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Abstract 11

Accuracy of glioma grading is fundamental for the diagnosis, treatment planning and 12

prognosis of patients. The purpose of this work was to develop a low cost and easy to 13

implement classification model which distinguishes low grade gliomas (LGGs) from high 14

grade gliomas (HGGs), through texture analysis applied to conventional brain MRI. 15

Different combinations between MRI contrasts (T1Gd and T2) and one segmented 16

glioma region (necrotic and non-enhancing tumor core (NCR/NET)) were studied. 17

Texture features obtained from the Gray Level Size Zone Matrix (GLSZM) were 18

calculated. An under-samplig method was proposed to divide the data into different 19

training subsets and subsequently extract complementary information for the creation 20

of distinct classification models. The sensitivity, specificity and accuracy of the models 21

were calculated. The best model was explicitly reported. The best model included only 22

three texture features and reached a sensitivity, specificity and accuracy of 94.12%, 23

88.24% and 91.18% respectively. According to the features of the model, when the 24

NCR/NET region was studied, HGGs had a more heterogeneous texture than LGGs in 25

the T1Gd images and LGGs had a more heterogeneous texture than HGGs in the T2 26

images. These novel results partially contrast with results from literature. The best 27

model proved to be useful for the classification of gliomas. Complementary results 28

showed that heterogeneity of gliomas depended on the studied MRI contrast. The 29

model presented stands out as a simple, low cost, easy to implement, reproducible and 30

highly accurate glioma classifier. What is more important, it should be accessible to 31

populations with reduced economic and scientific resources. 32

Introduction 33

Gliomas are tumors formed by the glial cells of the nervous tissue. These can be benign 34

or malignant. Malignant gliomas represent about 80% of all malignant brain tumors [1] 35

and can be classified as low grade gliomas (LGGs) (grade II, according to the World 36

Health Organization (WHO)) or high grade gliomas (HGGs) (grade III and IV, 37

according to the WHO) [2]. LGGs are usually slow-growing and infiltrative tumors. 38

Treatment consists of a complete resection of the tumor and a subsequent follow-up of 39

the patient. In some cases, chemotherapy and radiotherapy may be necessary. On the 40

other hand, HGGs have a rapid evolution and immediate treatment is necessary. It 41

includes complete resection, chemotherapy and radiotherapy [3]. HGG patients have a 42

low life expectancy (approximately 1 to 2 years), while LGG patients have a longer life 43

expectancy (approximately 5 to 10 years) [4]. The 2016 WHO Classification of Tumors 44

of the Central Nervous System showed that the molecular characteristics have greater 45

importance in comparison to the histological characteristics for the diagnosis and 46

management of the patient [2]. However, as in other medical classification problems, a 47

single approach is usually not sufficient to provide all the information necessary for the 48

understanding of a disease and the accuracy of its diagnosis [5]. On the other hand, the 49

latest advances in disease diagnosis are not always accessible to the entire population, as 50

is the case in developing countries. Then, the creation of low cost and relatively easy to 51

implement diagnostic methodologies is useful and necessary. 52

Different imaging techniques, such as Computed Tomography (CT), Positron 53

Emission Tomography (PET), Single-Photon Emission Computed Tomography 54

(SPECT), Magnetic Resonance Imaging (MRI), Infrared Spectroscopic Imaging and a 55

combination of them have been used for the study and classification of gliomas [6–14]. 56

However, intracranial tumors are best evaluated on MRI [15] and conventional MRI is 57

traditionally employing in many works whose objective is to distinguish LGGs from 58

HGGs [16]. Moreover, MRI is first utilized clinically when, after a general medical 59
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examination, there is a suspicion of the presence of a brain tumor. Once confirmed its 60

existence, conventional and advanced MRI can be used to delimit the tumor, to follow 61

its evolution, as well as to obtain some evidence about its type and malignancy 62

grade [17]. However, the characterization of gliomas by imaging is difficult, since they 63

can present mixed characteristics of both low and high grade. Currently, the standard 64

diagnosis of gliomas is performed by histopathological tests after performing a surgical 65

resection or a stereotactic biopsy (which can be guided by MRI) [18]. These procedures 66

are invasive and can be risky due to the location of the tumor. Moreover, due to the 67

heterogeneity of the gliomas, a biopsy presents problems such as taking samples that are 68

not representative of the complete tumor as well as variability in the interpretation [19]. 69

Therefore, there is a need in the clinical comunity to develop new non-invasive and 70

prefereably automatic diagnostic methodologies, such that the diagnosis, treatment 71

planning and prognosis of glioma patients are improved. 72

To date, various computational methodologies have been developed for the 73

classification of gliomas. Some of them study conventional (anatomical) [7, 20] or 74

advanced MRI (Perfusion or Diffusion Weighted Imaging, spectroscopy, etc.) [5, 21–23]. 75

They use qualitative, semiquantitative or quantitative variables, or a combination of 76

them. Some variables are obtained from a specific MRI (for example, diffusion 77

variables). However, there are quantitative analytical methodologies that allow 78

measuring variables of all MRI. One of the most used is texture analysis [20,23,24]. It 79

basically consists of quantifying the spatial distribution of pixels (2D images) or voxels 80

