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Abstract:

Background: Gray and white matter volume difference and change are important imaging
markers of pathology and disease progression in neurology and psychiatry. Such measures are
usually estimated from tissue segmentation maps produced by publicly available image processing
pipelines. However, the reliability of the produced segmentations when using multi-center and
multi-scanner data remains understudied. Here, we assess the robustness of six publicly available

tissue classification pipelines across images acquired from different MR scanners and sites.

Methods: We used T1-weighted images of a single individual, scanned in 73 sessions across 27
different sites to assess the robustness of the tissue classification tools. Variability in Dice Kappa
values and tissue volumes was assessed for Atropos, BISON, Classify Clean, FAST, FreeSurfer,
and SPM12. We also estimated the sample size necessary to detect a significant 1% volume
reduction based on the variability of the estimates from each method within and across scanner

models.

Results: BISON had the lowest overall variability in its volumetric estimates, followed by
FreeSurfer, and SPM12. All methods also had significant differences between some of their
estimates across different scanner manufacturers (e.g. BISON had significantly higher GM
estimates and correspondingly lower WM estimates for GE scans compared to Philips and
SIEMENSs), and different signal-to-noise ratio (SNR) levels (e.g. FAST and FreeSurfer had
significantly higher WM volume estimates for high versus medium and low SNR tertiles as well
as correspondingly lower GM volume estimates). BISON also had the smallest sample size

requirement across all scanners and tissue types, followed by FreeSurfer, and SPM12.

Conclusions: Our comparisons provide a benchmark on the reliability of the publicly used tissue
classification techniques and the amount of variability that can be expected when using large multi-

center datasets and multi-scanner databases.
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1. Introduction

Multi-center studies, usually performed to increase sample sizes, provide researchers with a
plethora of data to explore different hypotheses with sufficient statistical power. However, such
datasets bring about their own new set of challenges, particularly when acquired without
harmonization and on different scanner platforms (Duchesne et al., 2019a). In particular, the
dynamic range and intensity characteristics of the images produced by different scanner models,
from different vendors and operated in different configurations, might significantly vary across
acquisition sites. Such differences can in turn impact the reliability of tissue classification, one of
the most commonly performed tasks in structural neuroimaging studies (e.g. for purposes of voxel
based morphometry) or as a necessary step in other post-processing pipelines (e.g. for purposes of
cortical thickness extraction or diffusion tensor imaging) (Gonzélez-Villa et al., 2016; Mateos-
Pérez et al., 2018). Intensity variations may lead to systematic biases in tissue classification when

using or comparing data across different centers, and hence adversely influence the final results.

There have been demonstrations of the potential impact of scanner variability on estimates for
tissue classification in neuroimaging pipelines. Using data from two travelling human phantoms
across four different sites, Gouttard et al. assessed the variability in tissue classification and voxel
based morphometry across sites, reporting high intra-scanner variabilities, as well as higher inter-
scanner variabilities, between Siemens Healthcare’s Allegra and Tim Trio scanners (Gouttard et
al., 2008). Similarly, using data collected on four different scanner models at five different sites in
six different subjects, Schnak et al. showed a significant site effect in gray and white matter
segmentations, voxel-based morphometry, and cortical thickness measurements (Schnack et al.,
2004, 2010). Similarly, Pardoe et al. reported significant site-specific differences in voxel-based
morphometry measurements between healthy control subjects scanned across three different sites

(Pardoe et al., 2008).

