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Abstract1

Ecological restoration often requires translocating plant material from distant sites. Yet2

published guidelines for seed transfer are available for very few species. Accurately predicting3

how plants will perform when transferred requires multi-year and multi-environment field4

trials and comprehensive follow-up work. In this study, we analyzed the genetic structure5

of an important shrub used in ecological restorations in the Southern Rocky Mountains6

called alder-leaf mountain mahogany (Cercocarpus montanus). We sequenced DNA from7

1440 plants in 48 populations across a broad geographic range. We found that genetic8

heterogeneity among populations reflected the complex climate and topography across which9

the species is distributed. We identified several temperature and precipitation variables that10

were useful predictors of genetic differentiation and can be used to generate seed transfer11

recommendations. These results will be valuable for defining management and restoration12

practices for mountain mahogany and other widespread montane plant species.13
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Introduction14

The restoration of vegetation after a disturbance event can improve many ecosystem services15

(Barral et al., 2015). For example, soil stabilization, pollinator and wildlife habitat, nutri-16

ent cycling, and carbon sequestration are all positively correlated with successful ecological17

restoration (Benayas et al., 2009). However, bringing foreign plant material to a restoration18

site can have unintended consequences. Importing maladaptated individuals can result in19

large-scale plant mortality (Johnson et al., 2004), inbreeding depression of introduced mate-20

rial, or outbreeding depression within future local and foreign hybrid populations (Hufford21

and Mazer, 2003). Therefore, optimizing the fitness of imported plant material is of vital22

importance.23

Seed transfer guidelines are intended to establish criteria to aid in the selection of plant24

material for restoration. However, traditional common garden experiments are expensive and25

time-consuming (Johnson et al., 2004), requiring multi-year and multi-environment field tri-26

als and comprehensive follow-up census work. Typically, the relationship between phenotypic27

variation and environmental and spatial distance are used to create categorical seed transfer28

zones (Campbell and Sorensen, 1978; Bower and Aitken, 2008), continuous seed transfer29

guidelines Parker and Niejenhuis (1996), or both (Hamann et al., 2000; Saenz-Romero and30

Tapia-Olivares, 2008). These experiments however are limited by the number of populations,31

number of environments, and the amount of time it may take to quantify consequences of32

importing foreign plant material (Johnson et al., 2004).33

Models based on climate (Bower et al., 2014; Crow et al., 2018) or genetic data (Krauss34

and He, 2006), or a combination of both (Massatti et al., 2020) may be useful for establish-35

ing plant population translocation recommendations without the financial or time investment36

required by a transplant experiment. For example, genetic structure analyses can estimate37

genetic connectivity between adjacent populations, which can be used to predict the likeli-38

hood of reduced fitness during a potential transfer (Ellstrand and Elam, 1993; Sexton et al.,39

2014). Preserving genetic structure in restoration is important for maintaining adapted40

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.01.28.923524doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923524
http://creativecommons.org/licenses/by-nc-nd/4.0/


combinations of alleles in native populations. Further, gene flow between introduced and41

native populations may lead to outbreeding depression when locally adapted gene complexes42

are disrupted by immigrant alleles after admixture (Fenster and Galloway, 2000; Montalvo43

and Ellstrand, 2001). Identifying geographic and environmental patterns related to genetic44

differentiation can therefore provide useful guidelines for seed introductions in ecological45

restoration (Montalvo and Ellstrand, 2001).46

In addition to field experiments, knowledge of genetic subdivision of species across space47

and its association with dimensions of the environmental niche can also contribute to the48

development of seed transfer guidelines. The niche concept incorporates both the environ-49

mental and spatial distribution of a species, and can be used in understanding factors gov-50

erning range limits (Sexton et al., 2009). One conceptualization of a niche is summarized by51

Hutchison’s n-dimensional hypervolume (Hutchison, 1957), described as a set of biologically52

relevant and independent environmental axes within which a species occurs. The multi-53

variate environmental space represents conditions that accommodate population persistence54

and growth (Hutchinson, 1978). As habitat quality or availability decreases, population size55

and gene flow are expected to decrease (Brown, 1984; Eckert et al., 2008). Understanding56

the relationship between species’ genetic structure and niche can lead to the identification57

of evolved population differences and locally adapted ecotypes to inform guidelines for seed58

transfer.59

In this study we investigated genetic variation relevant for restoration of a native perennial60

shrub, alder-leaf mountain mahogany, Cercocarpus montanus. Mountain mahogany is used in61

restoration projects because of its value as a forage plant for large ungulates, especially in the62

winter months. We collected and sequenced DNA from 1440 individual plant samples from 4863

populations, estimated genetic diversity within populations, and measured variation at over64

6,000 single nucleotide polymorphisms (SNPs) to describe genetic structure. We tested to65

what extent genetic structure was a function of latitude, habitat quality, niche centrality, or a66

combination thereof, with the goal of informing seed transfer recommendations for mountain67
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mahogany.68