(3D images) with different intensities of gray levels and extracting information through 81

statistical variables (for example, correlation, homogeneity, contrast, entropy, etc.) [25]. 82

Also, color images with R(ed) G(reen) B(lue) format can be analyzed by separating 83

their three components as gray level images. Thus, texture analysis is versatile for any 84

type of MRI [26]. In this type of analysis, texture features are extracted from the 85

calculation of texture matrices. Among them there are for example the called Gray 86

Level Size Zone Matrix (GLSZM). The GLSZM measures the number of gray level zones 87

i and size j [27]. Basically it calculates the number of times that gray level voxels i were 88

grouped forming a set (zone) of j voxels considering all the possible directions (26 in 89

3D). Since its invention, the GLSZM has proven to be useful when the main 90

characteristic to study is heterogeneity [27]. Since different glioma grades are 91

characterized by having different grades of heterogeneity [28], characterizing gliomas 92

through texture features obtained from the GLSZM is convenient. 93

Concerning classification models, simple mathematical methods (linear regression, 94

logistic regression, etc.) and complex mathematical methods (fuzzy modeling, artificial 95

neural networks, etc.) have been used for glioma grading [29]. Although the most 96

complex models tend to be the most flexible, the computational cost is also higher [30]. 97

On the other hand, the utility of any model is usually measured after validation. For 98

classification models, this commonly consists of taking training samples to create the 99

model and testing samples to ratify its results. However, because usually the available 100

databases contain a small number of samples, it is not always possible to validate the 101

results [19,21–23]. Moreover, many of the databases used in different studies are private 102

or were acquired using specific protocols, which does not always allow extrapolating 103

their results or reproducing them through independent studies. Also, a common 104

problem present in many databases is the so-called “class imbalance”, which occurs 105

when one or more classes have a greater or lesser number of samples than the rest of 106

them. The consequence is that a classifier will be biased towards the classes with the 107

highest number of samples [31]. There are several strategies to deal with this problem 108

such as under-sampling (elimination of samples from major classes), over-sampling 109

(replication of samples from minority classes), cost sensitive learning (taking into 110

account misclassification costs), among others [32]. 111

January 19, 2020 3/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.29.924712doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.29.924712
http://creativecommons.org/licenses/by/4.0/


The objective of the present work was to develop a non-invasive, semi-automatic, 112

simple and reproducible method to differentiate low and high grade gliomas, with the 113

benefit that it can be used in developing countries with limited access to technology. 114

This was done studying different conventional MRI contrasts by applying texture 115

analysis (which are low cost and easy to implement) and finally reporting explicitly the 116

best classification model. In addition, since an imbalanced database was studied, an 117

under-sampling approach was proposed, in which first different subsets of gliomas with 118

balanced classes were created, and then complementary information from each of them 119

was extracted in order to create a variety of classification models. 120

Materials and methods 121

Patient database 122

The patient database belonging to the Multimodal Brain Tumor Segmentation (BRATS) 123

Challenge 2018 [33–36] was used in this work. It was available online previous data 124

request on the challenge page [33]. The database was comprised of routine 125

clinically-acquired 1.0T, 1.5T and 3.0T pre-operative multimodal MRI scans of 210 126

glioblastoma (GBM/HGG) and 75 LGG patients, with pathologically confirmed 127

diagnosis. There was information about the age and overall survival of 168 of the 210 128

HGG patients, having them an average age of 60.33 ± 12.08 years and an average 129

overall survival of 422.96 ± 349 days. The scanners consisted of four conventional MRI 130

contrasts: Native (T1) and post-contrast T1-weighted (T1Gd), T2-weighted (T2), and 131

T2 Fluid Attenuated Inversion Recovery (FLAIR). Images of the tumors were 132

segmented and manually labeled in different regions: Gd-enhancing tumor (ET), 133

necrotic and non-enhancing tumor core (NCR/NET) and peritumoral edema (ED). The 134

manual segmentation was performed by one to four raters, and their annotations were 135

approved by experienced neuroradiologists. The database was grouped into three sets 136

identified as: BRATS 2013 (from the 2013 challenge database), with 10 LGGs and 20 137

HGGs; TCIA (The Cancer Imaging Archive), with 65 LGGs and 102 HGGs; and 138

CBICA (Center for Biomedical Image Computing and Analytics) with 88 HGGs (S1 139

Table). However, the scanners came from 19 different institutions and were acquired 140

with different clinical protocols as well as various scaning systems. 141

Pre-processing 142

The database information was already pre-processed [34]. Each patient’s image volumes 143

were co-registered rigidly to the T1Gd MRI and all images were resampled to 1 mm 144

isotropic resolution in a standardized axial orientation with a linear interpolator. A 145

rigid registration model was used with the mutual information similarity metric through 146

the software Insight Segmentation and Registration Toolkit (ITK) [37] 147

(“VersorRigid3DTransform” with “MattesMutualInformation” similarity metric and 148

three multi-resolution levels). All images were skull stripped. 149

As the features of study in the texture analysis describe different properties based on 150

the gray level intensity of the images, two extra pre-processing steps were performed 151

before the analysis: Intensity inhomogeneity correction and intensity normalization. 152

