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Abstract 

Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all 
organisms.  Genetic variation in regulatory regions has been connected with diseases and 
diverse phenotypic traits1, yet it remains challenging to distinguish variants that impact 
regulatory function2.  Genomic DNase I footprinting enables quantitative, nucleotide-resolution 
delineation of sites of transcription factor occupancy within native chromatin3–5. However, to 
date only a small fraction of such sites have been precisely resolved on the human genome 
sequence5.  To enable comprehensive mapping of transcription factor footprints, we produced 
high-density DNase I cleavage maps from 243 human cell and tissue types and states and 
integrated these data to delineate at nucleotide resolution ~4.5 million compact genomic 
elements encoding transcription factor occupancy.  We map the fine-scale structure of ~1.6 
million DHS and show that the overwhelming majority is populated by well-spaced sites of single 
transcription factor:DNA interaction.  Cell context-dependent cis-regulation is chiefly executed 
by wholesale actuation of accessibility at regulatory DNA versus by differential transcription 
factor occupancy within accessible elements.  We show further that the well-described 
enrichment of disease- and phenotypic trait-associated genetic variants in regulatory regions1,6 
is almost entirely attributable to variants localizing within footprints, and that functional variants 
impacting transcription factor occupancy are nearly evenly partitioned between loss- and gain-
of-function alleles. Unexpectedly, we find that the global density of human genetic variation is 
markedly increased within transcription factor footprints, revealing an unappreciated driver of 
cis-regulatory evolution. Our results provide a new framework for both global and nucleotide-
precision analyses of gene regulatory mechanisms and functional genetic variation.  
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Introduction 1 

Genome-encoded recognition sites for sequence-specific DNA binding proteins are the 2 
atomic units of eukaryotic gene regulation.  Binding of regulatory factors to their cognate 3 
elements in vivo shields them from nuclease attack, giving rise to protected single nucleotide-4 
resolution DNA ‘footprints’.  The advent of DNA footprinting using the non-specific nuclease 5 
DNase I7 marked a major turning point in analysis of gene regulation, and facilitated the 6 
identification of the first mammalian sequence-specific DNA binding proteins8.  Genomic DNase 7 
I footprinting3 enables genome-wide detection of DNA footprints chiefly within regulatory DNA 8 
regions, but also over other genomic elements where DNase I cleavage is sufficiently dense. 9 

DNase I footprints define sites of direct regulatory factor occupancy on DNA and can be 10 
used to discriminate sites of direct vs. indirect occupancy within orthogonal data from chromatin 11 
immunoprecipitation and sequencing (ChIP-seq) experiments. Cognate transcription factors 12 
(TFs) can be reliably assigned to DNase I footprints based on matching to consensus 13 
sequences, enabling TF-focused analysis of gene regulation and regulatory networks9, and the 14 
evolution of regulatory factor binding patterns within regulatory DNA10.  DNase I is a small 15 
enzyme, roughly the size of a typical transcription factor that recognizes the minor groove of 16 
DNA and hydrolyzes single-stranded cleavages that, in principle, reflect both the topology and 17 
the kinetics of DNA-protein interaction.  Previous efforts to exploit this feature4 were complicated 18 
by slight sequence-driven variation in cleavage preferences; however, these have now been 19 
exhaustively determined11, setting the stage for fully resolved tracing of DNA-protein interactions 20 
within regulatory DNA. 21 

Currently we lack a comprehensive, nucleotide-resolution annotation of small DNA 22 
elements encoding regulatory factor recognition sites that are selectively occupied in different 23 
cell types.  Such a reference is essential both for analysis of cell-selective occupancy patterns, 24 
and for systematic integration with genetic variation, particularly that associated with diseases 25 
and phenotypic traits. Here we combine sampling of >67 billion DNase I cleavages from >240 26 
human cell types and states to index, with unprecedented accuracy and resolution, human 27 
genomic footprints and thereby the sequence elements that encode transcription factor 28 
recognition sites.  We leverage this index to comprehensively assign footprints to transcription 29 
factor archetypes, define patterns of cell-selective occupancy, and analyze the distribution and 30 
impact of human genetic variation on regulatory factor occupancy and the genetics of common 31 
diseases and traits. 32 