However, no studies have comprehensively compared the performance of commonly used tissue
classification methods on different scanner models from three of the most commonly used
platforms in clinical and research settings (i.e. GE Healthcare (M1, USA), Siemens Healthcare
(Erlangen, GER), and Philips Medical Systems (Best, NED)). Using data from the Single
Individual volunteer for Multiple Observations across Networks (SIMON) public dataset, we had

a unique opportunity to perform such comparison across 90 scans of this single individual,
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acquired within the span of seven years on 28 different sites with 12 different scanner models. In
this study, we compared the performance of six publicly available, widely used tissue classification
methods (Atropos (Avants et al., 2011); BISON (Dadar and Collins, 2019); Classify Clean
(Cocosco et al., 2003); FAST (Zhang et al., 2001); FreeSurfer (Fischl, 2012); and SPM12
(Ashburner et al., 2014, p. 12). These comparisons provide a benchmark on the reliability of each
technique, and the amount of variability that can be expected when using multi-center datasets.
We hypothesized that (a) there would be statistically significant differences between tissue
volumes estimated by the methods across scanner manufactures; and (b) the signal to noise ratio
(SNR) level of the images would have a statistically significant effect on estimated volumes.
Finally, we estimated the sample size necessary to detect a 1% reduction in tissue volumes with

sufficient power based on each method within and across scanner models.

2. Methods
2.1. Data

Data used in this study included 90 3T T1-weighted MRIs from the SIMON dataset, a sample of
convenience of one healthy male aged between 39 and 46 years old, scanned for research projects
in 73 sessions at 28 sites on a variety of platforms, namely: GE Healthcare (DISCOVERY MR750
and SIGNA Pioneer); Philips Medical Systems (Achieva, Ingenia, Intera, and T5); and Siemens
Healthcare (Allegra, Prisma, PrismaFit, Skyra, SonataVision, Symphony, and TrioTim)
(Duchesne et al., 2019a, 2019b). The data was acquired with a number of different protocols, but
more than two-thirds complied with the harmonized Canadian Dementia Imaging Protocol

(www.cdip-pcid.ca; (Duchesne et al., 2019a)). For more information and access to the dataset, see

(http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html).

2.2. Image Processing

All T1-weighted scans were processed through standard preprocessing steps using the MINC
toolkit (https://github.com/BIC-MNI/minc-tools): denoising (Coupe et al., 2008), intensity non-

uniformity correction (Sled et al., 1998), and intensity normalization into range (0-100). All images
were then linearly registered to MNI-ICBM 152 template at an isotropic 1x1x1 mm? resolution
(Collins and Evans, 1997; Dadar et al., 2018) to enable comparisons between segmented tissue

masks. Nonlinear registration to the MNI-ICBM 152 template was also performed at 1x1x1 mm?
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resolution using ANTs (Avants et al., 2008). Brain extraction was performed on the linearly
registered images using BEaST (Eskildsen et al., 2012). To avoid any variability in the estimates
caused by potential differences between BEaST masks obtained from different scans, a single brain
mask was generated by intersecting the BEaST brain masks for all scans. All segmentations were
consistently compared inside this single brain mask. To investigate the effect of signal to noise
ratio (SNR) on the segmentations, SNR from each image was obtained using a robust Rician noise

estimation technique (Coupé et al., 2010).
2.3. Tissue Segmentation

Tissue segmentations were performed after these preprocessing steps using: 1) Atropos (Avants et
al., 2011); 2) BISON (Dadar and Collins, 2019); 3) Classify_Clean (Cocosco et al., 2003); FAST
5.0 (Zhang et al., 2001); FreeSurfer 6.0.0 (Fischl, 2012); and SPM12 (Penny et al., 2011). For all

pipelines, default settings were used.
2.3.1. ANTs Atropos

Atropos is an open-source multi-class segmentation pipeline which performs tissue classification
using a Bayesian framework, incorporating template-based tissue probability maps in the form of
Markov Random Fields (Avants et al., 2011). Atropos is publicly available at
https://github.com/ANTsX/ANTs/blob/master/Scripts/antsAtroposN4.sh. Tissue probability maps

for Atropos were generated by registering MNI-ICBM152 tissue priors to the subject’s brain using
the estimated nonlinear registrations. Atropos was then run for 3-dimension inputs with 3 classes

using the following command and parameters:

antsAtroposN4.sh -d 3 -a T1.mnc -x Mask.mnc -c 3 -o Atropos -s mnc -p Priors/%d.mnc
-d: image dimension