Methods69

Study species70

Cercocarpus montanus Raf. is a deciduous, perennial shrub species in the rose family (Rosaceae)71

with a large spatial distribution in western North America (Dorn, 2001). The species occurs72

on both sides of the Continental Divide and from northern Mexico to the Wyoming-Montana73

state borders in the United States (Fig. 1). Populations are generally distributed between74

1200 and 3000 meters in elevation and often grow in rocky, limestone soils (Williams et al.,75

2004). Mountain mahogany are monoecious and have wind-pollinated flowers. Fruits are ach-76

enes with an elongated style that twists in later development, and is covered in trichomes.77

These structures are hypothesised to aid in wind and animal mediated dispersal (Gucker,78

2006). Mountain mahogany shrubs serve as hosts for nitrogen-fixing actinomycete bacteria79

(genus Frankia) in root nodules, and this adaptation contributes to successional processes in80

arid regions dominated by unstable, low nitrogen soils (Klemmedson, 1979).81

DNA extraction, sequencing, assembly and variant detection82

Mountain mahogany populations were located along a north-south axis in the southern Rocky83

Mountains (Fig. 1). We collected leaf tissue from 30 individuals in each of 48 populations84

and extracted DNA using a modified cetyl-trimethyl ammonium bromide (CTAB) proto-85

col (Doyle, 1987). DNA was quantified with a NanoDrop 2000 spectrophotometer (Thermo86

Fisher, Inc.), and additional extractions were conducted when necessary due to high levels87

of contaminants or low DNA concentrations. We prepared genomic libraries for genotype-88

by-sequencing (GBS) following protocols in Parchman et al. (2012). To summarize, we89

digested sample DNA with two restriction enzymes (MseI and EcoRI) and ligated barcodes90

containing unique 8–10 bp sequences to the resulting DNA fragments for each sample to91
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ensure that sequence reads could be assigned to individuals. We then PCR amplified the92

barcoded restriction-ligation products with standard Illumina primers (1, 5′ - AATGAT-93

ACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT - 3′;94

2, 5′ - CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT - 3′) (Illumina, Inc.).95

Barcoded PCR products were combined into two multiplexed libraries of 720 individual96

samples (with individuals allocated to the libraries randomly to avoid confounding library97

effects) and sequenced at the University of Texas Genomic Sequencing and Analysis Facility98

(Austin, Texas, USA) on the Illumina HiSeq 2500 platform using single-end 100 bp reads.99

After filtering reads for oligonucleotides used in library synthesis and the PhiX genome, with100

subsequent demultiplexing and assignment of reads to individuals, we had 24000000 sequence101

reads for further analysis. We completed a de novo genome assembly with a randomly102

chosen subset of 2.4 × 107 reads using SEQMAN NGEN software (DNASTAR, Inc.). This103

step resulted in construction of an artificial, partial reference genome containing 111 967104

contigs. We used bwa (Burrows-Wheeler Aligner; Li and Durbin 2009) to map reads from105

each individual to this partial reference genome. Once complete, 15 520 448 total reads106

(64.6%) assembled to the partial reference genome. Aligned reads were then indexed and107

sorted using samtools and bcftools (Li et al., 2009). We used the command ’mpileup -P108

ILLUMINA -u -g -I -f cemo.fasta sorted.bam | bcftools view -N -c -e -g -v -I -d 0.8 -p 0.01109

-P full -t 0.001 -o variants.vcf’ to calculate genotype likelihoods and filter variant sites. We110

then retained a single SNP per contig and removed SNPs with an allele frequency less than111

0.05.112

Population genetic analyses113

We estimated genotypes as the mean of the genotype likelihood distribution and constructed114

a genetic covariance matrix for all individuals. We ran a principal components analysis115

(PCA) of the genetic covariance matrix using the prcomp function in R to summarize genetic116

variation. We tested for correlations between the individual scores on the first two principal117
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component axes and potential drivers of genetic variation such as latitude, elevation, pre-118

cipitation and temperature. Additionally, genotype data were used to calculate individual119

admixture coefficients using the sparse non-negative matrix factorization algorithm (sNMF)120

implemented in the LEA package (Frichot et al., 2014; Frichot and François, 2015) in R. This121

algorithm estimates ancestry coefficients in a computationally efficient manner. The sNMF122

algorithm is similar to the program STRUCTURE (Pritchard et al., 2000; Falush et al.,123

2003), which estimates ancestry independently for each individual, and does not require a124

priori assumptions about population membership. To determine the best-supported number125

of genetic clusters (K) within our collections of mountain mahogany, we used a cross-entropy126

criterion from K=1 to K=10 from the snmf function. This criterion uses a masked genotype127

testing set to determine the prediction accuracy of the model at each K value.128