Comprehensive mapping of human TF footprints 33 

To create comprehensive maps of TF occupancy, we selected and deeply-sequenced 34 
high-quality DNase I libraries from 243 cell and tissues types derived from diverse primary cells 35 
and tissues (n=151), primary cells in culture (n=22), immortalized cell lines (n=10) and cancer 36 
cell lines and primary samples (n=60) (Extended Data Table 1). Collectively, we uniquely 37 
mapped 67.6 billion DNase I cleavage events (mean 278.2 million cleavages mapped per 38 
biosample), greatly eclipsing prior studies4.  On average, 49.7% DNase I cleavage within each 39 
biosample mapped to DNase I hypersensitive sites covering 1-3% of the genome. 40 
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To identify DNase I footprints genome-wide, we developed a novel computational 41 
approach incorporating both chromatin architecture and exhaustively determined empirical 42 
DNase I sequence preferences to determine expected per-nucleotide cleavage rates across the 43 
genome, and to derive, for each biosample, a statistical model for testing whether observed 44 
cleavage rates at individual nucleotides deviated significantly from expectation (Extended Data 45 
Fig. 1, Extend Data Fig. 2, and Methods). We note that deriving cleavage variability models for 46 
each biosample accounts for additional sources of technical variability beyond DNase I 47 
cleavage preference.   48 

Using this model, we performed de novo footprint discovery independently on each of 49 
the 243 biosamples, detecting on average 657,029 high-confidence footprints per biosample 50 
(range 220,580-1,664,065) (empirical false discovery rate <1%; Methods), and collectively 51 
159.6 million footprint events across all biosamples. At the level of individual nucleotides, de 52 
novo footprints were highly concordant between replicates of the same cultured cell type or 53 
between same primary cell and tissues types from different individuals (median Pearson’s r = 54 
0.83 and 0.74, respectively) (Extended Data Fig. 3a-c). The significance of protected 55 
nucleotides tracked closely both the presence of known transcription factor recognition 56 
sequences and the level of per-nucleotide evolutionary conservation (Extended Data Fig. 3d-57 
e). Within each biosample, genomic footprints encompassed an average of ~7.6 Mb (0.2%) of 58 
the genome, with a mean of 4.3 footprints per DHS with sufficient read depth for robust 59 
detection (normalized cleavage density within DHS ≥1). 60 

A unified index of human genomic footprints 61 

Comparative footprinting across many cell types has the potential to illuminate both the 62 
structure and function of regulatory DNA, yet a systematic approach for joint analysis of 63 
genomic footprinting data has been lacking. Given the scale and diversity of the cell types and 64 
tissues surveyed, we sought to develop a framework that could integrate hundreds of available 65 
genomic footprinting datasets to increase the precision and resolution of footprint detection and, 66 
furthermore, serve as a scaffold to build a common reference index of TF-contacted DNA 67 
genome-wide.  68 

To accomplish this, we implemented an empirical Bayes framework that estimates the 69 
posterior probability that a given nucleotide is footprinted by incorporating a prior on the 70 
presence of a footprint (determined by footprints independently identified within individual 71 
datasets) and a likelihood model of cleavage rates for both occupied and unoccupied sites (Fig. 72 
1a and Methods). Fig. 1b depicts per-nucleotide footprint posterior probabilities computed for 73 
two DHS within the RELB locus across all 243 biosamples exposing the nucleotide-resolved TF 74 
occupancy architecture for each element. A notable feature of these data is the remarkable 75 
positional stability and discrete nature of footprints within each DHS across the tens to hundreds 76 
of biosamples. Indeed, plotting individual nucleotides scaled by their footprint prevalence across 77 
all samples precisely demarcates the core recognition sequences of diverse TFs (Fig. 1b, 78 
bottom). 79 
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To systematically create a reference set of TF-occupied DNA elements genome-wide, 80 
we applied the Bayesian approach to all DHSs detected within one or more of the 243 81 
biosamples, and applied the same consensus approach used to establish the consensus DHS 82 
index12 to collate overlapping footprinted regions across individual biosamples into distinct high-83 
resolution consensus footprints (Methods). Collectively, we delineated ~4.46 million consensus 84 
footprints within ~1.6 million individual DHS (Fig. 1c). 82.6% of consensus footprints localize 85 
directly within the core of a DHS peak (avg. width 203bp) with virtually all residing within 250bp 86 
of a DHS peak summit (Figure 1d). As expected, consensus-defined footprints were markedly 87 
more reproducible than footprints detected independently within a given biosample (avg. 88 
Jaccard distance 0.43 vs 0.29, respectively) (Extended Data Fig. 4d-e). Consensus footprints 89 
had an average width of 16 bp (middle 95%: 7–44 bp; 90%: 7-36 bp; 50%: 9-21 bp), and 90 
collectively annotate 2.1% (72 Mb) of the human genome reference sequence, a compartment 91 
slightly larger than protein coding sequences (~1.5%).  92 

