved in the pro-longevity effect of metformin on C. elegans (Wu et al., 2016);
specifically, knockdown of W04A8.4 leads to metformin resistance. This is intriguing, since metformin treat-
ment has been shown to promote health and extend lifespan in many organisms. Homeobox protein CEH-13
exhibits pro-longevity characteristics based on experimental evidence — specifically, a ceh-13 mutant strain
has decreased lifespan compared to wildtype controls (Tihanyi et al., 2010). LPR-3 (LiPocalin-Related pro-
tein) is known to be involved in nematode worm locomotion, and appears to mediate the longevity-inducing
effect of daf-7 mutation (Hyun, Kim, Dumur, Schroeder, & You, 2016); additionally, expression of lpr-3
is increased in worms fed with rBmαTX14, an α-neurotoxin that increases worm lifespan (L. Chen et al.,
2016).

For the remainder of the genes in Table 1, there is suggestive experimental evidence of pro-longevity
status based on associations. C-type Lectin clec-196 expression increases and lifespan increases when hsb-1
is knocked out (Sural, Lu, Jung, & Hsu, 2019). Also, clec-196 is directly adjacent to hsp-1 on chromosome IV,
suggesting possible co-involvement, and hsp-1 (heat shock protein) is well-known to be pro-longevity. HIL-7
(Histone H1 Like) gene expression may be associated with Ethosuximide treatment, a drug that increases
worm lifespan and affects DAF-16/FOXO target gene expression (X. Chen et al., 2015). TTH-1 (Thymosin
beta) is significantly increased in daf-2 mutants, which are very long-lived, suggesting possible pro-longevity
status by association (Narayan et al., 2016). F20C5.6 is affected by the well-known longevity genes clk-1 and
sir-2.1, as well as by treatment with 1-methylnicotinamide and rotenone, which are well-known for increasing
worm lifespan.

This validating evidence from the literature indicates that the model predictions are surprisingly accu-
rate. The predicted pro-longevity genes CLEC-196, HIL-7, TTH-1, and F20C5.6 are candidates for further
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experimental exploration.

2.3.2 Predicted anti-longevity worm genes

Similarly to the predicted pro-longevity genes, there exists experimental evidence of anti-longevity status of
most of the predicted anti-longevity genes in Table 1. We discuss what is known about the top 10 predicted
anti-longevity genes: MSP-59, Y59E9AR.7, RPL-39, MSP-57, MSP-81, MSP-113, MSP-19, NLP-27, and
RPL-11.1.

Major sperm proteins appear to be anti-longevity based on the experimental evidence. A mutation
reducing sperm production leads to significantly increased lifespan (Van Voorhies, 1992). Additionally, the
expression of sperm-related genes—especially major sperm protein (MSP) genes—is decreased in adult daf-2
mutants, providing further support for an anti-longevity role of MSP genes (Halaschek-Wiener et al., 2005).

RSP-39 and RPL-11.1 are 60S ribosomal proteins. RNAi knockdown of genes encoding ribosomal proteins
consistently increases lifespan in C. elegans, both in the case of 40S and 60S ribosomal proteins (Hansen et
al., 2007). This supports the predicted anti-longevity status.

NLP-27 (Neuropeptide-Like Protein) is the only other predicted anti-longevity gene in the top 10 list.
Expression of nlp-27, along with other nlp genes, is increased in long-lived daf-2 mutants. Further, nlp-27
expression is reduced in a short-lived mir-71 deletion strain. This indirect evidence by association suggests
a possible pro-longevity role of NLP-27—which would contradict the predicted anti-longevity—but direct
over/under-expression of nlp-27 would be needed to establish its pro/anti-longevity status.