Intensity inhomogeneities are mainly produced by imperfections in the radiofrequency 153

coils and object dependent interactions; in the images it is observed as a low frequency 154

variation of the intensity across the image [38]. In any quantitative image analysis, a 155

tissue is considered to be represented by similar gray level intensities, so that intensity 156

inhomogeneities have a high influence on the results obtained. Therefore, it was 157

necessary to include the inhomogeneity correction in the pre-processing of this work. 158
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Besides, as images were obtained through different clinical protocols and scaning 159

systems, their intensity ranges were different. Thus, to be able to compare the images, 160

intensity normalization was performed. 161

Inhomogeneity correction was carried out using the FreeSurfer Software Suite version 162

6.0 in Linux (Ubuntu 14.04) [39], through the tool “nu correct”, which apply the N3 163

(nonparametric non-uniformity intensity normalization method) algorithm developed by 164

the Montreal Neurological Institute (MNI). This analyzes the image intensity 165

distribution in order to find the smooth intensity non-uniformity field that maximizes 166

its frequency content [40]. For each patient, this pre-processing was applied to whole 167

brain images (including the glioma region). 168

Intensity normalization was performed with an algorithm developed in MATLAB 169

software and available online [41,42]; it was based on the method proposed by Nyul et 170

al [43], in which landmarks are adjusted on different histograms. This process of 171

normalization required a set of reference volumes whose choice was arbitrary. A choice 172

criterion used exclusively for this work consisted of the following: Considering that the 173

range of intensities of each patient volume was different, then those with the lowest and 174

highest ranges were chosen. This was done by averaging the intensities of their voxels 175

excluding the region corresponding to the tumor; since that the tumor environment is 176

highly heterogeneous, it had to be excluded from the reference volumes used for 177

normalization. For each of the available MRI contrasts (T1, T1Gd, T2 y FLAIR), glioma 178

grades (LGG and HGG) and set in which the database was grouped (BRATS 2013, 179

TCIA and CBICA), two reference volumes were chosen: One with the lowest average of 180

intensities and another with the highest. Thus, a total of 40 reference volumes were 181

chosen (remember that CBICA did not have LGGs). Then, to normalize the rest of T1 182

volumes, all reference T1 volumes were used, and so on with the other MRI contrasts. 183

The normalization range was selected to vary between 0 and 255 in steps of 1 (0 184

corresponded to absence of value). Gliomas whose volumes were employed for 185

normalization were excluded from further work. Although in total there were 40 186

reference volumes (16 LGGs and 24 HGGs), some of them corresponded to the same 187

gliomas (for example, for more than one MRI contrast, the same glioma had the lowest 188

or highest average intensity). Thus, the volumes of 11 different LGGs and 19 different 189

HGGs were used for normalization (S2 Table). At the end, 64 LGGs and 191 HGGs 190

were available, this being a database with imbalanced classes. 191

Database division 192

Low and high grade gliomas were divided into two classes: Training gliomas and testing 193

gliomas. As the first part of the proposed under-sampling approach, a unique and 194

independent subset formed by testing gliomas (testing subset) and different subsets 195

formed by training gliomas (training subsets) were created. In each subset the same 196

number of LGGs and HGGs was chosen. Classifiers were created from the training 197

subsets and then these were applied to the testing subset. 198

For the formation of the subsets with balanced classes the following was done. From 199

the 64 LGGs and 191 HGGs, 34 LGGs and 34 HGGs were randomly chosen to form the 200

testing subset (S3 Table). Then, of the remaining 157 HGGs, 30 were chosen randomly 201

and this was repeated 100 times. Then, along with the remaining 30 LGGs (after having 202

chosen the testing LGGs), 100 training subsets were formed (S4 Table) (Fig 1). The 203

above was carried out in order to extract different but complementary information from 204

different training subsets, even though the training LGGs were the same in each one. 205
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Fig 1. Division of data and under-sampling. From available 64 LGGS and 191
HGGs, one testing subset and one hundred training subsets with balanced classes were
created from randomly choosing gliomas.

Texture features 206

In this work the matrix called Gray Level Size Zone Matrix (GLSZM) was calculated by 207

studying the region of interest comprised by the tumors. Subsequently, 13 texture 208

features were obtained (being these the ones that are usually extracted from it) [27, 44]). 209

The above was decided as a first study approach, using a small set of texture features in 210

order to simplify analysis and models. Besides, other texture matrices were not used 211

since the results obtained with the GLSZM were good. Names and notations of the 13 212

features are shown in the Table 1; their definitions and descriptions can be found in the 213

literature [45]. 214

Table 1. Studied texture features.

Texture feature Notation
Small Zone Emphasis Fszm.sze

Large Zone Emphasis Fszm.lze

Gray-Level Nonuniformity Fszm.glnu

Zone-Size Nonuniformity Fszm.zsnu

Zone Percentage Fszm.z.perc

Low Gray-Level Zone Emphasis Fszm.lgze

High Gray-Level Zone Emphasis Fszm.hgze

Small Zone Low Gray-Level Emphasis Fszm.szlge

Small Zone High Gray-Level Emphasis Fszm.szhge

Large Zone Low Gray-Level Emphasis Fszm.lzlge

Large Zone High Gray-Level Emphasis Fszm.lzhge

Gray-Level Variance Fszm.gl.var

Zone-Size Variance Fszm.zs.var

Names and notations of the thirteen texture features are shown [45].