Point estimates of allele frequencies within each population were calculated from the129

genotype likelihoods, and allele frequencies were used to calculate the Weir moment estima-130

tor of FST (Weir and Hill, 2002) and Nei’s genetic distance (DA) (Nei et al., 1983; Takezaki131

and Nei, 1996) as measures of genetic differentiation. FST was calculated using the calcu-132

late.all.pairwise.Fst function in the BEDASSLE package in R, and DA was calculated133

using a custom R script.134

We used Bayesian linear models with Nei’s DA as the response variable, and pairwise ge-135

ographic distance, environment distance, and a binary variable representing the Continental136

Divide as model predictors. Population pairs were assigned 0 if they originated from the137

same side of the Continental Divide, or assigned 1 if they were collected from opposite sides138

of the divide. Environmental distances were measured as the population pair difference for139

each environmental variable centered on the mean and divided by the standard deviation (z-140

score). Environmental variables included thirty-year normal temperature and precipitation141

estimates from thin plate spline surfaces (http://forest.moscowfsl.wsu.edu/climate).142

All predictor variables (Table S1) were standardized prior to modeling so that the magni-143

tude of their estimated coefficients could be compared. We fit the full and reduced models for144
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genetic differentiation in R with the rjags package for MCMC models in JAGS (Plummer,145

2003). We ran Markov Chain Monte Carlo (MCMC) simulations for 10 000 iterations with146

the first 2000 steps discarded as burn-in. We thinned the MCMC chain every 5 steps for a147

total posterior sample of 1600 for each of 3 chains. The deviance information criterion (DIC)148

was used to select the model that best accounted for genetic distance, as well as to compare149

models with and without spatial distance, environmental distance, and topographic barriers150

as covariates.151

Relative contribution of geographic and environmental distance to152

genetic differentiation153

Geographic and environmental distances could contribute to adaptive differentiation that can154

affect translocation outcomes of seed sources. We used a model that explicitly differentiates155

between the effects of environment and topographic barriers to gene flow, relative to spatial156

distance. This model was developed by Bradburd et al. (2013), is called Bayesian Estimation157

of Differentiation in Alleles by Spatial Structure and Local Ecology, and is implemented in158

the R package BEDASSLE. We tested the complete dataset, and used the beta-binomial159

Markov Chain Monte Carlo model. We ran MCMC simulations for 3×106 iterations, thinned160

the chain every 20 iterations, and checked the trace plots for convergence and acceptance161

rates.162

Genetic diversity in central and peripheral habitat163

We modeled genetic diversity as a function of spatial and environmental centrality. We esti-164

mated genetic diversity for each population using the program ANGSD (Korneliussen et al.,165

2014). Sequence alignments to the pseudo-reference (sorted BAM files) were used as input166

to calculate each population’s site allele frequencies from genotype likelihoods. We filtered167

sites that had a minimum mapping quality of 10 and a minimum q-score of 20. The allele168
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frequency likelihoods were used to calculate the maximum likelihood estimate (MLE) of the169

site frequency spectrum (SFS) using the EM algorithm. Estimates of nucleotide polymor-170

phisms were calculated as θπ (Tajima, 1983), a measure of average pairwise differences, and171

Watterson θW (Watterson, 1975), which is based on the number of segregating sites. Theta172

estimates were calculated using the empirical Bayesian approach with the SFS as priors173

(following http://popgen.dk/angsd/index.php/Thetas,Tajima,Neutrality_tests).174

To model spatial and environmental centrality of our collections in the context of the175

entire range of C. montanus, we used range-wide occurrence points from a previous study176

of mountain mahogany (Crow et al., 2018). Spatial centrality was calculated as the great177

circle geographic distance (van Etten, 2018) from each of our sampled populations to the178

mean latitude and longitude of the species’ range, and the range of each individual genetic179

cluster separately (Fig. 1). We calculated spatial peripherality as the distance between each180

population and the shortest linear distance to the edge of the minimum convex polygon of the181

species’ range. Environmental centrality was calculated as the multidimensional euclidean182

distance of each population to the species’ environmental centroid, and the centroid of each183

genetic cluster (Blonder et al., 2014). We also used the probability of occurrence derived184

from a previously published species distribution model (SDM) of mountain mahogany (Crow185

et al., 2018) as an indicator of habitat quality, which was used as a predictor of population186

genetic diversity. In summary, environmental variables were selected for the SDM using a187

model improvement ratio following (Murphy et al., 2010), and a Random Forests algorithm188

was used to generate the distribution model. We then used linear models to determine to189

what extent habitat quality, spatial centrality, or environmental marginality were predictive190

of genetic diversity using the lm and anova function from the stats packages in R.191