2.3.3 Predicted pro-longevity yeast genes

Table 1 lists the top 10 predicted pro-longevity yeast genes. Several of these predictions are borne out
by direct experimental evidence via single-gene deletions — specifically, deletion of ACS1, ETR1, UBI4,
and POR1 leads to decreased lifespan (Marek & Korona, 2013). Marek and Korona (2013) did not find a
significant pro- or anti-longevity effect for UBC5, HSP12, or SBA1, and they do not report results for the
remainder of the top 10 genes. However, UBC5 is a strong pro-longevity candidate, since it is involved in
cellular stress response and mediates selective degradation of short-lived and abnormal proteins (Seufert &
Jentsch, 1990). HSP12 (heat shock protein) is required for the lifespan-extending effect of dietary restriction
in yeast (Herbert et al., 2012), validating the pro-longevity prediction. SBA1 is also a strong pro-longevity
candidate, as a chaperone-binding protein that is involved in heat shock response and is required for telomere
length maintenance (Fang, Fliss, Rao, & Caplan, 1998; Toogun, Zeiger, & Freeman, 2007). PRE3 and PRE7
are part of the proteasome, and it is known that increased proteasome capacity extends lifespan (Kruegel et
al., 2011), providing indirect validation of their predicted pro-longevity status. PDI1 is a downstream target
of the unfolded protein response (UPR), which is well-known to be pro-longevity (Patil & Walter, 2001).

2.3.4 Predicted anti-longevity yeast genes

Table 1 lists the top 10 predicted anti-longevity yeast genes. As in worms, depletion of ribosomes increases
lifespan (Steffen et al., 2008), validating the predictions of the ribosome-biogenesis proteins RPS30B, TMA23,
RPS29B, and RLP24 as anti-longevity. HOR7 is reported to influence lifespan, but the direction of the effect
may be context-dependent: HOR7 deletion increases lifespan (McCormick et al., 2015), whereas Schleit et
al. (2013) find that HOR7 deletion decreases lifespan under dietary restricted conditions.

For URA3, COX9, TOM7, MFA1, and TAR1, we do not find pre-existing corroboration of the predicted
anti-longevity status in the literature. TOM7 deletion has been reported to decrease chronological lifespan
(Garay et al., 2014), and it does not appear to have a strong effect on replicative lifespan (Marek & Korona,
2013). TOM7 is part of the translocase of the outer mitochondrial membrane (TOM) complex, and the
mitochondrial membrane is well-known to be important in yeast longevity (Jazwinski, 2005). Marek and
Korona (2013) report a pro-longevity effect for COX9, contrary to the model prediction. (Except for COX9,
the Marek and Korona (2013) results are inconclusive for all of the genes in Table 1.) Further investigation
of URA3, COX9, TOM7, MFA1, and TAR1 might be interesting to pursue.
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2.4 Validation on a secondary dataset
To further evaluate the predictive accuracy of the trained pglm model, we compare the model predictions to
actual lifespan measurements from a non-GenAge validation dataset. For this purpose, we use a dataset of
replicative lifespan for a comprehensive set of 4,698 single-gene deletions in yeast (McCormick et al., 2015).
Since the McCormick et al. (2015) dataset contains lifespan measurements for deletions of many genes that
do not appear in GenAge, in principle it should be well-suited as a secondary validation dataset. Using the
pglm model trained on the full GenAge database for yeast with the GO+ARCHS4 feature set as predictors,
we made predictions of the longevity effect of all 4,698 genes in the McCormick dataset.

First, as a sanity check, we observe that among genes in GenAge, the predicted probability of a gene
being pro-longevity is clearly inversely related to the change in lifespan after deletion (Figure 4, left panel).
This is not surprising since it simply means that the GenAge annotations are roughly consistent with the
McCormick data, and the model was able to fit the GenAge-based training data. More interestingly, we see
that the model is able to predict which genes have a larger or a smaller effect on lifespan (Figure 4, left
panel). For instance, among pro-longevity genes, the genes with predicted probability near 1 do indeed tend
to lead to a larger decrease in lifespan. Meanwhile, among anti-longevity genes, the genes with predicted
probability near 0 do indeed tend to lead to a larger increase in lifespan. Since the training data contain
no information about the magnitude of the effect on lifespan, this indicates that the model is not simply
recapitulating the training data, but is indeed making generalizable predictions.