The calculation of the GLSZM and the texture features, in addition to all work that 215

will be described below, were completed through computational algorithms developed in 216

the lab using MATLAB software Version: 8.5.0.197613 (R2015a) in a normal computer 217

system (Intel Core i7-4790 CPU 3.60 Ghz, 16 GB RAM, Windows 7). 218

MRI contrasts and tumor regions 219

For simplicity and in order to reduce the time consumed by the computational 220

algorithms developed, only two of four MRI contrasts (T1Gd and T2) and two of three 221

tumor regions (NCR/NET and ED) were analyzed. The reason for choosing these MRI 222

contrasts was that, in initial versions of the work, better results were obtained when 223

those contrasts were analyzed in comparison to the rest. On the other hand, study 224

regions that were common among LGGs and HGGs were a target. Since the 225

Gd-enhancing tumor region was not present in all LGGs, it was excluded from the work. 226

All possible combinations between MRI contrasts and tumor regions were studied. 227

Thus, the total number of combinations was equal to 15, varying from one MRI contrast 228

and one tumor region (MRIreg) on their own, to all of them together. In each 229

combination, 13 texture features were calculated for each MRIreg. Therefore, as it can 230

be seen in the Table 2, for the first four combinations, 13 features were calculated; for 231

combinations 5 to 10, 26 were calculated; for combinations 11 to 14, 39 were calculated; 232
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and for combination 15, 52 were calculated. 233

Table 2. Studied combinations and number of calculated features.

Number Combination Total calculated features
1 T1Gd

1 13
2 T1Gd

2 13
3 T2

1 13
4 T2

2 13
5 T1Gd

1-T1Gd
2 26

6 T1Gd
1-T2

1 26
7 T1Gd

1-T2
2 26

8 T1Gd
2-T2

1 26
9 T1Gd

2-T2
2 26

10 T2
1-T2

2 26
11 T1Gd

1-T1Gd
2-T2

1 39
12 T1Gd

1-T1Gd
2-T2

2 39
13 T1Gd

1-T2
1-T2

2 39
14 T1Gd

2-T2
1-T2

2 39
15 T1Gd

1-T1Gd
2-T2

1-T2
2 52

Fifteen different studied combinations between MRI contrasts and glioma regions are
listed. In each MRI contrast (T1Gd and T2), the region (reg) of the studied tumor is
indicated by a superscript. Superscript 1 corresponds to the NCR/NET region, while
superscript 2 corresponds to ED region. For each MRIreg, thirteen different texture
features were calculated. The total number of calculated features in each combination is
indicated.

Classification models 234

Once the data division was made, the proposed under-sampling approach continued as 235

follows. For each of the 15 combinations, different classification models were created. In 236

general terms, the models were constructed from the training subsets that had the same 237

texture features with the higher significant differences in an orderly manner (according 238

to their p-values obtained after applying statistical tests). Then, different models were 239

created and averaged. Thus, unique models of classification using from one to more 240

texture features were obtained. The procedure for the creation of the models 241

considering some particular combination is described below. However, this same 242

procedure was followed for all 15 combinations. 243

Features with significant differences 244

In each of the 100 training subsets, the texture features (13, 26, 39 or 52, depending on 245

the combination) of the respective 30 LGGs and 30 HGGs were compared. The 246

comparison was made applying the Wilcoxon Rank Sum Test. The features were 247

ordered considering their p-value, putting in the first place the one with the lowest 248

p-value and putting in the last place the one with the highest p-value. Then, in each 249

subset only the features that presented significant differences (p < 0.05) were 250

considered. The number of these features was called Di, with i = 1, 2, ..., 100. 251

Afterward, the minimum of them was calculated and it was called d (i.e., d = min{Di}). 252

Thus, a set of features {Xis} was obtained, with i = 1, 2, ..., 100 (indicating the training 253

subset) and s = 1, 2, ..., d (indicating the order). Subsequently, d histograms were 254

created, each of them formed from the features located in the same place (from the 100 255

training subsets) (Fig 2). That is, one histogram with all features located in the first 256
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place, another with those located in the second place, and so on until that one with 257

those located in the d position were created. From each of these histograms, the highest 258

frequency feature was chosen. Then, a set {xs}, with s = 1, 2, ..., d, of ordered highest 259

frequency features was obtained. In case that in some histogram the chosen feature had 260

been the same of a previous histogram, then the following highest frequency feature was 261

selected, so that in the end d different features were obtained. 262

Fig 2. Obtaining the ordered highest frequency features. Considering the d
first ordered features (according to their p-value) of each training subset, histograms of
the features loacated in the same place were created. Then, from the histograms, the
highest frequency features were obtained.

Creation of unique classification models 263

For some t, with t ≤ d, training subsets in which their t first ordered features coincided 264

with the t first ordered highest frequency features were chosen. The total of the subsets 265

that complied with the above was called w. In each of the w training subsets a multiple 266

linear regression was carried out employing the set of t features. In the regressions, the 267

independent variable was chosen arbitrarily to be equal to -10 for the LGGs and equal 268

to 10 for the HGGs (whose choice had no particular reason). Hence, w individual 269

regression models were obtained in the form: 270

β1,1x1 + β1,2x2 + ...+ β1,txt + β1,t+1 = ŷ1,
β2,1x1 + β2,2x2 + ...+ β2,txt + β2,t+1 = ŷ2,

...
...