-a: input T1-weighted image

-x: brain mask

-c: number of classes

-o0: output file path

-s: extension of the image

-p: location of the tissue priors

2.3.2. BISON

Brain tISue segmentatiON (BISON) is an open source pipeline based on a random forests classifier
that has been trained using a set of intensity and location features from a multi-center manually

labelled dataset of 72 individuals aged from 5-96 years (Dadar and Collins, 2019). The BISON
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script as well as a pretrained random forest classifier is publicly available at

http://nist. mni.mcgill.ca/?p=2148. BISON was run using the following command:

Python BISON.py -c RF -m Trained_Classifiers/ -o Results/ -t Temp/ -e PT -n List.csv -p Trained_Classifiers/ -1 3
-¢ RF: select random forest classifier

-m: path of the template (from hitp.//nist. mni.mcgill.ca/?p=2148)

-o0: output file path

-t: path of the temporary files

-e. use the pretrained classifier (from http://nist. mni.mcgill.ca/?p=2148)

-n: a csv list containing subject ID, the path to the T1-weighted image, brain mask, and nonlinear transfomation
-p: path of the pretrained classifier (from http://nist. mni.mcgill.ca/?p=2148)

2.3.3. Classify_Clean

Classify Clean (Cocosco et al., 2003) is an executable provided as part of the MINC toolkit. It
uses a set of standard sample points to compute an initial classification, which is then used to purge
incorrect tag points. The resulting tag point set is used by a neural network classifier to perform

tissue segmentation. Classify Clean was run using the following command:

Classify _clean T1.mnc Output.mnc -mask Mask.mnc
-mask: brain mask

2.3.4. FAST

FMRIB's Automated Segmentation Tool (FAST) performs tissue classification while also
correcting for intensity inhomogeneity (Zhang et al., 2001). FAST is based on a hidden Markov
Random Field model and an associated Expectation-Maximization algorithm. To achieve optimal
results, the T1-weighted images were first masked. FAST 5.0 was then run using the following

command:

Fsl5.0-fast -n 3 Tl.nii
-n: number of classes

2.3.5. FreeSurfer

FreeSurfer is an open source brain image processing software that provides a full processing
stream for structural T1-weighted data (Fischl, 2012). FreeSurfer is publicly available at

https://surfer.nmr.mgh.harvard.edu/. Since FreeSurfer performs its own preprocessing, to achieve

optimal results, unpreprocessed T1-weighted images were run by FreeSurfer, and the final
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segmentation output (aseg.mgz) was then used to generate a tissue classification map using the
FreeSurfer Look Up  Table of the segmented regions  available at
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROl/FreeSurferColorLUT.

FreeSurfer 6.0.0 was run using the following command:

Recon-all -all -i T1.nii -subjid T1

-all: perform all stages of cortical reconstruction
-i: input T1-weighted image

-subjid: Subject ID

2.3.6. SPM12

Statistical Parametric Mapping (SPM) performs tissue segmentation by estimating the nonlinear
deformation field that overlays tissue probability maps to new image (Ashburner et al., 2014, p.
12). After this step, a few iterations of a simple Markov Random Field procedure are run to clean
up the final results. To generate a single tissue classification mask from the resulting probabilistic
output maps for GM (c1T1.nii), WM (c2T1.nii), and CSF (c¢3T1.nii), the label with the highest
probability from the three classes was assigned to each voxel. Tissue segmentation was performed

using the SPM12 GUI, with default parameters.
2.4. Comparisons and Statistical Analyses

To generate a silver standard segmentation as a benchmark for comparison, an average T1-
weighted image template (the “template”) was created out of all original scans using a previously
validated method for generating unbiased average templates (Figure S.1) (Fonov et al., 2009,
2011). For each algorithm, we then generated the segmentation mask for this method on the
template, as a silver standard against which to compare other segmentations. Dice Kappa similarity
index (Dice, 1945) was used to compare the segmentations against the silver standard. To assess
the statistical significance of the results, paired ¢-tests were performed on the Dice Kappa values
of all pairs of segmentation techniques, and the resulting p-values were corrected for multiple

comparisons using false discovery rate (FDR).