Assigning footprints to TF motifs 93 

Our understanding of the recognition motif landscape of human transcription factors has 94 
undergone dramatic development during the past decade, and recognition sequences now exist 95 
for all major families and subfamilies, and for a large number of individual TF isoforms13–16. We 96 
thus sought to create a reference mapping between annotated transcription factors and 97 
consensus human genomic footprints by (i) compiling and clustering all publicly available motif 98 
models13,17,18; (ii) creating non-redundant TF archetypes by placing closely-related TF family 99 
members on a common sequence axis (Extended Data Fig. 5, Extended Data Table 2 and 100 
Methods); (iii) aligning these archetypes to the human reference sequence at high stringency 101 
(p<10-4); and (iv) enumerating all potential TF archetypes compatible with each consensus 102 
footprint on the basis of overlap and match stringency (Methods). In total, 80.7% of the ~4.46 103 
million consensus footprints could be assigned to at least one TF recognition sequence (≥90% 104 
overlap; Methods), of which 860,780 (19.3%) could be unambiguously assigned to a single 105 
factor, and 2,038,220 (45.7%) to a single factor with two lower-ranked alternatives (Extended 106 
Data File 2). 107 

Primary architecture of regulatory regions 108 

Despite intensive efforts over the past three decades the primary architecture of 109 
regulatory regions has remained elusive, with the singular exception of the interferon 110 
‘enhanceosome’19.  A prerequisite for understanding the primary architecture of active 111 
regulatory DNA is accurate tracing of the TF:DNA interface over an extended interval. Because 112 
transcription factor engagement within DNA major or minor grooves creates subtle alterations in 113 
DNA shape and protects underlying phosphate bonds from nuclease attack via steric 114 
hindrance5, we asked to what extent fluctuations in corrected DNase I cleavage rates within 115 
consensus footprints accurately reflect the topology of the TF:DNA interface. Poly-zinc fingers 116 
are the most prevalent class of human transcription factors and have recognition interfaces that 117 
potentially cover tens of nucleotides16. The DNA recognition domain of the genomic master 118 
regulator CTCF comprises 11 zinc fingers, potentially encoding 33bp of sequence (or DNA 119 
shape20) recognition. We identified 25,852 footprints that coincided precisely with CTCF motifs.  120 
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Transposing the average corrected per-nucleotide cleavage propensity with an extended co-121 
crystal structure of CTCF21 accurately traced all features of the protein:DNA interaction 122 
interface, including focal hypersensitivity within bent hinge region between zinc fingers 7 and 123 
922,23 (Fig. 2a and Methods). A similar result was obtained for widely divergent classes of DNA 124 
binding domains such as the paired-box containing TF PAX624 (Fig. 2b) and other TFs with 125 
extant co-crystal structures (not shown). Critically, these topological features are evident at the 126 
level of individual TF footprints on the genome (Fig. 2a-b and Extended Data Fig. 6), indicating 127 
that the extended profile of corrected per-nucleotide DNase I cleavage across entire regulatory 128 
regions should, in principle, provide a snapshot of the primary structure of active regulatory 129 
DNA. 130 