Next, we compare the model predictions to the lifespan data for genes outside the GenAge database.
Figure 4 (right panel) shows the change in lifespan versus the predicted probability of a gene being pro-
longevity, for genes in the McCormick dataset that are not in GenAge. A downward trend in this plot would
indicate concordance between model predictions and the validation data. There is an extremely slight but
not convincing downward trend; thus, while suggestive, this does not provide a compelling out-of-sample
validation of the model predictions. Note that the pglm classifier trained on GenAge has a strong bias toward
predicting genes to be anti-longevity; see Figure 4 (right panel) and Figure S3. This bias is due to class
imbalance in the training data, since the majority of genes annotated in GenAge are anti-longevity. This is
common when the training data are imbalanced, and can easily be addressed by selecting the classification
threshold to yield appropriately balanced predictions.

The lack of concordance between the out-of-sample model predictions and the McCormick lifespan data
may be attributable to the fact that for many genes, the McCormick data are not in agreement with the
GenAge annotations of pro/anti-longevity. Specifically, many putatively pro-longevity genes led to large
increases in lifespan when deleted, and many putatively anti-longevity genes led to large decreases in lifespan
when deleted (Figure 4, left panel). It is not clear whether this discrepancy is primarily due to limitations
of the GenAge database (e.g., bias and relatively small sample size) or limitations of the McCormick assay.
Focusing on the latter possibility, recent studies have identified mechanisms by which disruption of a gene
through knockout can activate compensatory mechanisms leading to a dramatically different phenotype than
disruption of the same gene through knockdown, which reduces but does not eliminate expression (Wilkinson,
2019). If deletion of a single gene activates similar compensatory mechanisms in yeast, then this could explain
the lack of concordance, since it would imply that the change in lifespan under a single-gene deletion is not
necessarily related to that gene’s pro/anti-longevity status. A comprehensive assay of knockdowns (rather
than deletions or knockouts) would shed light on this intriguing question.

2.5 Functional interpretation of model predictions
To interpret the biological basis for the model predictions in terms of functional categories, for each species
we retrained the pglm model on the full GenAge dataset using only GO terms as features. We extracted the
20 most influential GO terms from the trained model by ranking the regression coefficients from largest to
smallest in absolute value (Table 2). Note that in this model, the coefficient is equal to the log-odds ratio
(logOR) of a gene being pro-longevity when it is annotated to a GO term versus when it is not annotated to
that GO term. If a GO term has a positive logOR value, then genes annotated with that GO term are more
likely to be pro-longevity under the model. Conversely, a negative logOR indicates that genes annotated
with that GO term are more likely to be anti-longevity.
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2.5.1 Top GO terms for worm

The current literature supports a strong longevity effect for many of the top categories in Table 2. Translation
inhibition is known to increase lifespan (Hansen et al., 2007), so a large negative coefficient for the translation
and ribosome GO terms makes sense. Protein homeostasis is known to be key to longevity (Sampaio-
Marques & Ludovico, 2018), so it makes sense that the model has positive coefficients for protein transport,
endoplasmic reticulum membrane, and endoplasmic reticulum. Ubiquitin-mediated proteolysis is known to
be important for promoting longevity, implying that a positive coefficient for ubiquitin-dependent protein
catabolic process makes sense. Heat shock response is known to extend lifespan, and indeed, the model
has a positive coefficient for response to heat. Activation of the mitochondrial unfolded protein response
is known to promote longevity (Durieux, Wolff, & Dillin, 2011), so a positive coefficient for protein import
into mitochondrial matrix makes sense. Mitochondria are known to be important for longevity (Sun, Youle,
& Finkel, 2016), so a large coefficient for mitochondria makes sense; further, inhibition of mitochondrial
respiration is known to extend lifespan (B Hwang, Jeong, & Lee, 2012), so a negative sign for the coefficient
could make sense. Similarly, the importance of DNA repair makes sense, and surprisingly, in some cases,
DNA repair gene knockdown increases lifespan, possibly due to compensatory biological mechanisms (Lans
et al., 2013); thus, a negative coefficient is, in fact, consistent with the literature.

2.5.2 Top GO terms for yeast

For yeast, Table 2 shows the top longevity-related GO terms in the model. The importance of these terms
is consistent with the current literature, but the appropriate sign of the coefficient is not always clear, since
the genes annotated to each GO term may have contradictory pro/anti-longevity effects and further, there
may be compensatory relationships between terms due to correlated predictors.