Volumetric comparisons were also used to assess the performance of the six methods. Prior to the
analyses, all tissue volumes were normalized with respect to the total intracranial volume (ICV),

estimated based on the single brain mask (BEAST; section 2.2). To assess whether scanner
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differences and SNR systematically affect the segmentations produced by each method, the

following linear regression models were tested:

Tissue Volume ~ 1 + Scanner Manufacturer (1)

Tissue Volume ~ 1 + SNR, (2)

where Scanner Manufacturer is a categorical variable reflecting GE, Siemens, and Philips
manufacturers, and SNR is a categorical variable reflecting low, medium, and high SNR (instead
of using SNR as a continuous variable, categorical SNR tertitles were used due to the non-normal
distribution of the SNR values). All results were corrected for multiple comparisons using FDR

with a significance threshold of 0.05.

The sample sizes (per arm) necessary to detect a 1% reduction in the tissue volumes were estimated
using the sampsizepwr function from MATLAB (80% power, 2-tailed significance, p = 0.05). For

the within scanner analyses, the standard deviations were adjusted for the sample size:

) N,
adjusted standard deviation = standard deviation X J Manuf acwrer/ rotal (3)
ota
where Ny gnu facturer denotes the number of scans from a specific manufacturer and Nr¢4; denotes
the total number of scans. All analyses were performed using MATLAB version 2019b.
3. Results

Figure 1 shows the axial slices of the 90 scans after preprocessing, linear registration to the MNI-

ICBM152 template, and brain extraction.
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Figure 1. Axial slices of the preprocessed images, after denoising, inhomogeneity correction, intensity normalization,
and brain extraction. Scans are ordered chronologically.
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FAST failed to produce an output for two of the images, while FreeSurfer did not produce an
output for one case with some imaging artefacts (Figure 1, row 7, column 8). The latter case was

removed from all analyses. All other tools processed all images successfully.

Figure 2 shows axial slices of the average template as well as the silver standard tissue
segmentation masks generated by each method. Figure S.2 shows axial slices covering the brain
overlayed with segmentations from each method, for one scan example (Philips Intera scanner 3T).
Table 1 shows the average overall Dice Kappa comparing each segmentation against the silver
standard as well as the average Dice Kappas separately for each manufacturer. Figure 3 shows

boxplots of the Dice Kappas for each tissue type across scanner manufacturers.

Tlw Image Atropos BISON Classify Clean FAST FreeSurfer SPM12

Z=43

SEETBEE

64

85

Z=106

127

7=

Figure 2. Axial slices showing the template created from the original T1w MRIs, and the silver standard segmentations
of this template from Atropos, BISON, Classify Clean, FAST, FreeSurfer, and SPM12.
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Across tissue types, BISON had the lowest overall variability in Dice Kappas, followed by SPM12.
For GM, BISON had the highest overall Dice Kappa (0.94+0.01), followed by SPM12 and
Atropos; while Atropos had the highest overall Dice Kappa for WM (0.94+0.02), followed by

BISON and SPMI12. To assess the statistical significance of the results, paired ¢-tests were

performed on the Dice Kappa values of all pairs of segmentation techniques, and the resulting p-

values were corrected for multiple comparisons (FDR). Figure 4 shows the negative logarithm of

the FDR corrected p-values. All methods tended to have higher Dice Kappa values for scans from

Siemens compared to Philips and GE.

