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Abstract:  

Background: Gray and white matter volume difference and change are important imaging 

markers of pathology and disease progression in neurology and psychiatry. Such measures are 

usually estimated from tissue segmentation maps produced by publicly available image processing 

pipelines. However, the reliability of the produced segmentations when using multi-center and 

multi-scanner data remains understudied. Here, we assess the robustness of six publicly available 

tissue classification pipelines across images acquired from different MR scanners and sites.  

Methods: We used T1-weighted images of a single individual, scanned in 73 sessions across 27 

different sites to assess the robustness of the tissue classification tools. Variability in Dice Kappa 

values and tissue volumes was assessed for Atropos, BISON, Classify_Clean, FAST, FreeSurfer, 

and SPM12. We also estimated the sample size necessary to detect a significant 1% volume 

reduction based on the variability of the estimates from each method within and across scanner 

models. 

Results: BISON had the lowest overall variability in its volumetric estimates, followed by 

FreeSurfer, and SPM12. All methods also had significant differences between some of their 

estimates across different scanner manufacturers (e.g. BISON had significantly higher GM 

estimates and correspondingly lower WM estimates for GE scans compared to Philips and 

SIEMENs), and different signal-to-noise ratio (SNR) levels (e.g. FAST and FreeSurfer had 

significantly higher WM volume estimates for high versus medium and low SNR tertiles as well 

as correspondingly lower GM volume estimates). BISON also had the smallest sample size 

requirement across all scanners and tissue types, followed by FreeSurfer, and SPM12. 

Conclusions: Our comparisons provide a benchmark on the reliability of the publicly used tissue 

classification techniques and the amount of variability that can be expected when using large multi-

center datasets and multi-scanner databases. 

Keywords: Reliability, multi-center, multi-scanner, tissue classification 
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1. Introduction 

Multi-center studies, usually performed to increase sample sizes, provide researchers with a 

plethora of data to explore different hypotheses with sufficient statistical power. However, such 

datasets bring about their own new set of challenges, particularly when acquired without 

harmonization and on different scanner platforms (Duchesne et al., 2019a). In particular, the 

dynamic range and intensity characteristics of the images produced by different scanner models, 

from different vendors and operated in different configurations, might significantly vary across 

acquisition sites. Such differences can in turn impact the reliability of tissue classification, one of 

the most commonly performed tasks in structural neuroimaging studies (e.g. for purposes of voxel 

based morphometry) or as a necessary step in other post-processing pipelines (e.g. for purposes of 

cortical thickness extraction or diffusion tensor imaging) (González-Villà et al., 2016; Mateos-

Pérez et al., 2018). Intensity variations may lead to systematic biases in tissue classification when 

using or comparing data across different centers, and hence adversely influence the final results.  

There have been demonstrations of the potential impact of scanner variability on estimates for 

tissue classification in neuroimaging pipelines. Using data from two travelling human phantoms 

across four different sites, Gouttard et al. assessed the variability in tissue classification and voxel 

based morphometry across sites, reporting high intra-scanner variabilities, as well as higher inter-

scanner variabilities, between Siemens Healthcare’s Allegra and Tim Trio scanners (Gouttard et 

al., 2008). Similarly, using data collected on four different scanner models at five different sites in 

six different subjects, Schnak et al. showed a significant site effect in gray and white matter 

segmentations, voxel-based morphometry, and cortical thickness measurements (Schnack et al., 

2004, 2010). Similarly, Pardoe et al. reported significant site-specific differences in voxel-based 

morphometry measurements between healthy control subjects scanned across three different sites 

(Pardoe et al., 2008). 

However, no studies have comprehensively compared the performance of commonly used tissue 

classification methods on different scanner models from three of the most commonly used 

platforms in clinical and research settings (i.e. GE Healthcare (MI, USA), Siemens Healthcare 

(Erlangen, GER), and Philips Medical Systems (Best, NED)). Using data from the Single 

Individual volunteer for Multiple Observations across Networks (SIMON) public dataset, we had 

a unique opportunity to perform such comparison across 90 scans of this single individual, 
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acquired within the span of seven years on 28 different sites with 12 different scanner models. In 

this study, we compared the performance of six publicly available, widely used tissue classification 

methods (Atropos (Avants et al., 2011); BISON (Dadar and Collins, 2019); Classify_Clean 

(Cocosco et al., 2003); FAST (Zhang et al., 2001);  FreeSurfer (Fischl, 2012); and SPM12 

(Ashburner et al., 2014, p. 12). These comparisons provide a benchmark on the reliability of each 

technique, and the amount of variability that can be expected when using multi-center datasets. 