Distinguishing independent vs. cooperative modes of TF occupancy 131 

Transcription factors compete cooperatively with nucleosomes for access to regulatory 132 
DNA25,26. Although fundamental to eukaryotic gene regulation, it is currently unknown whether 133 
nucleosome-enforced TF cooperativity derives primarily from local protein-protein interactions or 134 
results from the synergistic effect of independent TF:DNA binding events26. We reasoned that 135 
the number, relative spacing, and morphology of TF binding events within individual regulatory 136 
elements could be used to gain insight into the mechanistic basis of TF cooperativity. We 137 
observed that the average footprint width for diverse TFs tightly corresponded to the total width 138 
of its recognition sequence (Spearman’s ρ=0.82, p-value=0.001) indicating that DNase I 139 
cleavage precisely delineates the boundaries between occupied and unoccupied DNA at 140 
nucleotide resolution (Fig. 3a).  141 

Since the width of genomic footprints tightly tracks the physical structure of individual 142 
TFs bound to DNA (Fig. 2a-b), and direct TF:TF interactions are dependent on close 143 
proximity19, as such interactions should be reflected in larger footprints that harbor multiple TF 144 
recognition sites.  Conversely, independent TF:DNA interaction events should be reflected by 145 
compact and widely-spaced footprints harboring single TF recognition sites.  As such, the 146 
prevalence of cooperativity mediated by direct TF:TF interactions vs. synergy of independent 147 
binding events should be reflected in relative proportion of wide multi-motif footprints vs. well-148 
spaced single footprints. Larger footprints are overwhelmingly associated with two (or more) 149 
recognition sequences (Fig. 3b), yet such footprints represent only 8% of the global footprint 150 
landscape. By contrast, 92% of footprints harbor a single TF recognition site (Fig. 3c).  151 

Transcription factors can distort DNA upon engagement; as such, the spacing of 152 
transcription factors can be critical for establishing an active regulatory structure.  To quantify 153 
global footprint spacing patterns, we first binned each DHS by its average accessibility across 154 
all samples (because footprint discovery depends on total DNase I cleavage; Extended Data 155 
Fig. 1b), and for each bin we computed the mean number of footprints present per element and 156 
their relative edge-to-edge spacing. The density of footprints within the most deeply sampled 157 
DHSs genome-wide plateaued at an average of 5.5 per 200 bp (average width of a DHS peak) 158 
(Fig. 3d), which is in remarkable agreement with a theoretical prediction of the number of 159 
human TFs required to destabilize a canonical nucleosome26 and to encode specificity27. Within 160 
DHSs, footprints exhibit an average edge-to-edge spacing of ~21bp (middle 50%, 12-35bp) 161 
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(Fig. 3e). Taken together, these results are compatible with the observed lack of evolutionary 162 
constraint on the spacing and orientation of TF motifs28 and provide strong evidence that 163 
regulatory DNA marked by DHSs is chiefly instantiated by independent but synergistic TF 164 
binding modes (Fig. 3f). 165 

Cell-selective TF occupancy patterns 166 

Analysis of footprint occupancy across all biosamples revealed strong enrichment for the 167 
recognition sequences of key regulatory TFs in their cognate lineages (Extended Fig. 7a and 168 
Methods; for example: HNF4A in fetal intestine and liver; GATA factors in erythroid and 169 
placental/trophoblast cells and tissues; NEUROG1 in brain; myogenic regulatory factors (e.g, 170 
MYF6, MYOD, etc.) in muscle and lung; MEIS1 in developing eye, brain, and muscle tissues; 171 
and PAX6 in fetal eye).  In total, we identified 609 motif models matching footprinted sequences 172 
(Methods); these models encompassed 64 distinct archetypal transcription factor recognition 173 
codes (Extended Data Table 2), representing virtually all major DNA-binding domain families.  174 
For degenerate motifs where the same sequence is recognized by many distinct TFs, we 175 
observed highly cell-selective occupancy patterns that could be decomposed into coherent 176 
groups corresponding with cell type and function (Extended Data Fig. 7b-d).  177 