Niche similarity among genetic clusters192

Niche overlap statistics were used to test if genetic clusters defined by the sNMF admixture193

analysis occupied distinct subsets of the overall environmental range. Broennimann et al.194
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(2012) developed methods to get an unbiased estimate of niche overlap using kernel smoother195

functions applied to densities of occurrence points in environmental space, calibrated on the196

available environmental space across the study area. We calculated kernel densities for197

the environment occupied by each genetic cluster, and used D metrics (Schoener, 1970) to198

determine if there was significant overlap of niche space between genetic groups:199

D = 1− 0.5(
∑
ij

|z1ij − z2ij |)

where z1ij and z2ij are the occupancy of the environment calculated from kernel density200

functions of entity one and two respectively. The D metric is 0 if there is no overlap between201

genetic groups and 1 if there is complete overlap. We used the ecospat package (Broen-202

nimann et al., 2017) in R (R Core Team, 2018) to calculate niche similarity and overlap.203

Ecospat performs a randomization test where z1ij and z2ij are combined and randomly sep-204

arated into two groups, and the D statistic is calculated 100 times to build a null distribution.205

The observed D statistics, using genetic clusters as entity designations, were calculated and206

compared to the distribution of simulated D values for each pair of genetic clusters sepa-207

rately. Presence points and environmental data for the distribution of mountain mahogany208

from Crow et al. (2018) were incorporated as background points.209

Results210

Sequence alignment and SNP discovery211

We identified 12 022 single nucleotide variants using samtools and bcftools (Li and Durbin,212

2009). For a variant site to be identified, we required that at least 50% of all individuals have213

a minimum of one read at that locus. After removing sites with a minor allele frequency214

of <5% and randomly selecting one variant per contig to ensure independence of loci, we215

retained 6352 single nucleotide polymorphisms (SNPs) for further analyses of population216
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genetic structure. In sum, 1366 of the 1440 individual samples of C. montanus had suffi-217

cient sequencing coverage to be retained for further analysis, resulting in a range of 22–30218

individuals per population. Remaining samples each had an average of 8.5 reads per SNP.219

Population genetic analyses220

The first PC axis (PC1) accounted for 89.7% of the genetic variation among individuals221

of mountain mahogany, and reflected latitude of origin and the effect of the Continental222

Divide as a barrier (Fig. 2). PC2 accounted for 3.1% of genetic variation, and separated223

populations of C. montanus collected near Albuquerque, NM and Flagstaff, AZ, from those in224

the remainder of the range. The first PC axis shows that mountain mahogany has continuous225

genetic variation in the southern portion of its range, and two separate clusters in northern226

latitudes. Pearson’s correlation coefficients (r) between each environment variable and PC1227

were used to determine the likely drivers of population genetic structure. We found that two228

environmental variables: growing season precipitation (GSP) and the number of degree days229

less than zero ◦C (DD0), had the highest correlations (0.44 and 0.42 respectively) with PC1.230

The mean Nei’s DA genetic distance between populations was 0.0346 (SD=0.017), with231

a range of 0.009–0.108, comparable to previous studies of plant species (Reynolds et al.,232

2013; Abraham et al., 2015). Pairwise FST had an overall mean of 0.161, and a SD of 0.0856233

(Fig. S1). The mean FST among pairs of populations from opposite sides of the Continental234

Divide was 0.241 (SD=0.079), while the mean FST among populations on the same side235

of the divide was 0.135 (SD=0.07). Pairwise FST was positively correlated with spatial236

distance, and population pairs from opposite sides of the Continental Divide had elevated237

FST resulting from the effective topographic barrier (Fig. 3). Growing season precipitation238

and degree days less than 0◦C were standardized and combined as a single mean Euclidean239

distance for each population pair, and served as environmental predictors in modeling. The240

Bayesian linear model with the lowest DIC included both spatial and environmental distance241

as predictors of genetic differentiation (Table 1). The best predictor in a univariate model242
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of genetic differentiation was geographic distance, followed by environmental distance, while243

the binary design matrix representing the Continental Divide was the worst predictor.244

The best supported number of clusters for sNFM admixture analysis was K=4 (Fig. S2).245

Populations were assigned to a single cluster based on the predominant population admixture246

coefficient of individuals within each population (Fig. S3). Although genetic variation is247

continuous through most of mountain mahogany’s range, the map of admixture composition248

shows that the genetic clusters are partitioned in geographic space (Fig. 2, panel A), with249

more highly admixed zones between clusters. The genetic clusters occupied regions of the250

species environmental space with different multivariate centroids (Fig. 4 panel A). Cluster251

one and three had no detected overlap in their environmental niche, while clusters one and252

two and two and three had partial, but not significant overlap in environmental space (Table253