We hypothesized that (a) there would be statistically significant differences between tissue 

volumes estimated by the methods across scanner manufactures; and (b) the signal to noise ratio 

(SNR) level of the images would have a statistically significant effect on estimated volumes. 

Finally, we estimated the sample size necessary to detect a 1% reduction in tissue volumes with 

sufficient power based on each method within and across scanner models. 

2. Methods 

2.1. Data 

Data used in this study included 90 3T T1-weighted MRIs from the SIMON dataset, a sample of 

convenience of one healthy male aged between 39 and 46 years old, scanned for research projects 

in 73 sessions at 28 sites on a variety of platforms, namely: GE Healthcare (DISCOVERY MR750 

and SIGNA Pioneer); Philips Medical  Systems (Achieva, Ingenia, Intera, and T5); and Siemens 

Healthcare (Allegra, Prisma, PrismaFit, Skyra, SonataVision, Symphony, and TrioTim) 

(Duchesne et al., 2019a, 2019b). The data was acquired with a number of different protocols, but 

more than two-thirds complied with the harmonized Canadian Dementia Imaging Protocol 

(www.cdip-pcid.ca; (Duchesne et al., 2019a)). For more information and access to the dataset, see 

(http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html). 

2.2. Image Processing 

All T1-weighted scans were processed through standard preprocessing steps using the MINC 

toolkit (https://github.com/BIC-MNI/minc-tools): denoising (Coupe et al., 2008), intensity non-

uniformity correction (Sled et al., 1998), and intensity normalization into range (0-100). All images 

were then linearly registered to MNI-ICBM152 template at an isotropic 1×1×1 mm3 resolution 

(Collins and Evans, 1997; Dadar et al., 2018) to enable comparisons between segmented tissue 

masks. Nonlinear registration to the MNI-ICBM152 template was also performed at 1×1×1 mm3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.28.922971doi: bioRxiv preprint 

http://www.cdip-pcid.ca/
http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html
https://github.com/BIC-MNI/minc-tools
https://doi.org/10.1101/2020.01.28.922971
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

resolution using ANTs (Avants et al., 2008). Brain extraction was performed on the linearly 

registered images using BEaST (Eskildsen et al., 2012). To avoid any variability in the estimates 

caused by potential differences between BEaST masks obtained from different scans, a single brain 

mask was generated by intersecting the BEaST brain masks for all scans. All segmentations were 

consistently compared inside this single brain mask. To investigate the effect of signal to noise 

ratio (SNR) on the segmentations, SNR from each image was obtained using a robust Rician noise 

estimation technique (Coupé et al., 2010). 

2.3. Tissue Segmentation 

Tissue segmentations were performed after these preprocessing steps using: 1) Atropos (Avants et 

al., 2011); 2) BISON (Dadar and Collins, 2019); 3) Classify_Clean  (Cocosco et al., 2003); FAST 

5.0 (Zhang et al., 2001);  FreeSurfer 6.0.0 (Fischl, 2012); and SPM12 (Penny et al., 2011). For all 

pipelines, default settings were used. 

2.3.1. ANTs Atropos 

Atropos is an open-source multi-class segmentation pipeline which performs tissue classification 

using a Bayesian framework, incorporating template-based tissue probability maps in the form of 

Markov Random Fields (Avants et al., 2011). Atropos is publicly available at 

https://github.com/ANTsX/ANTs/blob/master/Scripts/antsAtroposN4.sh. Tissue probability maps 

for Atropos were generated by registering MNI-ICBM152 tissue priors to the subject’s brain using 

the estimated nonlinear registrations. Atropos was then run for 3-dimension inputs with 3 classes 

using the following command and parameters: 

antsAtroposN4.sh -d 3 -a T1.mnc -x Mask.mnc -c 3 -o Atropos -s mnc -p Priors/%d.mnc 

-d: image dimension 

-a: input T1-weighted image 

-x: brain mask 

-c: number of classes 

-o: output file path 

-s: extension of the image 

-p: location of the tissue priors 
 

2.3.2. BISON 

Brain tISue segmentatiON (BISON) is an open source pipeline based on a random forests classifier 

that has been trained using a set of intensity and location features from a multi-center manually 

labelled dataset of 72 individuals aged from 5-96 years (Dadar and Collins, 2019). The BISON 
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script as well as a pretrained random forest classifier is publicly available at 

http://nist.mni.mcgill.ca/?p=2148. BISON was run using the following command: 

Python BISON.py -c RF -m Trained_Classifiers/ -o Results/ -t Temp/ -e PT -n List.csv -p Trained_Classifiers/  -l 3 

-c RF: select random forest classifier 

-m: path of the template (from http://nist.mni.mcgill.ca/?p=2148) 
-o: output file path 