βw,1x1 + βw,2x2 + ...+ βw,txt + βw,t+1 = ŷw,

271

in which β’s were the coefficients obtained after performing the linear regression, x’s 272

were the variables or ordered highest frequency features and ŷ’s were predictions of the 273

models. Then, in order to obtain a single model from the w created, coefficients 274

associated to the same variable (including constant term coefficient) were averaged. 275

Thus, a unique classification model of t variables was obtained and expressed as: 276

β̄1x1 + β̄2x2 + ...+ β̄txt + β̄t+1 = ŷ, (1)

where the β̄’s were the averaged coefficients. The above was repeated for all possible 277

values of t (from 1 to d). Then, for the considered combination, d different models were 278

obtained using from 1 to d variables; i.e., one model used only the ordered highest 279

frequency feature located in the first place, another model used the two features located 280

in the first and second place, and so on until the model that occupied all the d features. 281

Application of models 282

Unique models created from all combinations were applied to the testing subset (34 283

LGGs and 34 HGGs). If the prediction ŷ of some model was less than 0, then the 284

glioma was classified as LGG; and if it was greater than 0, then the glioma was classified 285

as HGG. Sensitivity, specificity, accuracy and mean absolute error (mae) were calculated 286

for all the models. However, before calculating the mae of each model, the following was 287

done. For any testing LGG, if its predictions ŷ was less than -10, then it was equalized 288

to -10; while for any testing HGG, if its prediction ŷ was greater than 10, then it was 289

equalized to 10. This was done because a value greater than 10 for some testing HGG, 290
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or a value less than -10 for some testing LGG, was not considered a bad result; however, 291

the mae of the respective model would has been negatively influenced by this. Thus, 292

there was only interest on the error of predictions of the LGGs above -10 and in the 293

error of predictions of the HGGs below 10. It should be mentioned that in the results 294

section the actual predictions of each glioma were graphically showed. From all unique 295

models created, in this work only the one that obtained the best results was reported. 296

Reduced models 297

Assuming that the best model was created from more than one variable, then reduced 298

models were created using all possible combinations among these variables. This was 299

done with the objective of knowing if any of the variables could be left out, still 300

obtaining good results. To understand how training subsets were chosen (among the 100 301

available) in order to create the reduced models, the following example can be 302

considered. Suppose that the best model used 3 variables. Then, considering their order, 303

the possible combinations between the variables were: 1, 2, 3, 1-2, 1-3, 2-3 and 1-2-3. 304

For combination 1, the training subsets whose first ordered variable was variable 1, were 305

chosen; for combinations 2 and 1-2, the subsets whose first two ordered variables were 306

variables 1 and 2, were chosen; and for combinations 3, 1-3, 2-3 and 1-2-3, the subsets 307

whose first three ordered variables were variables 1, 2 and 3, were chosen. Once 308

considered the variables and their respective training subsets, a procedure similar to 309

that explained in the previous sections was completed, creating individual reduced 310

models and obtaining unique reduced models. These latest models were applied to the 311

testing subset and their sensitivity, specificity, accuracy and mae were calculated. From 312

all unique reduced models, the one that obtained the best results with the least number 313

of variables and mae value was chosen. Its mathematical expression was then explicitly 314

reported. Further, boxplots of the variables used in the best model and obtained from 315

the testing subset were created; and the Wilcoxon rank sum test was applied. 316

Having the best classification model, the duration of the entire classification process 317

for each testing glioma was measured and averaged. This consisted of the following 318

procedures: Inhomogeneity correction, intensity normalization, calculation of the 319

GLSZM, calculation of the texture features, application of model and classification (Fig 320

3). 321

Fig 3. Flow diagram. Complete process proposed for the classification of low and
high grade gliomas.

Results 322

After calculating the texture features of training HGGs and LGGs (S5 Table, S6 Table, 323

S7 Table and S8 Table), the minimum number of features (called d) with significant 324

differences (p < 0.05) of two MRIreg: T1Gd
2 and T2

2 (numbers of combination 2 and 4 325

respectively in Table 2), whose study region was ED (indicated by superscript 2), was 326

equal to zero. That is, when the only studied glioma region was ED, in some of the 100 327

training subsets there were no texture features with significant differences between 328

LGGs and HGGs. Therefore, it was decided to exclude from the subsequent work the 329

combinations that included the two mentioned MRIreg. Then, of the total of 15 330

combinations between MRI contrasts and tumor regions, only three continued to be 331

studied: T1Gd
1, T2

1 and T1Gd
1-T2

1 (numbers of combination 1, 3 and 6 respectively in 332

Table 2), whose study region was NCR/NET (indicated by superscript 1). For 333

combination 1, the value of d was equal to 5; for combination 3, it was equal to 7; and 334
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for combination 6, it was equal to 16. Thus, for combination 1, models with 1 to 5 335

variables were created; for combination 3, models with 1 to 7 variables were created; 336

and for the combination 6, models with 1 to 16 variables were created. Therefore, in 337

total 28 different unique classification models were created (S9 Table). 338

Figs 4a, 4b and 4c show the results obtained after applying the classification models 339

of combinations 1, 3 and 6 to the testing subset respectively. The percentages of 340

sensitivity, specificity and accuracy reached are indicated. Figs 4d, 4e and 4f indicate 341

the mae of all created models. The model that showed the best results (signaled in Fig 342