Most DHSs encode a single regulatory topology 178 

Given that a significant fraction of DHSs are shared across two or more cell/tissue 179 
types12,29, we next asked whether differential TF occupancy within the same regulatory DNA 180 
region (vs. differential actuation of entire DHSs) could be a major driver of cell-selective 181 
regulation. Nucleotide-resolution DNase I cleavage provides a topological fingerprint of each 182 
DHS, reflecting its unique combination and ordering of occupying TFs. Although detectable on 183 
manual inspection4, systematic analysis of differential TF occupancy has previously not been 184 
possible due to dominance of intrinsic cleavage propensities when many data sets are 185 
combined. To enable unbiased detection of differential footprint occupancy, we developed a 186 
statistical framework to test for differences in relative DNase I cleavage rates at individual 187 
nucleotides across many samples, analogous with methods developed for the identification of 188 
differentially expressed genes (Methods). To estimate the proportion of differentially regulated 189 
footprints within DHSs of a given cell/tissue type, we compared footprint occupancy within DHSs 190 
broadly accessible in both nervous-system derived samples (n=31) with non-nervous-system 191 
derived samples (n=212). We selected 67,368 DHSs that were highly accessible in at least 10 192 
nervous and non-nervous derived samples, and for each DHS, performed a per-nucleotide 193 
differential test (Fig. 4a,b and Extended Data Fig. 8). This analysis identified only a small 194 
proportion of DHSs (1,720 DHSs; 2.5%) containing a differentially footprinted element (Fig. 4c). 195 
Most of these DHSs harbored a single differentially regulated footprint, while a small fraction 196 
contained 2-4 differentially occupied elements (Fig. 4c). Nonetheless, differentially occupied 197 
footprints were significantly enriched recognition sites for known nervous system regulators 198 
such as REST, NFIB, ZIC1, and EBF1 (Fig. 4c, bottom right and Extended Data Fig. 9) and 199 
tissue-selective occupancy events paralleled expression of nearby genes (in the case of REST 200 
occupancy) (Extended Data Fig. 10).   201 
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Collectively, the above results indicate that the vast majority of regulatory DNA regions 202 
marked by DHSs encode a single structural topology reflecting a fixed pattern of footprint 203 
occupancy. Nonetheless, at a small minority of elements, DHSs provide a scaffold for cell 204 
context-specific TF occupancy that is typically confined to a single or small number of 205 
footprinted elements. 206 

Functional variants in TF footprints 207 

Identifying genetic variants likely to impact regulatory function has remained 208 
challenging2.  Deep sequence coverage at DHSs enables de novo genotyping of regulatory 209 
variants and simultaneous characterization of their functional impact on local chromatin 210 
architecture by quantifying and comparing DNase I cleavage for each allele of a given 211 
element2,4.  The 243 biosamples we analyzed were derived from 147 individuals.  De novo 212 
genotyping of all samples (Methods) revealed 3.76 million single nucleotide variants within 213 
DHSs, of which 1,656,597 were heterozygous and had sufficient read depth (≥35 overlapping 214 
reads) to accurately quantify allelic imbalance.   215 

Across individuals, we conservatively identified 117,626 chromatin altering variants 216 
(CAVs) that impacted DNA accessibility on individual alleles (median 2.4-fold imbalance) (Fig. 217 
5a, Extended Data Fig. 11a and Methods). Within DHSs, CAVs were markedly enriched in 218 
core consensus footprints, even after controlling for the increased detection power within this 219 
compartment (Fig. 5b and Extended Data Fig. 12). 220 

In protein-coding regions, most functional genetic variation is expected to be deleterious, 221 
with rare gain-of-function alleles30.  Protein-DNA recognition interfaces are likewise presumed to 222 
be susceptible to disruption at critical nucleotides, predisposing to loss-of-function alleles.  223 
Strikingly, we found CAVs to be nearly evenly partitioned between loss- (disruption of binding) 224 
and gain-of-function (increased or de novo binding) alleles (Fig. 5c-d and Extended Data Fig. 225 
10c).  Homozygosity for either the reference or alternative allele paralleled results from 226 
heterozygotes and further revealed that structural changes due to TF occupancy were precisely 227 
confined to the DNA sequence recognition interface (Fig. 5c, bottom). In many cases, SNVs 228 
detected in both heterozygous and homozygous configurations showed strong agreement 229 
between allelic ratios and relative footprint strength (Fig. 5e; Spearman’s ρ=0.9, p-value < 10-5).  230 
Variants residing within core recognition motifs in footprints were markedly enriched for 231 
imbalance vs. non-footprinted motifs; were localized to high-information content positions within 232 
the recognition interface (Fig. 5c, bottom and Extended Data Fig. 13); and paralleled the 233 
predicted energetic effect of the variant on the TF binding site (Fig. 5f and Extended Data Fig. 234 
14), thus providing a direct quantitative readout of functional variation impacting TF occupancy. 235 