Replicative cell aging, apoptotic process, and cell cycle obviously make sense as related to yeast aging and
longevity. Mitochondrial membrane maintenance is known to be important in yeast longevity (Jazwinski,
2005), and other membranes (e.g., the vacuole membrane) may also be important (Carmona-Gutierrez,
Hughes, Madeo, & Ruckenstuhl, 2016); thus, large coefficients for mitochondrion, integral component of
mitochondrial outer membrane, mitochondrial intermembrane space, membrane, membrane fraction, and
transmembrane transport are consistent with the literature. Depletion of ribosomes is known to increase
lifespan (Steffen et al., 2008), so a negative coefficient for chromatin silencing at rDNA is appropriate.
Telomeres are known to be important in yeast longevity (Austriaco & Guarente, 1997; Liu, Wang, Wang,
& Liu, 2019), so a large coefficient for telomere maintenance makes sense. Longevity effects of cellular
response to oxidative stress are corroborated in the literature (Postnikoff, Johnson, & Tyler, 2017). Finally,
a negative coefficient for zinc ion binding is consistent with experimental evidence that zinc limitation extends
chronological lifespan (Shimasaki et al., 2017).

3 Discussion
We systematically compared the performance of popular machine learning algorithms in classifying genes as
pro- or anti-longevity using the GenAge database and combinations of gene expression and gene ontology
(GO) feature sets. We identified elastic net penalized logistic regression (pglm) as the most effective classifier
and made predictions for unannotated genes. The pglm model fit to GenAge data was only weakly concordant
with the McCormick replicative lifespan (RLS) assay, which was based on single gene deletion strains in
yeast. This discrepancy could be due to compensatory mechanisms which are known to mitigate the effects of
knockouts (Wilkinson, 2019). We suggest future comprehensive longevity assays should consider knockdowns
instead of deletions and knockouts. Furthermore, there is a need for increased focus on pro-longevity genes
rather than anti-longevity genes, since the latter are much more common in the GenAge database. We offer
our predictive probability scores as one possible tool to prioritize future experimental studies which can
validate individual genes as pro-longevity mechanistically. We encourage computational researchers to use
metrics such as area under receiver-operator curve (AUC) on held-out data from standard databases such as
GenAge to assess classification performance and facilitate comparisons across studies. Finally, our approach
of combining feature sets to improve predictive performance is generalizable in principle to a wider variety
of model organisms as more annotations and datasets become available over time.
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4 Experimental Procedures
Binary pro/anti-longevity annotations were accessed from the GenAge model organisms database (Tacutu et
al., 2018), currently available at http://genomics.senescence.info/genes. We used the subset of genes
for yeast and worm, and we excluded ambiguous annotations (e.g., if GenAge lists two studies for a gene, one
finding it to be pro-longevity and the other finding it to be anti-longevity). GO annotations for all genes were
downloaded from the BioMart ENSEMBL database using the biomaRt package in Bioconductor. For both
species, gene expression data in the form of RNA-Seq read counts were obtained from the ARCHS4 database
(Lachmann et al., 2018), currently available at https://amp.pharm.mssm.edu/archs4/archs4zoo.html.
For yeast only, we acquired the Deleteome gene expression microarray dataset (Kemmeren et al., 2014),
currently available at http://deleteome.holstegelab.nl. For worm only, we obtained gene expression
data from the single-cell RNA-Seq Worm Cell Atlas (Cao et al., 2017), currently available at http://
atlas.gs.washington.edu/worm-rna. We reduced the dimensionality of the Worm Cell Atlas data by
summing the unique molecular identifier (UMI) counts across all cells within the same tissue, so that each
feature is a “pseudobulk” tissue rather than a single cell.

Replicative lifespans (RLS) for 4,698 single-gene deletion yeast strains were obtained from the au-
thors of McCormick et al. (2015). Perturbation genotypes with percent_change greater than 30 and
set_lifespan_count less than or equal to 5 were excluded based on the authors’ recommendations. We
merged results for the same genotype across replicate experiments in the following way. The outcome for
each genotype in a single replicate was quantified as the mean of RLS in the perturbation group minus the
mean of RLS in the control group. To obtain a single value for the genotype across all replicates, we then
computed a weighted average of the outcome values from each replicate, where the weights corresponded to
the sample sizes in each group. This ensured that replicates with more observations contributed more to the
final value. We refer to this as the McCormick dataset.