Table 1. Average Dice Kappas for each method for all individual scans, when compared to the silver standard
segmentation on the template. Values indicate mean =+ standard deviation. All values are in % of total intracranial

volume.
Tissue Gray Matter White Matter Cerebrospinal Fluid
Method Overall GE Philips [SIEMENS| Overall GE Philips [SIEMENS| Overall GE Philips [SIEMENS
Atropos  [0.92+0.03 | 0.8840.06 | 0.91+0.03 [ 0.93+0.02 | 0.94+0.02 | 0.92+0.04 [ 0.94+0.01 | 0.954+0.01 | 0.85+0.03 | 0.82+0.02 | 0.83+0.03 | 0.87+0.03
BISON 0.94+0.01 {0.93+0.01 {0.93+0.01 | 0.94+0.01 [ 0.93+0.01 | 0.92+0.01 | 0.93+0.01 | 0.94+0.01 | 0.82+0.03 | 0.80+0.02 | 0.81+0.02 | 0.83+0.03
Classify  [0.91£0.02{0.9140.02 | 0.91+0.02 [ 0.92+0.02 | 0.92+0.02 | 0.91+0.03 { 0.91+0.01 | 0.9340.02 | 0.81+0.03 | 0.80+0.03 | 0.80+0.03 | 0.81+0.03
FAST 0.87+0.02 | 0.85+0.03 | 0.87+0.02 | 0.88+0.01 | 0.91+0.01 | 0.91+0.01 | 0.91+0.01 | 0.90+0.01 | 0.82+0.04 | 0.78+0.04 | 0.80+0.04 | 0.85+0.03
FreeSurfer | 0.84+0.01 | 0.8440.01 | 0.84+0.02 [ 0.85+0.01 | 0.89+0.01 [ 0.89+0.01 | 0.89+0.01 [ 0.89+0.01 | 0.69+0.03 | 0.67+0.03 [ 0.69+0.02 | 0.69+0.03
SPM12 0.93+0.01 {0.92+0.020.93+0.01 | 0.94+0.01 | 0.93+0.01 | 0.92+0.02 | 0.93+0.01 | 0.94+0.01 | 0.84+0.04 | 0.82+0.02 | 0.82+0.03 | 0.85+0.03
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Figure 3. Representation of Dice Kappa results from Table 1 for individual image segmentation, when compared to
the silver standard segmentation mask, for tissue volumes across scanner manufacturers. GM=Gray Matter.
WM=White Matter. CSF= CerebroSpinal Fluid.
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Figure 4. Negative logarlthm of FDR corrected p-values of paired t-tests between Dice Kappa values of segmentation
technique pairs. Values higher than 1.3 are statistically significant.
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Table 2 shows average estimated volumes for GM, WM, and CSF from each scanner, as well as
the averages separately for each manufacturer. Table 3 shows the estimated volumes differences
across manufacturers, obtained from the linear regression model (eq. 1). Significant differences
(after FDR correction) are displayed in bold font. Figure 5 shows boxplots of the acquired volumes
for each tissue type across scanner manufacturers. Figure S.3 shows boxplots of the acquired

volumes across scanner models.

BISON had the lowest overall variability, followed by FreeSurfer, and SPM12 (Table 2). Atropos
estimated significantly greater GM volumes and significantly lower CSF volumes in Siemens
scans, compared with the other two manufacturers (Table 3). BISON estimated significantly
greater GM volumes and significantly lower WM volumes in GE scans, compared with the other
two manufacturers. FAST estimated significantly lower GM volumes and significantly higher CSF
volumes in GE scans compared with Siemens, and significantly greater GM volumes and
significantly lower WM volumes in Siemens scans compared with Philips. Similarly, FreeSurfer
estimated significantly greater GM volumes and significantly lower WM volumes in Siemens
scans compared with Philips. SPM12 estimated significantly lower WM volumes and higher CSF

volumes in Siemens scans compared with Philips.

Table 2. Average tissue volumes for each method. Values indicate mean + standard deviation normalized by the
intracranial volume.