DNA elements encoding footprints are hypermutable 236 

We next explored the global distribution of human genetic variation relative to consensus 237 
footprints.  Transcription factor binding sites appear to be gradually remodeled over evolutionary 238 
time via sequential small mutations31 that could ultimately affect function and phenotype32. 239 
However, patterns of genetic variation within regulatory DNA have not been characterized with 240 
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high precision. To quantify these, we calculated nucleotide diversity (π) within and around 241 
consensus genomic footprints using whole-genome sequencing data compiled from >65,000 242 
individual under the TOPMED project33 (Methods).  Canonically, reduced levels of π reflect the 243 
elimination of deleterious alleles from the population by natural selection, and hence are 244 
typically indicative of functional constraint34. Surprisingly, we found a dramatic increase in 245 
nucleotide diversity centered precisely within the core of genomic footprints (Fig. 5a), and thus 246 
that these elements are highly polymorphic in human populations.  This result eclipses prior 247 
global analyses indicating that transcription factor occupancy sites are generally not under 248 
substantial purifying selection4 both in the magnitude of the observed effect, and in its 249 
nucleotide-precise localization within the core of genomic footprints.  250 

The focal increase in genetic diversity within footprints indicated that the nucleotides 251 
encoding footprinted elements may have an increased mutational load vs. immediately adjacent 252 
sequences. To explore this possibility, we focused on variants with extremely low allele 253 
frequencies in human populations (minor allele frequency < 10-4); such variants are assumed to 254 
result from de novo germline (ie., non-segregating) mutation and are often used as a surrogate 255 
for mutation rate in humans35. We found that the distribution of extremely rare variants around 256 
and within genomic footprints mirrored that of nucleotide diversity, compatible with context-257 
driven increased mutation rate in the sequences underlying footprints (Fig. 5b). Of note, many 258 
transcription factors favor recognition of dinucleotide combinations such as CpGs that are 259 
intrinsically hypermutable. Conversely, de novo mutations have been implicated in the genesis 260 
of TF recognition sites36,37. Thus, hypermutation within genomic footprints may fill a key 261 
evolutionary role by favoring variability in TF occupancy and hence natural variation in gene 262 
regulation. 263 

GWAS variants are enriched in TF footprints 264 

Given the above, genetic variation within genomic footprints should, in principle, be a 265 
key contributor phenotypic variation; however, to date this has defied accurate quantification. 266 
We therefore next resolved the large set of variants strongly associated (nominal p-value < 267 
5x10-8) with diverse diseases and phenotypic traits from the NHGRI/EBI GWAS Catalogue38 to 268 
consensus genomic footprints. To account for the baseline increase in genetic variation present 269 
within genomic footprints described above, we performed exhaustive (1,000x) sampling 270 
matched variants (by minor allele frequency, linkage-disequilibrium (LD) structure, and distance 271 
to the nearest gene) from the 1,000 Genome Project39 (Methods). Additionally, we expanded 272 
both GWAS catalogue and matched sampled variants to include variants in perfect LD (r2=1). 273 
Within DHSs, aggregated GWAS catalogue SNPs were enriched within footprints but not in non-274 
footprinted subregions, and enrichment within footprints increased monotonically with footprint 275 
strength (Fig. 6c and Extended Data Fig. 15). 276 

The GWAS catalogue aggregates hundreds of traits, with corresponding expected 277 
diversity in cognate cell/tissue types.  To gain a more accurate view of the enrichment of trait-278 
associated variants in footprints, we compared SNP-based trait heritability of individual 279 
traits40,41.  Using summary statistic data from individual GWAS studies from the UK BioBank, we 280 
applied partitioned LD-score regression to compute the relative heritability contribution of 281 
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variants within all DHSs and footprints collectively vs. DHSs and footprints therein from the 282 
expected cognate cell type for the trait (Fig. 6d-e). This analysis revealed striking enrichment of 283 
variants that account for trait heritability in footprints generally (>5-fold) and most prominently in 284 
footprints from the cognate cell type (up to >45-fold) (Fig. 6d-e).  Collectively, we conclude that 285 
the genetic signals from disease- and trait-associated variants within DHSs emanate from 286 
transcription factor footprints, and that variants within footprints are major contributors to trait 287 
heritability.   288 