4 with black arrow heads) corresponded to the combination 6 (T1Gd
1-T2

1) using the 343

first 5 ordered highest frecuency features. In order, the 5 features or variables of the 344

models were: Fszm.z.perc, Fszm.zs.var, Fszm.zs.lzlge, Fszm.zs.lze and Fszm.zsnu. The first four 345

were measured in T2
1 and the fifth one in T1Gd

1. 346

Fig 4. Results of models. Three graphs are shown with the results of combination 1
(a), 3 (b) and 6 (c) using different number of variables (horizontal axis). These results
consist of the percentages (vertical axis) of sensitivity, specificity and accuracy obtained
after applying the models to the testing subset. Besides, three graphs (d, e and f)
indicate the values (in arbitrary units (au)) of the mean absolute errors (mae) obtained
in each model. The best classification results were obtained in the combination 6 by the
model of 5 variables (H, N).

Following the methodology for the creation of reduced models, 30 models were 347

created using different combinations among the 5 variables of the aforementioned best 348

model (S10 Table). Fig 5a shows the sensitivity, specificity and accuracy obtained by 349

the 30 models when they were applied to the testing subset. Their respective mae are 350

shown in Fig 5b. As it can be seen in Fig 5a, the model that used only the 3 ordered 351

variables 1-2-5, obtained the same results as the model that used all 5 variables 352

(1-2-3-4-5). This reduced model obtained a sensitivity of 94.12%, a specificity of 88.24%, 353

an accuracy of 91.18% and a mae of 5.03. Table 3 shows information regarding the 3 354

variables (1-2-5) or texture features. 355

Fig 5. Results of reduced models. a. Percentages of sensitivity, specificity and
accuracy (vertical axis), obtained by the 30 reduced models are presented, in addition to
the combination of variables utilized in each one (horizontal axis), considering the
following numbering: 1: Fszm.z.perc, 2: Fszm.zs.var, 3: Fszm.lzlge, 4: Fszm.lze and 5:
Fszm.zsnu. The first four were measured in T2 contrasts and the fifth in T1Gd contrasts.
All features were measured in the NCR/NET region. b. Values (in arbitrary units (au))
of the mean absolute errors (mae) obtained in each reduced model are indicated. The
reduced model that obtained the best results with the lowest number of variables and
the smallest error corresponded to the one that combined the variables 1-2-5 (H, N).

Taking as reference Eq. 1, the mathematical expression of the 3-variables reduced 356

model was: 357

β̄′1x1 + β̄′2x2 + β̄′5x5 + β̄′cte = ŷ (2)

and considering the data shown in Table 3, Eq. 2 became: 358

13.693Fszm.z.perc − 0.410Fszm.zs.var + 31.842Fszm.zsnu − 19.500 = ŷ (3)

being this the mathematical expression of the best classification model. 359
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Table 3. Data of the best reduced model.

Order (i) Variable (xi) MRIreg Coefficient (β̄′i) pmin pmax

1 Fszm.z.perc T2
1 13.693 1.47x10−7 8.66x10−5

2 Fszm.zs.var T2
1 -0.410 1.47x10−7 8.66x10−5

5 Fszm.zsnu T1Gd
1 31.842 1.02x10−5 1.02x10−5

cte -19.500

This model used only 3 variables (1-2-5) obtained from the texture features employed in
the 5-variable (1-2-3-4-5) model of combination number 6. The order of the variables
used is shown, in addition to the MRI contrast and the glioma region from which they
were measured. The average coefficient and the minimum and maximum p-values (pmin

and pmax respectively) corresponding to each variable are indicated. The coefficient of
the constant term is also shown.

Fig 6. Predictions made by the best reduced model applied to the testing
subset. Testing gliomas (34 LGGs and 34 HGGs) (vertical axis) and their predictions
(in arbitrary units (au)) (horizontal axis) are presented. A solid vertical line at 0
indicates the chosen threshold. Dotted vertical lines at -10 and 10 indicate the ideal
prediction of the LGGs and HGGs respectively. The filled circles and squares
correspond to the true HGGs and true LGGs respectively, and the empty circles and
squares correspond to the false LGGs (or HGGs misclassified) and false HGGs (or
LGGs misclassified) respectively.

In Fig 6, the predictions made by this model when Eq. 3 was applied to the testing 360

subset are presented graphically. 361

In Fig 7, boxplots made from the 3 variables of the testing LGGs and HGGs are 362

shown. These variables presented significant differences when both study groups were 363

compared (p = 1.21x10−7 for Fszm.zsnu, and p = 1.58x10−7 for Fszm.z.perc and 364

Fszm.zs.var). In addition, it can be seen that the testing LGGs had relatively higher 365

values of Fszm.zs.var compared to the testing HGGs, and the testing HGGs had relatively 366

higher values of Fszm.zsnu and Fszm.z.perc compared to the testing LGGs. 367

Fig 7. Boxplots of the texture features or variables 1-2-5 calculated from
the testing gliomas. Grade of the testing gliomas (horizontal axis) and their texture
values (in arbitrary units (au)) (vertical axis) are presented. a. Boxplot of the feature
number one Fszm.z.perc (measured in the T2

1 contrast). b. Boxplot of the feature
number two Fszm.zs.var (measured in the T2

1 contrast). c. Boxplot of the feature
number five Fszm.zsnu (measured in the T1Gd

1 contrast).