Tissue Gray Matter White Matter Cerebrospinal Fluid

Method Overall GE Philips |SIEMENS| Overall GE Philips |SIEMENS| Overall GE Philips | SIEMENS
Atropos  |47.64+1.9(46.25+4.946.97+1.2|48.244+0.7|39.97+1.8 | 41.04+5.3 | 40.05£1.3 | 39.80+0.7 | 12.39+0.9 [ 12.70+0.7 | 12.98+0.8 | 11.96+0.7
BISON 57.60+0.4 | 58.25+0.3 [ 57.38+0.3 | 57.67+0.5 | 34.49+0.4 | 33.72+0.2 | 34.57+0.4 | 34.55+0.4 | 7.90+0.3 | 8.01+0.2 | 8.05+0.3 | 7.78+0.3
Classify  |53.11+3.0|54.93+3.8 [53.12+3.8 [ 52.91+£2.4|33.05+1.7|32.77+1.9 |33.71+2.1 | 32.69+1.3 | 13.834+2.0 | 12.30+2.2 | 13.16+2.2 | 14.32+1.7
FAST 49.3542.2|47.5541.8|47.92+2.4 | 50.45+1.3 | 33.74+1.2 | 34.09+0.8 | 34.56+1.4 | 33.31+£1.1 [ 16.90+1.8 | 18.35+1.9|17.50+2.0 | 16.24+1.3
FreeSurfer|49.80+0.7 | 49.89+0.5 [49.24+0.6 | 50.13£0.6 | 39.52+0.8 | 39.39+1.2 {39.92+0.9 | 39.3340.5 | 10.67+0.9 | 10.71+1.2 | 10.83+0.9 | 10.53+0.8
SPM12 57.76+1.3|57.21+£2.5 (57.95+1.5 | 57.73+£0.8 | 33.08+1.1|33.73+2.0 | 33.57+1.3 | 32.7240.6 | 9.12+0.9 | 9.03£1.1 | 8.48+0.7 | 9.50+0.6
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Table 3. Volume differences across scanner manufacturers. Values represent beta estimate. Significant results after
FDR correction (threshold =0.05) are shown in bold font. GM=Gray Matter. WM=White Matter. CSF= CerebroSpinal
Fluid. FDR= False Discovery Rate.

Method Gray Matter White Matter Cerebrospinal Fluid
t-stat GE vs. GE vs. SIEMENS GE vs. GE vs. SIEMENS GE vs. GE vs. SIEMENS
Philips SIEMENS | vs. Philips Philips SIEMENS | vs. Philips Philips SIEMENS | vs. Philips
Atropos -0.72 -2.05 1.33 0.99 1.32 -0.32 -0.28 0.73 -1.01
BISON 0.88 0.64 0.23 -0.84 -0.87 0.03 -0.03 0.23 -0.26
Classify 1.81 2.15 -1.02 -0.95 0.07 -1.02 -0.86 -2.15 1.34
FAST -0.92 -3.54 2.63 -0.36 1.03 -1.39 1.28 2.51 -1.24
FreeSurfer 0.65 -0.23 0.88 0.58 -0.53 1.11 -0.12 0.14 -0.26
SPM12 -0.74 -0.54 -0.21 0.16 1.07 -0.91 0.58 -0.53 1.11
Atropos BISON
sof ' ‘ ‘ ‘ ‘ ol o ' '
Bl - = ‘ 2.
% a0t + — ; 10
g 30 g 30 - o
g 10 - == = 1 g 10 — —
¢ GM Plhlllps GM. SI‘EmEHS GMIGE WM P‘hlllps wmM SIIEmEnS WN‘GE CSF- P‘hll\ps CSF- Sw‘emens CSF‘ GE 0 GM Plhlhps GM S\Iamer\s GMIGE wm Plhlhps wmM SIIEmEr\S WM‘ GE CSF- P‘hll\ps CSF. S\‘amans KSF‘ GE
Classify Clean FAST
60 - + T 60
Gl % = = | gat ? - =
% 40 - é 40 1
z, = = 5 -
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=10F E3 S| +
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0 GM Flhlllps GM SI;mEHS GMI GE WM P‘hmps WM 5\‘Emervs WMI GE CsF- P‘h\l\ps CSF S\IErnEns CSF‘ GE ’ GM Flhllwps GM S\IEmervs GMIGE WM Plhllwps WM Sllemervs WM‘ GE CSF- F“hll\ps C5F- 5\‘Em2ns CSF‘ GE