S3).254

The BEDASSLE analysis calculated the ratio of environmental and spatial distance effect255

sizes on genetic differentiation (αE:αD). We used growing season precipitation and degree256

days less than 0◦C as environmental variables, as well as a binary design matrix representing257

the Continental Divide to quantify the effect of the environment on genetic distance. A258

difference of one degree days less than 0◦C is comparable to approximately 8 kilometers, and259

a 1 cm change in growing season precipitation has the same effect on genetic differentiation260

as approximately 70 kilometers spatial distance. The Continental Divide had the largest261

effect on genetic differentiation relative to spatial distance. Crossing the Continental Divide262

had the same effect on genetic differentiation in mountain mahogany as moving 1.7 × 107
263

km, a larger distance than our collection area.264

We detected significant variation in genetic diversity across mountain mahogany’s cen-265

tral range. Nucleotide diversity estimates were highly correlated (r>0.9, θπ and θW ), and266

we therefore arbitrarily chose θπ for further modeling (Table S2). Genetic diversity was not267

correlated with latitude (P = 0.266, df = 43, R2 = 0.028). We used two measures of precipi-268

tation (growing season precipitation and summer precipitation balance) and two temperature269
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metrics (degree days less than zero and frost-free period) to model genetic diversity because270

of low colinearity between variables and high correlation with diversity estimates. Genetic271

diversity was lower in populations farther from the species’ multidimensional environmental272

centroid. Spatial centrality however, was a poor predictor of θπ. Likewise, we found that273

spatial centrality was a poor predictor of the probability of occurrence (Fig. S4). The envi-274

ronmental distance to the centroid of each genetic cluster best described genetic diversity,275

and had a negative correlation (Table 2). We also found significant variation among genetic276

clusters for the effect of environmental and spatial distance; namely genetic variation within277

the northern and southern genetic clusters (Cluster 1 and 3) both had a significant rela-278

tionship to environmental marginality, whereas within the central genetic cluster (cluster 2)279

diversity was not correlated with environment (Fig. 4).280

Discussion281

Mountain mahogany is increasingly used in restoration programs, particularly because it282

hosts nitrogen-fixing actinobacteria that allow establishment in nutrient-poor soils, and pro-283

vides important overwintering forage for wildlife. Despite widespread occurrence in the284

Rocky Mountain West, no prior ecological genetics study has characterized genetic structure285

across mountain mahogany’s central range. We sequenced 1440 individuals from six U.S.286

states in the Southern Rocky Mountains to learn the extent of genetic heterogeneity across287

the geographic range and the environments occupied by the species.288

We found evidence that genetic structure of mountain mahogany was affected by spatial289

and environmental distance, as well as topographic barriers. The results provide preliminary290

data for seed sourcing guidelines for mountain mahogany. Genetic variation is important291

to consider for species management, especially in a restoration setting where hundred or292

thousands of individual plants are transplanted to a new site (Reed and Frankham, 2003).293

These results have range-wide implications for mountain mahogany shrubland management,294
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and lay the groundwork for critical decision-making under environmental change.295

While genetic structure of mountain mahogany varied continuously across the sampled296

geographic range, distinct clusters suggest that populations may be adapted to local envi-297

ronmental conditions. However, we cannot infer ecotypic variation in this study based on298

genetic variation alone. Field studies are needed to determine if individuals have higher299

fitness within genetic clusters relative to individuals grown at sites outside of their cluster of300

origin. Despite this limitation, model results suggest that the source of seeds for transloca-301

tion may affect the viability of the resulting population. The Bayesian model with the best302

fit included both spatial and environmental distance as factors in population differentiation.303

Results from the BEDASSLE model, designed to disentangle the effects of spatial and en-304

vironmental distance, showed that growing season precipitation (GSP) and the number of305

degree days less than zero (DD0) had large effects on genetic structure in this species. This306

outcome provides support for seed sourcing guidelines that limit collection to the genetic307

and the correlated environmental cluster represented by the restoration site.308

The Continental Divide is associated with greater genetic differences between Mountain309

mahogany populations, especially in central Colorado, where the Continental Divide is at its310

highest altitude. Several studies have shown that the Continental Divide is a strong barrier311

to gene flow (Schield et al., 2018; Machado et al., 2018). However, to date, no published312

study has documented this in plant species. Several studies have found significant effects313

of topographic barriers on genetic differentiation in plant species, including: seas (Jaros314

et al., 2017), lakes and terrain (Ju et al., 2018), rivers (Geng et al., 2015), mountains (Zhu315

et al., 2017; Reeves and Richards, 2014), and basins (Bontrager and Angert, 2018). Our data316

agree with these studies and indicate that populations from opposite sides of the Continental317

Divide are genetically more isolated, despite what may appear to be close spatial proximity318

(Fig. 3). Populations from the western slopes of the Rocky Mountains had high among-319

population genetic differentiation, especially populations 3 and 4 (Fig. 1 panel B and C).320

Population 3 and 4 may have been founded separately from other western slope populations,321
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or may contain hybrids with a closely related species, Cercocarpus ledifolius, that co-occurs322

in this region (Stutz, 1988). The two most genetically differentiated populations (47 and 48),323

in New Mexico and Arizona respectively (Fig. 1 panel B and C), inhabit isolated locations324

surrounded by desert regions with low habitat suitability (Crow et al., 2018). Populations325