After having obtained the best model, the computation time of the complete 368

classification process on the testing subset was measured and averaged. The individual 369

processes carried out were the following: Inhomogeneity correction and intensity 370

normalization of the T1Gd and T2 contrasts; calculation of two GLSZM, one from T1Gd 371

and another from T2, considering in both only the NCR/NET region; calculation of the 372

3 texture features, being one obtained from the GLSZM of T1Gd and two from the 373

GLSZM of T2; application of the model (Eq. 3); and classification of gliomas according 374

to the criteria described above. The average time of classification was 2 min 4 s ± 46 s. 375

Discussion 376

Through an under-sampling approach to create testing and training subsets with 377

balanced classes, various classification models were created occupying the highest 378
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frequency texture features obtained from the different training subsets. The best model 379

used only 3 texture features (studying two conventional MRI contrasts and only one 380

glioma region), obtaining good classification results. Thus, this model was characterized 381

by its simplicity, in addition to the reduced average computation time employed to 382

classify an individual glioma. Furthermore, as the methodology is thoroughly described 383

and the studied database is publicly available, it is possible to reproduce and 384

corroborate the reported model. Finally, the features used in the model presented 385

significant differences between the testing LGGs and HGGs. 386

Regarding the interpretation of the variables used in the best model, the feature 387

Fszm.z.perc (calculated from T2
1) was a measurement of coarseness of the texture, such 388

that higher values of this feature corresponded to a finer (or more homogeneous) 389

texture [46]. On the other hand, the feature Fszm.zsnu (calculated from T2
1) measured 390

the variability of zone size volumes across the image, with a higher value indicating more 391

heterogeneity in zone size volumes [46]. And regarding the feature Fszm.zs.var (calculated 392

from T1Gd
1), it measured the variance of the zone sizes, and similarly to the previous 393

one, higher values of this feature indicated a more heterogeneous texture [27]. From the 394

interpretation of the features and the results described above, it could be deduced that 395

LGGs had a more heterogeneous texture than HGGs, specifically in the T2 contrasts; 396

and HGGs had a more heterogeneous texture than LGGs, specifically in the T1Gd 397

contrasts; in both cases studying the NCR/NET region. Several works have reported 398

models whose main classification variable was heterogeneity of gliomas [18, 23, 25, 47–49]. 399

For example, through texture analysis applied on diffusion tensor imaging [25,49] and 400

diffusion kurtosis imaging [49] maps, diverse features that characterized the 401

heterogeneity of gliomas indicated an increased heterogeneity for higher grade gliomas 402

compared to lower grade gliomas. Moreover, Kin et al. [47] studied the texture matrix 403

called Grey Level Co-occurrence Matrix (GLCM) of contrast enhanced T1 MR and 404

ADC maps and reported higher values of entropy (or non-uniformity) as well as reduced 405

values of homogeneity for HGGs when these were compared to LGGs. Also, Skogen et 406

al. [48] applied texture analysis on post-contrast spoiled gradient echo (SPGR) 407

sequences using a filtration histogram technique in order to obtain from fine to coarse 408

features and quantified the heterogeneity of gliomas through standard deviation of the 409

histograms. They reported results that showed a higher heterogeneity for the HGGs 410

compared to the LGGs. Thereby, diverse studies have related a higher heterogeneity to 411

a higher grade glioma. However, the present work showed that one glioma grade had a 412

more heterogeneous texture than the other according to the studied MRI contrast. 413

Therefore, this result is complementary to what is usually reported, since it was more 414

specific after having included the MRI contrast as a variable of the models. 415

One of the objectives of this work was to present explicitly one classification model, 416

and then apply it on a single and independent testing subset as validation process. 417

Because of this, the database was divided between different training subsets and one 418

testing subset, creating the models from the first and applying them to the last one. 419

The number of 30 LGGs and 30 HGGs was chosen to form the training subsets, because 420

30 was the minimum number of gliomas per study group such that there were no 421

significant differences in the results obtained by the created models (data not reported). 422

In addition, the same number of LGGs and HGGs were chosen to avoid the problem 423

so-called “class imbalance” using an under-sampling approach. Later, as part of this 424

approach, complementary information obtained from different training subsets was used 425

to create the classification models. 426

The main contribution of this work, in addition to the proposed under-sampling 427

approach already mentioned, is the simplicity of the best classification model (which 428

obtained high values of accuracy) compared to others recently reported. For instance, 429

Wang et al. [5] analyzed a combination of advanced and conventional MRI 430
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(diffusion-weighted, contrast-enhanced T1-weighted and axial T2-weighted images) of 26 431