All gene expression measurements were normalized to account for sample-specific biases. Specifically, the
Deleteome data were already normalized, the ARCHS4 read counts were converted to transcripts-per-million
(TPM), and the Worm Cell Atlas UMIs were converted to counts-per-million (CPM). The normalized counts
were then log transformed with a pseudocount of one. For Deleteome, genes that were variable in controls
and non-responsive mutants were excluded, since these data were likely to contain mostly noise. For each
species, we used the subset of genes with no missing values across all feature types (GO features and the
two sources of gene expression features), resulting in 703 worm genes (246 pro-longevity, 457 anti-longevity)
and 368 yeast genes (46 pro-longevity, 322 anti-longevity). Features with no variation across the included
genes were discarded. For yeast, the number of retained features was 3268, 700, and 1390 for ARCHS4,
Deleteome, and GO terms, respectively. For worms, the number of features was 2935, 270, and 2051 for
ARCHS4, Worm Cell Atlas, and GO terms, respectively. All gene expression features were centered and
scaled to have mean zero and standard deviation 0.5 as suggested by Gelman (2008), while binary features
(GO) were not centered and scaled. The five sets of features considered for each species were (1) ARCHS4
alone, (2) GO alone, (3) GXP alone (Deleteome for yeast, Worm Cell Atlas for worm), (4) GO combined
with ARCHS4, and (5) GO combined with GXP.

To assess predictive performance of different combinations of feature sets, each dataset (consisting of
the binary GenAge outcome for a single species matched with one of the five feature sets) was split into 5
external cross-validation (CV) folds. Within each fold, machine learning classifiers were fit to the training
data using the caret R package (Kuhn et al., 2019). The same partitioning of the data was preserved
across algorithm runs to ensure identical training and test conditions. The algorithms used were k-nearest
neighbors (knn), naive Bayes (nb), gradient boosted trees (xgb), support vector machine with radial basis
function (svm), and logistic regression with elastic net penalty (pglm). Hyperparameters (Table S1) were
selected by grid search using repeated 10-fold internal CV with two repeats within each training fold using
the Kappa criterion. Note that this means each algorithm could potentially use different hyperparameter
values across the five external CV folds. For all algorithms except naive Bayes, the grid consisted of default
caret values. For naive Bayes, the Laplace correction was set to zero, kernel smoothing was always used,
and the adjustment to the probabilities was chosen between 0.5 and 1.0. Additionally, for naive Bayes only,
many features with near-zero variance caused numerical instabilities and were excluded. Having chosen a
final set of hyperparameters for each training fold, the predicted probabilities were computed for the held-
out test data and the area under the receiver-operator curve (AUC) was computed to quantify prediction
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performance (discrimination). An AUC value of 1 indicates perfect classification performance, whereas an
AUC of 0.5 signifies performance no better than random, or simply always predicting the majority class.

For the results in Sections 2.3 and 2.4, the best-performing algorithm (pglm) was retrained on all of the
GenAge data for each species with the combined GO plus ARCHS4 feature set. The hyperparameter grid was
expanded to 21 alpha values (evenly spaced between zero and one, inclusive), and 97 automatically selected
lambda values using five-fold CV. For worm, the optimal alpha was 0.05 (close to an L2 ridge penalty). For
yeast, the optimal alpha was 0.5 (an even mix between ridge and the L1 lasso penalty). Using the optimal
hyperparameters, predictive probabilities were computed for all genes.

For the results in Section 2.5, for each species the pglm algorithm was retrained on the full GenAge
dataset using GO features only. This choice of feature set was used to enable interpretation of regression
coefficients. Here, the hyperparameter grid was the same 21 alpha values and 97 automatically selected
lambda values with five-fold CV. The optimal alpha values were 0.15 for worm and 0.10 for yeast (both
closer to ridge than lasso).

To facilitate reproducibility, all code used to produce the results in this manuscript is publicly available
at https://github.com/willtownes/longevity-paper (Townes, F. William & Miller, Jeffrey W., 2020).
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Tables and Figures

Table 1: Top pro-longevity and anti-longevity genes not in GenAge predicted using GO terms and ARCHS4
gene expression for worm and yeast with the pglm (GLM-Net) algorithm.