47 and 48 are likely adapted to high temperature and low precipitation conditions, and may326

warrant further investigation into their taxonomic status.327

Despite the heterogeneity of climatic conditions in our study area, we found that the328

best supported genetic clusters corresponded to plants in cohesive geographic regions (Fig.329

2). Further, the genetic clusters were associated with significantly different environmental330

space (Fig. 4A), which corroborates linear modeling results showing that spatial distance and331

environment are both factors related to genetic variation. Given these results, we analyzed332

patterns of genetic diversity across both spatial and environmental gradients.333

Model outcomes suggested that environmental centrality was a better predictor of genetic334

diversity than spatial distance. This analysis was completed for all sampled populations, as335

well as for individual genetic clusters. In both cases, genetic diversity was lower near the336

environmental niche periphery and not strongly correlated with geographic centrality. A337

previous study by Lee-Yaw et al. 2017 found similar results, where genetic diversity of Ara-338

bidopsis lyrata ssp. lyrata was lower at the edge of the environmental niche, but not the339

limits of the sampled geographic range. Several meta-analyses have shown that the geo-340

graphic and environmental range limits do not necessarily coincide, and that the geographic341

range frequently does not explain patterns of genetic variation (Eckert et al., 2008; Pironon342

et al., 2017). Another review by Lira-Noriega and Manthey (2014) found that only about half343

of species ranges have any correlation between geographic and environmental marginality,344

and that environmental marginality was consistently associated with genetic diversity, while345

geographic marginality was not.346

Reduced genetic variation associated with range limits does not distinguish whether pop-347

ulations occurring at range limits are demographic sinks maintained by immigration from348
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more central habitat, or are important genetic resources adapted to marginal conditions by349

selection. However, the correlation of genetic diversity and environmental centrality bolsters350

our findings of genetic structure covarying with the environment. The lack of genetic homo-351

geneity in mountain mahogany indicates that populations are not equivalent, and caution352

should be taken when planning transfer of plant propagules, particularly during restora-353

tion. Other studies of genetic variation near range limits have found contrasting results,354

even among populations of a species. For example, Hargreaves and Eckert (2018) found355

that while some populations of the annual plant Rhinanthus minor near the range margin356

had lower fitness, other edge populations were locally adapted. Aguirre-Liguori et al. (2017)357

found that genetic diversity was lower near the geographic range margin of teosinte, and358

candidate adaptive SNPs were positively correlated with distance to niche centroid, arguing359

that populations near the geographic range margins were isolated, while populations near360

the edges of the environmental niche were locally adapted. In Picea sitchensis, populations361

proximal to the range margin are more likely to carry rare alleles (Gapare et al., 2005), how-362

ever, a second study of P. sitchensis determined that populations near the range limit were363

locally adapted (Mimura and Aitken, 2010). These studies illustrate that range margins can364

harbor both source and sink genetic pools even within species, and that making predictions365

about population fecundity near range margins is difficult.366

The results of our study suggest that populations of mountain mahogany have genetic367

structure across its range that is correlated with differences in the environment. The effect of368

the Continental Divide on genetic structure was significant. This suggests that transferring369

populations across the Continental Divide would increase the likelihood of maladaptation,370

and subsequent risks for outbreeding depression among progeny of local and introduced371

plants. Two climate variables, degree days less than zero and growing season precipitation,372

were significantly related to population genetic structure as well as differences in genetic373

diversity. These two variables could delimit collection sites when transferring seed sources374

during restoration. Choosing a commercial seed source or collection location that is most375
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environmentally similar to the restoration site may increase chances of introducing adapted376

genotypes (Hufford and Mazer, 2003). In the case of mountain mahogany, preliminary seed377

collection zones could be delineated by the four common clusters in genetic analysis. This is378

a practical approach given that the four clusters represent large spatial regions for collection379

despite considerable altitudinal and microhabitat variation. Whether populations near range380

margins are important resources for conservation in mountain mahogany remains unclear.381

Plants are subjected to biotic and abiotic stressors that influence population dynamics (Pagel382

and Schurr, 2012; Franklin et al., 2016), seed predators (Louda, 1982), pollinators (Biesmeijer383

et al., 2006), and dispersers (Merow et al., 2011). As a result, additional studies are needed384

to determine the adaptive value of mountain mahogany populations along range margins for385

ecological restoration, particularly in light of changing climate conditions.386
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Table 1: Bayesian linear regression models and coefficients. Predictor variables were stan-
dardized using a z-score prior to modeling. Genetic distance (GenDist) was calculated as
Nei’s DA. Environmental distance is a multivariate distance matrix of degree days less than
zero, and growing season precipitation. Geography is a pairwise geographic distance matrix.
The smallest DIC indicates the best model.