Figure 5. Tissue volumes across scanner manufacturers. GM=Gray Matter. WM=White Matter. CSF= CerebroSpinal
Fluid.

Table 4 shows the estimated differences between the segmented tissue volumes by each method
for scans in low, medium, and high tertiles of SNR, obtained from the linear regression model (eq.
2). Significant differences (after FDR correction) are displayed in bold font. Except for FreeSurfer,
all methods had significantly different CSF estimates across high and low SNR tertiles. FAST and
FreeSurfer had significantly higher WM volume estimates for high versus medium and low tertiles
as well as corresponding significantly lower GM volume estimates. SPM12 had significantly

higher WM volume estimates for high versus medium and low tertiles as well as corresponding
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significantly lower CSF volume estimates. Atropos had a significantly lower estimate for GM

volume of high versus low tertiles, and a corresponding higher estimate for WM volume.
Table 4. Impact of SNR on estimated volumes. Values represent beta estimate. Significant results after FDR correction

(threshold =0.05) are shown in bold font. SNR= Signal to Noise Ratio. GM=Gray Matter. WM=White Matter. CSF=
CerebroSpinal Fluid. FDR= False Discovery Rate.

Method Gray Matter White Matter Cerebrospinal Fluid
tostat Medium High vs. P{]lsgh Medium High vs. I{/lsgh Medium High vs. Hvlsgh
vs. Low Low Medium vs. Low Low Medium vs. Low Low Medium

Atropos 0.16 -1.81 -1.97 -0.98 0.58 1.56 0.82 1.23 0.42
BISON -0.34 -0.37 -0.03 0.11 -0.01 -0.12 0.23 0.38 0.15
Classify -1.18 0.55 1.73 0.79 1.02 0.23 0.39 -1.56 -1.95
FAST -1.63 -3.17 -1.54 0.10 1.36 1.26 1.53 1.81 0.27
FreeSurfer -0.40 -0.98 -0.58 -0.39 0.50 0.89 0.79 0.48 0.31
SPM12 -0.32 -0.65 -0.33 0.25 1.28 1.03 0.07 -0.63 -0.70

Using the volume estimates from Table 2, the sample sizes necessary to detect a 1% reduction in
the tissue volumes were estimated (Table 5, 80% power, 2-tailed significance). BISON had the
smallest sample size requirement across all scanners and tissue types, followed by FreeSurfer, and
SPMI12. As expected, the necessary sample size decreased for all methods and tissue types when

using data from one specific scanner.

Table 5. Estimated sample size to detect a 1% reduction in the tissue volumes (80% power, 2-tailed significance).

Tissue Gray Matter White Matter Cerebrospinal Fluid
Method Overall GE Philips |SIEMENS| Overall GE Philips | SIEMENS| Overall GE Philips | SIEMENS
Atropos 127 93 21 12 162 136 32 16 417 27 107 115
BISON 6 3 4 6 13 3 6 9 116 8 41 69
Classify 253 41 144 94 210 29 110 73 1644 259 775 631
FAST 158 11 72 32 102 7 48 51 893 89 364 288
FreeSurfer 18 4 7 9 35 10 17 10 561 103 193 260
SPM12 42 18 21 11 89 31 44 18 767 122 191 180