LGGs and 26 HGGs divided into a training and validation set. A total of 654 radiomic 432

features were extracted for each subject. Through a LASSON regression 15 features 433

were chosen, from which a nomogram was created. Then, the classification capacity of 434

the nomogram was evaluated using the Harrell’s concordance index (C-index), obtaining 435

a C-index of 0.971 and 0.961 on training and validation data respectively. In another 436

work, Khawaldeh et al. [7] studied 2D slides images from conventional MRI (FLAIR) of 437

128 subjects including LGGs, HGGs and healthy subjects. The authors proposed a 438

modified version of the convolutional neural network known as AlexNet [50] in 2D, 439

which reached an accuracy of 91.16% by differentiating the 3 study groups. On the 440

other hand, Tian et al. [24] analyzed conventional (T1-weighted before and after 441

contrast-enhanced and T2-weighted images) and advanced (multi-b-value 442

diffusion-weighted and 3D arterial spin labeling images) MRI of 42 LGGs and 111 443

HGGs by extracting texture features and histogram parameters. SVM-based recursive 444

feature elimination was used to choose the best features for the classification of gliomas, 445

and then create different SVM classifiers by cross-validation. Using 30 texture features 446

they reached an average accuracy of classification of 96.8%. Also, Gupta et al. [20] 447

analyzed conventional MRI (T1-weighted before and after contrast-enhanced, 448

T2-weighted and FLAIR images) of 80 LGGs and 120 HGGs to perform three tasks: 449

detection, location and identification of gliomas. For the third task (identification), they 450

occupied geometric parameters such as area, solidity, perimeter and orientation of the 451

tumor, in addition to the radiologists consultation. They obtained an accuracy to 452

classify LGGs and HGGs of 94.4% and 94% respectively when T1-weighted before and 453

after contrast-enhanced images were studied, and 96.5% and 97% when they studied 454

T2-weighted and FLAIR images. Therefore, in this work conventional MRI (T1Gd and 455

T2 contrasts) was studied, while others have analyzed advanced MRI or a combination 456

of both [5,21–24,51–54]. The model was created from a simple mathematical method (a 457

multiple linear regression), in comparison to others in which mathematical tools of 458

higher complexity were utilized [7, 52–54]. The best model was found to use only 3 459

variables of a single type (quantitative, being also only texture features), instead of a 460

combination of different classes and types of variables [21, 24, 51, 53]. A texture analysis 461

was performed (which is easy to implement for any type of MRI) and a single texture 462

matrix was used instead of different matrices [24], being the chosen one (GLSZM) a 463

suitable texture matrix when heterogeneity is a predominat characteristic of the object 464

of study. In addition, since the studied database is publicly available and the 465

mathematical expression of the best model was explicitly reported, the reproducibility 466

of the presented methodology and the corroboration of the results by other independent 467

studies is feasible. In general, any classifier model has a very strong dependence on the 468

database and image acquisition protocol used to develop them. Usually an institutional 469

database and protocol are used for this purpose. In contrast, the BRATS database was 470

obtained from 19 study centers with different clinical protocols and various scanners. 471

This makes the database heterogeneous and therefore it approaches a more realistic 472

scenario of what could be found in a clinical environment. Hence, there is a possibility 473

that the reported model could be tested on other databases without being limited to a 474

specific clinical protocol. In addition to the simplicity of the reported classification 475

model, since conventional MRI and texture analysis were studied, the diagnostic model 476

presented is low cost and easy to implement, so that it is accessible to populations with 477

reduced economic and scientific resources. 478

Among the limitations of presented work, the following should be mentioned. Since 479

there was only a single independent testing subset (randomly chosen), there is a 480

possibility that the results may vary according to the chosen subset. Also, the number of 481

gliomas that made up the training and testing subsets were relatively small. It is always 482
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preferable and desirable to have a database with a greater number of samples, such that 483

the results obtained have a higher reliability. On the other hand, images of manually 484

segmented gliomas were used, so that the proposed classification method was supervised 485

(not fully automated). Moreover, the criterion for the choice of the texture features was 486

limited to use only statistical tests. This was not enough to ensure good results in all 487

models, even though the texture features used in them showed significant differences. 488

Moreover, the molecular characteristics of the tumors have shown to be more useful 489

than the histological characteristics in the diagnosis, treatment and prognosis of the 490

patients. Taking into account the above, future work should consider the application of 491

the reported classification methodology to other independent databases. An automatic 492

segmentation method must be developed or an existing one must be implemented, such 493

that the glioma classification methodology becomes fully automated. Besides, other 494

criteria for the extraction (Principal Component Analysis (PCA), Linear Discriminant 495

Analysis (LDA), etc.) and selection (filter approach, wrapper approach, etc.) of texture 496

features should be considered. Also, other texture matrices (Gray Level Co-Occurrence 497

Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), etc.) and conventional 498

MRI contrasts (T1, FLAIR, etc.) could be studied. Finally, the work done and the 499

characteristics studied intend to be a complement to other analysis techniques, such as 500

those that study molecular characteristics, so that future work can include the 501

correlation and implementation of results from different work approaches. 502

In conclusion, the methodology proposed proved to be useful for the classification of 503

low and high grade gliomas obtaining high values of accuracy. The main objective of the 504

authors is that the model can be implemented as a complement in the clinical diagnosis 505

environment of this type of brain tumors. 506
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