Model β1 (SD) β2 (SD) µ (SD) DIC

GenDist ~ Environment + Geography 0.173 (0.013) 0.297 (0.0126) -0.0028 (0.0457) 601.242

GenDist ~ Barrier + Geography 0.364 (0.0367) 0.301 (0.0132) -9.63e-05 (0.0419) 679.119

GenDist ~ Barrier + Environment 0.465 (0.0408) 0.207 (0.0151) 0.000258 (0.0538) 921.633

GenDist ~ Geography 0.327 (0.0135) -0.00132 (0.0494) 759.724

GenDist ~ Environment 0.229 (0.0156) 0.00428 (0.061) 1026.883

GenDist ~ Barrier 0.533 (0.0435) 0.000125 (0.0491) 1105.838

Table 2: Summary of linear regression models and model selection criterion for the effects
of geographic and environmental centrality on genetic diversity. *P<0.05,**P<0.01.

Model β1 (CI) β2 (CI) µ (CI) R2 adj. R2 AIC

θπ ~ Environment (Env) -0.01** (-.03 - 0.001) NA 0.36 (0.32-0.40) .106 .085 -206

θπ ~ Geography (Geo) -0.01 (-0.01 - 0) NA 0.31 (0.31-0.32) 0.033 0.010 -202

θπ ~ Env + Geo -.01 (-.03 - 0) 0 (-0.01 - 0) 0.36 (0.32-0.40) 0.109 .067 -204
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Figure 1: A) Minimum convex polygon (mcp) of species range (black line) around species
occurrence points (black squares) and the dashed red line is a mcp around 48 sampled
populations (red diamonds). The geographic center of the overall species distribution mcp
is marked with a cross. B) Unrooted neighbor-joining tree of Nei’s DA, colors correspond to
assigned genetic cluster. C) Map of sampled populations with numbers from 1 to 48 based
on latitude for reference.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.01.28.923524doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923524
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

●●●
● ●

●
●

●

●

●

●
●
●

●
●
●

●●

●●

●

●

●
●

● ●

●

●
●

●●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

1

10

11

1213 14
15

16 17
18

19

2

20 21

22

23
24 25

26
27 28

29

3

30 31
3233 3435

3637
3839

4

40

4142

4344

45
46

47

48

5
6 7

8
9

36

38

40

42

44

−1 0 1 2
PC 1 (mean)