Species Effect Gene Prob ID Description from ENSEMBL
worm pro- CLEC-196 0.868 WBGene00009156 C-type LECtin

longevity F44E5.4 0.866 WBGene00009691
CEH-13 0.859 WBGene00000437 Homeobox protein ceh-13
LPR-3 0.853 WBGene00012261 LiPocalin-Related protein
HIL-7 0.845 WBGene00001858 HIstone H1 Like; Histone H1.Q
W04A8.4 0.836 WBGene00012239
TTH-1 0.816 WBGene00006649 Thymosin beta
GST-1 0.814 WBGene00001749 Glutathione S-transferase P
F44E5.5 0.812 WBGene00009692
F20C5.6 0.807 WBGene00008971

worm anti- RPL-34 0.986 WBGene00004448 Ribosomal Protein, Large subunit
longevity MSP-59 0.985 WBGene00003452 Major sperm protein

Y59E9AR.7 0.982 WBGene00022002 Major sperm protein
RPL-39 0.982 WBGene00004453 60S ribosomal protein L39
MSP-57 0.981 WBGene00003450 Major sperm protein
MSP-81 0.981 WBGene00003467 Major sperm protein
MSP-113 0.979 WBGene00003468 Major sperm protein
MSP-19 0.978 WBGene00003426 Major sperm protein
NLP-27 0.977 WBGene00003765 Neuropeptide-Like Protein
RPL-11.1 0.977 WBGene00004422 60S ribosomal protein L11-1

yeast pro- ACS1 0.882 YAL054C Acetyl-coA synthetase isoform
longevity UBC5 0.863 YDR059C Ubiquitin-conjugating enzyme

ETR1 0.824 YBR026C 2-enoyl thioester reductase
UBI4 0.779 YLL039C Ubiquitin
PDI1 0.72 YCL043C Protein disulfide isomerase
PRE3 0.713 YJL001W Beta 1 subunit of the 20S proteasome
POR1 0.705 YNL055C Mitochondrial porin (voltage-dependent anion channel)
PRE7 0.701 YBL041W Beta 6 subunit of the 20S proteasome
HSP12 0.698 YFL014W Plasma membrane protein involved in maintaining membrane organization
SBA1 0.695 YKL117W Co-chaperone that binds and regulates Hsp90 family chaperones

yeast anti- RPS30B 1 YOR182C Protein component of the small (40S) ribosomal subunit
longevity TMA23 1 YMR269W Nucleolar protein implicated in ribosome biogenesis

URA3 1 YEL021W Orotidine-5’-phosphate (OMP) decarboxylase
RPS29B 0.999 YDL061C Protein component of the small (40S) ribosomal subunit
RLP24 0.999 YLR009W Essential protein required for ribosomal large subunit biogenesis
COX9 0.999 YDL067C Subunit VIIa of cytochrome c oxidase (Complex IV)
HOR7 0.999 YMR251W-A Protein of unknown function
TOM7 0.999 YNL070W Component of the TOM (translocase of outer membrane) complex
MFA1 0.999 YDR461W Mating pheromone a-factor
TAR1 0.999 YLR154W-C Protein potentially involved in regulation of respiratory metabolism
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Table 2: Top GO terms identified by the pglm (GLM-Net) algorithm. logOR: log-odds ratio. OR: odds
ratio. Positive logOR indicates a gene annotated to that GO term is more likely to be pro-longevity. BP:
biological process, CC: cellular component, MF: molecular function.