4. Discussion

In this paper, we assessed the variability in tissue segmentation results for six publicly available
and widely used tissue classification methods in the context of a large body of images for a single
volunteer acquired on multiple scanner manufacturers and models across time. Such assessments
are particularly important for the field of neuroimaging, given at present many researchers are
transitioning to using large multi-center and multi-scanner databases in order to test their
hypotheses with sufficient statistical power, and/or using machine learning techniques that require

a large array of data. Our comparisons provide a benchmark for the expected variability and
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systematic differences between results obtained from the same image processing pipeline for scans
from different centers, as well as differences that can be expected when comparing volumetric
results obtained from different pipelines. If such differences are systematic and consistent, one can
select the algorithm with lowest variability, or adjust for the differences when using data from

multiple scanner manufacturers.

BISON GM segmentations showed the highest overlap (i.e. average Dice Kappa) with the silver
standard obtained based on the average template, followed by SPM12 and Atropos. Atropos had
the highest overlap for the WM segmentations, followed by BISON and SPM12. The overlap
comparisons in general tended to agree with the volumetric comparisons, except for FreeSurfer
results. This can be explained by the fact that the average template was preprocessed (i.e. denoised,
non-uniformity corrected, and intensity normalized) prior to the FreeSurfer processing, whereas
the individual scans processed by FreeSurfer were not. However, since FreeSurfer produced
significantly poorer results when segmenting previously preprocessed images, we were not able to

compare FreeSurfer results on scans that were consistently preprocessed.

BISON had the lowest variability in its estimated tissue volumes, followed by FreeSurfer and
SPM12 (Table 2). This lower variability might be due to the fact that BISON itself was trained
based on a multi-center and multi-scanner dataset, and therefore was able to deal with some of the

variabilities across scanners.

SNR had a significant impact on many of the estimated volumes. All methods had significantly
different CSF estimates across high and low SNR tertiles. FAST, FreeSurfer, and SPM12 also had
significantly higher WM volume estimates for high versus medium and low tertiles as well as
corresponding significantly lower GM volume estimates. Overall, BISON had the smallest amount
of difference between the volumes estimated across SNR tertiles, followed by FreeSurfer. This is
an important concern, particularly when using data from older 1.5T scanners which tend to have
lower SNRs. These results also signify the importance of acquiring data with the best possible

SNR to minimize the consequent variability in volumetric measurements.

BISON had the smallest sample size requirement across all scanners and tissue types, followed by
FreeSurfer, and SPM12. As expected, the necessary sample size decreased for all methods and
tissue types when using data from one specific scanner. This is an important concern when

designing multi-scanner studies that acquire data using scanners from different manufacturers.
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One of the limitations of this study is the inconsistent distribution of the data across different
scanners. Out of the 90 scans used in this study, nine scans were acquired on GE, 31 on Philips,
and 50 on Siemens. In addition, mean + standard deviation for age was 45.49 + 1.07 for GE scans,
42.28 + 2.85 for Philips scans, and 44.85 + 1.26 for Siemens scans. The differences between age
at scan for Philips with the other two manufacturers were statistically significant (p<0.002). These
differences might introduce some variability into the scanner comparisons results that are not

caused by scanner differences.

In this paper, we have compared the performance of six publicly available, widely used tissue
classification methods on a travelling human phantom dataset, containing 90 scans across 28 sites,
and with 12 different scanner models. Our comparisons provide a practical benchmark on the
reliability of each technique, and the amount of variability that can be expected across scanners

from different manufacturers and SNR levels when using multi-center and multi-scanner datasets.
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Supplementary Materials

Figure S.1. Axial slices showing the average SIMON brain.
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Figure S.2. Axial slices comparing segmentations from Atropos, BISON, Classify Clean, FAST, FreeSurfer, and
SPM12 for one scan (Philips Intera 3T scanner).
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Figure S.3. Estimated tissue volumes across scanner models. GM

CerebroSpinal Fluid.
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