La
tit

ud
e

●

●●

●
●

●●
●

●

●
●●

●
●

●●

●

●

●

● ●
●

●●● ●● ●

●

●
●

●
●
●

●

●
●●

●
●

● ●
●

●
●●

●●
●

●
●

●

● ●●
●

● ●

●●

●
●●●●
●

●●●

●
●

●

●●
●

●

●

●

●
●

● ●
●

●

●
●

●●
●

●

●
●

●●●
●

●
●

●
●●

●

● ●
●

●

●●
●

● ●●
● ●

●

●●
●

●●
●

●
●

●
● ●●

●

●
●

●●●

●
● ●

●

●● ● ●●
●●

●●●
●
●
●

●

● ●● ●

●

●●
●

● ●
● ●●

●
●

●

● ●●
●

●
● ●●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●●

● ●
●

●

●●●●

●

●●

●
●

●
●

●
●

●

●

●●
●

●●
●

●● ●
●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●
●

● ●
●● ●

●

● ●
●

●●●
●

●●
●

●

●
●

●

●

●●
●

● ●
●

● ●
●

●

●

●
●

●●

●

●

●
●
●

●
●

●

●
●●●●

●
●
●●

●●
●

●●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●

●● ●
●●

●
●

●●

●

●
●

●

●

●

●
●

●●
●●

●

●●●
●● ●●

●
●
●

●

●
● ●●●

●
●

●●

●

●
●

● ●
●

●

●

●

●

●

●●
●

● ●

●
●

●
●

●

●

●
●

●

●
●

●
●
●
●

●

●●
●

●

●
●

●
●
●●

●

●●

●● ●
●●● ●

●

●

●●
●●

●

●
●

●
●

●

●

●
●
●

●●
● ●

●

●
●

●
●
● ●

●
●

●
● ●

●

●

●●

●

●●
●●

●●
●●

●●
●

●
●
●

●

●●

●
●
●

●
●

●
●

●
●●

● ●

●

●
●
●

●
●

●
●

●

●
●

●
●

●

●

●
●●

●● ●

●●
●

●●

●●● ●●
●

●
●

●
●●●● ●

●
●

●
●

●
●

●
●

●
● ●

●

●
●●●

●
● ●

●

●
●

●

●
●●
●●

●

●

● ●
●
●

●

●

●●● ●●●
●

●
●

●

●●
●● ●

●●● ●
●

● ●
●● ●
●

●

●

●

●
●

●

●

●

●

●
●
●

● ●
●●●

●●
●

●

●

●

●

●

●

●●
●
●●

●

●

●●
●
●●

● ●

●●

●
●●

●●

●

●
●
●●

●

●●●
●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●●
●●

●

●

●●●●
●

●
●

●
●

● ●●
●
●

●

● ●

●●
●●

● ●

●● ●●
●

●
●● ●

●
● ● ●

●

●● ●●
●●

● ●

●

●●●●
●
●●●●●

●
●

●

●

●
●

●●●●●●
●●
●
●

●
● ●●●

●
●●●
●●●●●
●●

●

●
●
●●

●
●

●

●●
●
●

●
●

●

●
●

● ●
●

●
●

●
●

●

●

●
●

●● ●●●
●
●

●

●

●
●

●
●

●
●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●
●
●●●

●●
●

●●

●●● ●●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●

●

●●

●●
●

●

● ●
●●●

●●●

●

●
●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●
● ●

●
●

●

●

●
●●● ●

●

●●
●
● ●

●

●●●●

●

● ●

●

●
●● ●

●●●

●

● ●
●
●● ●●

●
●

●

●

●

● ●●
●

● ●

●

●
● ●

●

● ●
●

●
●
●●
●

●
●● ●●●●

●
●
●

●
●

●

●
●● ●

●

●
●●●

●

●

●●● ●

●
●●● ●

●● ●●
●

●

●

●

●

●●●●●●
●

●
●

●

●
● ●●●

●

●

●
●

●

●

●

●●
●

●
●● ●
●

●
●● ●●●●
●

●
●

●
●

●●
●

●● ●●
●

●
●

●
●

●
●● ●●

●●

●
●●
●●●

●
●

●

●
●●

●●
●

●

●

●●
●●● ●

●

●
● ●

●●
●●●

●●

●●●

●

●

●

●

● ●
●●

●
●●

●●
●

●
●●

●

●
● ●

●
●
●

●

●

●

●●
●

●●
● ●

●●●

●● ●
●●

●

●
●

●

●
●●●●

●

●

● ●

●

●
●

●

●●
●●

●

●

●
●

●

● ●●
●

●

●
●●

●

●
● ●

●
● ●

●
●●

●

● ●
●
●

●● ●
●●●●

●●

●

●
●

●

●
● ●

●

●●

● ●

●

●●
●

●
●●●●●

● ●
●

●

●
●
●

●

●●●

●

● ●

●

●
●●

●

●
●

●●

●
● ●

●●

●
●

●
● ●●

●
●

●
●

−1 0 1 2

0.
0

0.
5

1.
0

PC1 (89.7% explained var.)

PC
2 

(3
.1

%
 e

xp
la

in
ed

 v
ar

.)

●

●

●

●

Cluster
1
2
3
4

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●●

●
●

●●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●
●●

●
●

●

●
●

●●

●
●

●

●● ●
●

●

●
●

●

●
●

●●

●

●

●

●
●
●
●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●

●

●●

●
●

●

● ●

● ●
●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●●●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

● ●
●●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●
●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●
●●

●●
●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●
●
●

●

●●●
●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●●●
●

●

●

●●

●
●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●●

●
●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●
●
●

●
●
●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●
●

●●●

●

●

●

●●

●●

●●

●
●

●
●

●
●

●
●

●●
●●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●
●
●●

●●

●●

●

●

●
●

●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
● ●

● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

0.0 0.5 1.0

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

PC2 (3.1% explained var.)

PC
3 

(1
.2

%
 e

xp
la

in
ed

 v
ar

.)

C)

B)

D)

A)

La
tit

ud
e

Longitude

sNFM cluster

CO

NM

AZ

UT

WYID

Continental 

Divid
e

1    2    3    4

Figure 2: sNFM admixture and principal component analysis of Cercocarpus montanus.
A) Pie chart of sNFM admixture proportions from k=4 ancestral gene pools (Figure S3) for
each of the 48 populations collected in our study. B) PC axis one and two and C) two and
three show continuous genetic variation across individuals within clusters. D) Scatter plot of
the mean PC axis one score for each of the 48 populations plotted with latitude to visualize
geographic structure. Points are colored based on the predominant population assignment
from admixture analysis.
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Figure 3: Matrix regression of pairwise genetic and geographic distances. Red points are
point pairs from opposite sides of the Continental Divide, while black points are point pairs
from the same side of the Continental Divide. Two separate linear models results are listed
and model line and summaries correspond to point colors.
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Figure 4: Principal component analysis of growing season precipitation (GSP), summer
precipitation balance (smrpb), frost-free period (ffp) and degree days below zero Celsius
(dd0). A) The genetic cluster assignment in environmental PCA space, B) shows genetic
diversity for each population (point) and the distance (lines) of each population to the
cluster-specific environmental centroid (crosses). Finally genetic diversity (θπ) plotted over
C) environmental centrality and D) geographic centrality. More central populations are
closer to zero. Regression lines were modeled for each genetic cluster separately.
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