Species ID logOR OR Type Description
worm GO:0006412 -0.98 0.38 BP translation

GO:0005634 0.89 2.4 CC nucleus
GO:0015031 0.82 2.3 BP protein transport
GO:0005789 0.77 2.1 CC endoplasmic reticulum membrane
GO:0005840 -0.73 0.48 CC ribosome
GO:0009792 0.68 2 BP embryo development ending in birth or egg hatching
GO:0006511 0.66 1.9 BP ubiquitin-dependent protein catabolic process
GO:0009408 0.66 1.9 BP response to heat
GO:0043005 0.65 1.9 CC neuron projection
GO:0030150 0.6 1.8 BP protein import into mitochondrial matrix
GO:0055120 -0.6 0.55 CC striated muscle dense body
GO:0005783 0.6 1.8 CC endoplasmic reticulum
GO:0046872 -0.53 0.59 MF metal ion binding
GO:0005739 -0.52 0.59 CC mitochondrion
GO:0006281 -0.52 0.59 BP DNA repair
GO:0035556 -0.52 0.59 BP intracellular signal transduction
GO:0045893 0.52 1.7 BP positive regulation of transcription; DNA-templated
GO:0008289 0.52 1.7 MF lipid binding
GO:0048477 0.5 1.6 BP oogenesis
GO:0003824 0.49 1.6 MF catalytic activity

yeast GO:0001302 1.8 5.8 BP replicative cell aging
GO:0006915 0.87 2.4 BP apoptotic process
GO:0016020 -0.82 0.44 CC membrane
GO:0005634 0.73 2.1 CC nucleus
GO:0000183 0.72 2.1 BP chromatin silencing at rDNA
GO:0005624 0.71 2 CC membrane fraction
GO:0007049 0.67 1.9 BP cell cycle
GO:0005739 0.64 1.9 CC mitochondrion
GO:0005515 -0.64 0.53 MF protein binding
GO:0003824 0.61 1.8 MF catalytic activity
GO:0031307 0.56 1.7 CC integral component of mitochondrial outer membrane
GO:0000723 0.55 1.7 BP telomere maintenance
GO:0005758 0.53 1.7 CC mitochondrial intermembrane space
GO:0055085 0.53 1.7 BP transmembrane transport
GO:0017111 0.52 1.7 MF nucleoside-triphosphatase activity
GO:0006811 0.51 1.7 BP ion transport
GO:0006281 0.5 1.7 BP DNA repair
GO:0034599 0.48 1.6 BP cellular response to oxidative stress
GO:0008270 -0.48 0.62 MF zinc ion binding
GO:0045861 0.47 1.6 BP negative regulation of proteolysis
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Figure 1: Ranking machine learning algorithms based on AUC. Numeric values indicate the fraction of times the
row algorithm has higher classification performance than the column algorithm. pglm: elastic net penalized logistic
regression, svm: support vector machine with radial basis function, xgb: gradient boosted trees, nb: naive Bayes,
knn: k-nearest neighbors.
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Figure 2: Combining gene expression (archs4, gxp) with gene ontology (GO) features yields improved classification
performance in terms of AUC. pglm: elastic net penalized logistic regression, svm: support vector machine with
radial basis function. An AUC value of 1 indicates perfect classification, whereas an AUC of 0.5 signifies performance
no better than random.
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Figure 3: Receiver operator curves (ROC) for the best performing algorithm (pglm: elastic net penalized logistic
regression) with the best performing feature sets (GO+GXP for yeast and GO+ARCHS4 for worm). Each curve
represents predictive performance on the held-out data from a single cross validation fold. The diagonal gray dotted
line indicates the theoretical performance of an untrained random classifier as a baseline.
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Figure 4: Predicted probability of a gene being pro-aging versus effect of deletion on replicative lifespan (RLS) in
yeast. Probabilities are from the pglm classifier trained on the full GenAge dataset. Solid curve is a nonparametric
smoother.
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Supplemental Figures and Tables

Table S1: Hyperparameters used. pglm: elastic net penalized logistic regression, svm: support vector machine with
radial basis function, xgb: gradient boosted trees, nb: naive Bayes, knn: k-nearest neighbors.

algorithm hyperparameter values
nb laplace 0

usekernel TRUE
adjust 0.5; 1

knn kmax 5; 7; 9
distance 2
kernel optimal

xgb eta 0.3; 0.4
max_depth 1; 2; 3
gamma 0
colsample_bytree 0.6; 0.8
min_child_weight 1
subsample 0.5; 0.75; 1.0
nrounds 50; 100; 150

svm C 0.25; 0.5; 1.0
sigma automatic

pglm alpha 0.1; 0.55; 1.0
lambda automatic

Table S2: Top worm pro-longevity genes not in GenAge predicted only using GO terms as features. Compare to
Table 1.