Discussion 289 

Our report details the highest resolution view to date of regulatory factor occupancy 290 
patterns on the human genome measured across an expansive range of cell and tissue 291 
contexts sampled from >140 genotype backgrounds.  The scale and breadth of the data have 292 
enabled the delineation of a reference set of ~4.5 million genomic sequence elements that 293 
collectively define nucleotides critical for genome regulation and function and form the building 294 
blocks of regulatory DNA. These footprints now provide a ready and extensible nucleotide-295 
precise reference for diverse analyses, particularly those involving genetic variation. 296 

The preferential localization of disease- and trait-associated variation within regulatory 297 
DNA has heretofore been described in terms of entire regulatory regions demarcated by DHSs 298 
or clusters thereof.  Our results now show that genetic association and heritability signals from 299 
regulatory DNA overwhelmingly emanate from indexed transcription factor footprints, which 300 
should greatly facilitate the connection of disease- and trait-associated genetic variation with 301 
genome function. 302 

Perhaps most strikingly, we report that human genetic variation is itself concentrated 303 
within transcription factor footprints, owing apparently to a combination of mutation propensity 304 
and the evolved sequence recognition repertoire of human transcription factors, which favors 305 
hypermutable nucleotide combinations (e.g., CG dinucleotides).  Given that human and mouse 306 
TFs share the large majority of their recognition landscapes, concentration of variation within TF 307 
occupancy sites has likely played a considerable role in shaping human – and indeed all 308 
mammalian – gene regulation. It implies, furthermore, that the genome is heavily primed for 309 
regulatory evolution, providing a possible mechanism underlying facilitated phenotypic 310 
evolution42 311 
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Figure Legends 

Figure 1: A nucleotide resolution atlas of transcription factor occupancy within the 
human genome. 

a, DNase I cleavage at regulatory DNA elements within the RELB locus in CD8+ T cells. Top, 
windowed DNase I cleavage density. Below, per-nucleotide cleavage counts and genomic 
footprint posterior probabilities at two DNase I hypersensitive sites in CD8+ T cells. b, Heatmap 
of genomic footprint posterior probabilities computed by integrating 243 datasets within the 
DHSs. Rows and columns correspond to individual biosamples and nucleotides grouped 
tissue/organ systems. Black ticks left of heatmap indicate whether region is DHS in each 
sample. Below, genome sequence scaled by footprint prevalence. Grey boxes define 
consensus footprints present in one or more cell and/or tissue types (footprint posterior>0.99). 
c, A consensus map of TF occupancy was derived from 243 cell and tissues covering 1.6 million 
DHS results in a comprehensive annotation of cis-regulatory DNA. d, Histogram of footprint 
location relative to DHS peak summit. Dashed red lines represent the average size of a DHS 
peak (203 bp). 

Figure 2: DNase I footprints reflect the topological structure of individual TF:DNA 
interactions 

a, Top, Physical structure of CTCF zinc fingers 3-11 bound to its cognate DNA recognition 
sequence (PDB: 5YEF and 5YEL)21. DNA is colored by mean ratio of observed vs. expected 
cleavages at footprinted CTCF motifs in T regulatory cells. Left, heatmap of a relative cleavage 
at each of the 25,852 footprinted CTCF motifs.  Bottom, aggregate DNase I cleavage summed 
over all CTCF footprints. Right, DNase I cleavage (observed and expected) at three randomly 
selected footprints. b, Same as a for paired-box transcription factor PAX6 (PDB: 6PAX)24. 