Gene Prob ID Description
HLH-2 0.942 WBGene00001949 Helix Loop Helix
NPP-20 0.939 WBGene00003806 Protein SEC13 homolog
HMP-2 0.916 WBGene00001979 Beta-catenin-like protein hmp-2
KGB-1 0.909 WBGene00002187 GLH-binding kinase 1
NPP-13 0.908 WBGene00003799 Nuclear pore protein
DCS-1 0.905 WBGene00000940 m7GpppX diphosphatase
APR-1 0.903 WBGene00000156 Adenomatous polyposis coli protein-related protein 1
UNC-51 0.892 WBGene00006786 Serine/threonine-protein kinase unc-51
EMO-1 0.891 WBGene00001303 Protein transport protein Sec61 subunit gamma
PAS-1 0.891 WBGene00003922 Proteasome subunit alpha type-6
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Table S3: Top worm anti-longevity genes not in GenAge predicted only using GO terms as features. Compare to
Table 1.

Gene Prob ID Description
DAF-11 0.994 WBGene00000907 Receptor-type guanylate cyclase daf-11
RPS-27 0.986 WBGene00004496 40S ribosomal protein S27
RPL-37 0.985 WBGene00004451 60S ribosomal protein L37
W01D2.1 0.985 WBGene00012179 Ribosomal protein L37
RPL-43 0.985 WBGene00004456 60S ribosomal protein L37a

Table S4: Top yeast pro-longevity genes not in GenAge predicted only using GO terms as features. Compare to
Table 1.
Gene Prob ID Description
SIR2 0.833 YDL042C Conserved NAD+ dependent histone deacetylase of the Sirtuin family
DNL4 0.774 YOR005C DNA ligase required for nonhomologous end-joining (NHEJ)
MCM5 0.753 YLR274W Component of the Mcm2-7 hexameric helicase complex
DOC1 0.702 YGL240W Processivity factor
POR1 0.7 YNL055C Mitochondrial porin (voltage-dependent anion channel)
NTG1 0.691 YAL015C DNA N-glycosylase and apurinic/apyrimidinic (AP) lyase
OYE2 0.635 YHR179W Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN)
EXO1 0.629 YOR033C 5’-3’ exonuclease and flap-endonuclease
MCD1 0.601 YDL003W Essential alpha-kleisin subunit of the cohesin complex

Table S5: Top yeast anti-longevity genes not in GenAge predicted only using GO terms as features. Compare to
Table 1.

Gene Prob ID Description
VPS34 0.997 YLR240W Phosphatidylinositol (PI) 3-kinase that synthesizes PI-3-phosphate
VPS15 0.996 YBR097W Serine/threonine protein kinase involved in vacuolar protein sorting
AKR1 0.996 YDR264C Palmitoyl transferase involved in protein palmitoylation
AKR2 0.995 YOR034C Ankyrin repeat-containing protein
ENV7 0.995 YPL236C Vacuolar membrane protein kinase
RPL37A 0.994 YLR185W Ribosomal 60S subunit protein L37A
RPL43A 0.994 YPR043W Ribosomal 60S subunit protein L43A
RPS27A 0.993 YKL156W Protein component of the small (40S) ribosomal subunit
RPS27B 0.993 YHR021C Protein component of the small (40S) ribosomal subunit
RPS29A 0.993 YLR388W Protein component of the small (40S) ribosomal subunit
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Figure S1: Comparison of predictive performance of machine learning algorithms on classifying genes as pro- or anti-
longevity. pglm: elastic net penalized logistic regression, svm: support vector machine with radial basis function,
xgb: gradient boosted trees, nb: naive Bayes, knn: k-nearest neighbors, gxp: gene expression, ROC: receiver-operator
curve.
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Figure S2: Comparison of predictive performance of different feature sets on classifying genes as pro- or anti-longevity.
pglm: elastic net penalized logistic regression, svm: support vector machine with radial basis function, xgb: gradient
boosted trees, nb: naive Bayes, knn: k-nearest neighbors, gxp: gene expression, ROC: receiver-operator curve.
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Figure S3: Distribution of predictive probabilities after training elastic net penalized logistic regression (pglm) on
the full GenAge dataset with GO terms and ARCHS4 gene expression as features.
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