Figure 3: Distinguishing modes of transcription factor occupancy within regulatory DNA 

 a, The width of footprints for diverse TFs tightly correlates with the width of their recognition 
sequence (Spearman’s ρ=0.82, p-value=0.001). b, Overlap and spatial enrichment of TF 
recognition sequences within footprints binned by width. Left, Proportion of footprints uniquely 
overlapped by 0, 1 or 2 or more recognition sequences. Right, density heatmap of motif 
occurrences around footprints binned by width. c, Percentage of footprints that likely represent 
the occupancy of a single TF (≤30bp) or multiple TFs (>30bp). d–e, Footprint density and 
footprint spacing (distance edge-to-edge) vs. average DNase I density within DHSs. Grey 
indicates the middle 50%-ile.  f, A typical regulatory element (DHS) harbors ~5-6 directly bound 
TFs spaced roughly 20-bp from each other.  
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Figure 4: Comparative footprinting identifies cell-selective TF occupancy at 
nucleotide resolution 

a, Comparative footprinting within the SCAMP5 promoter identifies 3 footprints differentially 
occupied in nervous cell and tissue types. Top, DNase I cleavage in two exemplar nervous and 
non-nervous cell types. Bottom, mean differential per nucleotide cleavage(log2) between 
nervous-system derived (n=26) and non-nervous samples (n=12). The color of each bar 
indicates the statistical significance (–log10 p) of the per-nucleotide differential test. b, 
Differential footprint testing within thousands of DHS accessible in between nervous and non-
nervous related biosamples. c, The vast majority of tested DHSs encode a single TF binding 
topology. Top, percentage of the DHSs tested that containing one or more differentially 
occupied element. Bottom left, distribution of differentially footprinted elements per DHS. Bottom 
right, selected TF recognition sequences significantly enriched in differentially occupied 
footprints (binomial test p<0.01). Indicated in parenthesis is the fold-enrichment vs. expected 
(based on prevalence of footprinted motif in tested regions). 

Figure 5: Functional genetic variation localizes to TF footprints 

a, Allelic imbalance was assessed at all variants overlapping a DNase I footprints (consensus 
footprint probability < 0.01). b, Percentage of variants imbalanced in DNase I footprints and 
DHS peaks (but not in footprints). b, Variant rs10171498 results in the gain of a NFIX footprint. 
Top, allelically resolved per-nucleotide DNase I cleavage aggregated from 56 heterozygous 
samples. Middle, DNase I cleavage in two selected samples homozygous for either reference or 
alternative alleles. Bottom, mean differential per nucleotide cleavage (log2) between 
homozygous reference (n=74) and alternative samples (n=12). The color of each bar indicates 
the statistical significance (–log10 p) of the per-nucleotide differential test (Methods). The variant 
and differentially footprinted nucleotides precisely colocalize to a NFIX recognition element. d, 
Density histogram of allelic ratios for variants overlapping a footprinted NFIX recognition 
sequence. Grey, all variants tested for imbalance (n=7,110).  Blue, all variants significantly 
(n=1,889) imbalanced. g, Scatterplot of allelic imbalance computed from heterozygous 
individuals (x-axis) vs. the relative difference in footprint depth between homozygous individuals 
at variants overlapping an NFIX footprint. Each point pertains to a SNV within a footprinted NFIX 
binding site imbalanced in heterozygotes and differentially footprinted in homozygotes. Grey line 
indicates fit linear model. e, Allelic imbalance measurements parallels predicted energetic 
effects of variants within NFIX footprints. Shown is the mean log-odds motif score (reference vs. 
alternate allele) of all tested variants within footprinted motifs binned by allelic ratios. 
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Figure 6: Human genetic variation is broadly enriched within genomic footprints 

a, Distribution of genetic variation with respect to consensus footprints. Plotted is the mean per 
nucleotide diversity determined from whole genome sequencing of 62,784 individuals (TOPMED 
project). b, Histogram of the distribution of rare variation (minor allele frequency<0.0001) within 
and surrounding genomic footprints. c, Enrichment of GWAS variation within or outside 
consensus genomic footprints over randomly sampled variants from 1,000 Genome Project. 
Enrichment was computed after expanding both GWAS and sampled variants with those in 
perfect LD (r2=1.0, central European population). d, Enrichment of SNP-based trait heritability 
using LD-score regression for UK BioBank GWAS traits lymphocyte counts (c) and red blood 
cell counts (d). Asterisk denotes statistically significant enrichments (* indicates p-value<0.01). 
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