-t: path of the temporary files 

-e: use the pretrained classifier (from http://nist.mni.mcgill.ca/?p=2148) 
-n: a csv list containing subject ID, the path to the T1-weighted image, brain mask, and nonlinear transfomation 

-p: path of the pretrained classifier (from http://nist.mni.mcgill.ca/?p=2148) 

 

 

2.3.3. Classify_Clean 

Classify_Clean (Cocosco et al., 2003) is an executable provided as part of the MINC toolkit. It 

uses a set of standard sample points to compute an initial classification, which is then used to purge 

incorrect tag points. The resulting tag point set is used by a neural network classifier to perform 

tissue segmentation. Classify_Clean was run using the following command: 

Classify_clean T1.mnc Output.mnc -mask Mask.mnc  

-mask: brain mask 

 

 

2.3.4. FAST 

FMRIB's Automated Segmentation Tool (FAST) performs tissue classification while also 

correcting for intensity inhomogeneity (Zhang et al., 2001). FAST is based on a hidden Markov 

Random Field model and an associated Expectation-Maximization algorithm. To achieve optimal 

results, the T1-weighted images were first masked. FAST 5.0 was then run using the following 

command: 

Fsl5.0-fast -n 3 T1.nii 

-n: number of classes 

 

2.3.5. FreeSurfer 

FreeSurfer is an open source brain image processing software that provides a full processing 

stream for structural T1-weighted data (Fischl, 2012). FreeSurfer is publicly available at 

https://surfer.nmr.mgh.harvard.edu/. Since FreeSurfer performs its own preprocessing, to achieve 

optimal results, unpreprocessed T1-weighted images were run by FreeSurfer, and the final 
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segmentation output (aseg.mgz) was then used to generate a tissue classification map using the 

FreeSurfer Look Up Table of the segmented regions available at 

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT. 

FreeSurfer 6.0.0 was run using the following command: 

Recon-all -all -i T1.nii -subjid T1  

-all: perform all stages of cortical reconstruction 

-i: input T1-weighted image 

-subjid: Subject ID 

 

2.3.6. SPM12 

Statistical Parametric Mapping (SPM) performs tissue segmentation by estimating the nonlinear 

deformation field that overlays tissue probability maps to new image (Ashburner et al., 2014, p. 

12). After this step, a few iterations of a simple Markov Random Field procedure are run to clean 

up the final results. To generate a single tissue classification mask from the resulting probabilistic 

output maps for GM (c1T1.nii), WM (c2T1.nii), and CSF (c3T1.nii), the label with the highest 

probability from the three classes was assigned to each voxel. Tissue segmentation was performed 

using the SPM12 GUI, with default parameters. 

2.4. Comparisons and Statistical Analyses 

To generate a silver standard segmentation as a benchmark for comparison, an average T1-

weighted image template (the “template”) was created out of all original scans using a previously 

validated method for generating unbiased average templates (Figure S.1) (Fonov et al., 2009, 

2011). For each algorithm, we then generated the segmentation mask for this method on the 

template, as a silver standard against which to compare other segmentations. Dice Kappa similarity 

index (Dice, 1945) was used to compare the segmentations against the silver standard. To assess 

the statistical significance of the results, paired t-tests were performed on the Dice Kappa values 

of all pairs of segmentation techniques, and the resulting p-values were corrected for multiple 

comparisons using false discovery rate (FDR).  

Volumetric comparisons were also used to assess the performance of the six methods. Prior to the 

analyses, all tissue volumes were normalized with respect to the total intracranial volume (ICV), 

estimated based on the single brain mask (BEAST; section 2.2). To assess whether scanner 
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differences and SNR systematically affect the segmentations produced by each method, the 

following linear regression models were tested: 

Tissue Volume ~ 1 + Scanner Manufacturer   (1) 

Tissue Volume ~ 1 + SNR,    (2) 

where Scanner Manufacturer is a categorical variable reflecting GE, Siemens, and Philips 

manufacturers, and SNR is a categorical variable reflecting low, medium, and high SNR (instead 

of using SNR as a continuous variable, categorical SNR tertitles were used due to the non-normal 

distribution of the SNR values). All results were corrected for multiple comparisons using FDR 

with a significance threshold of 0.05. 

The sample sizes (per arm) necessary to detect a 1% reduction in the tissue volumes were estimated 

using the sampsizepwr function from MATLAB (80% power, 2-tailed significance, p = 0.05). For 

the within scanner analyses, the standard deviations were adjusted for the sample size: 

adjusted standard deviation = standard deviation × √
𝑁𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟

𝑁𝑇𝑜𝑡𝑎𝑙
⁄  (3) 

where 𝑁𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 denotes the number of scans from a specific manufacturer and 𝑁𝑇𝑜𝑡𝑎𝑙 denotes 

the total number of scans. All analyses were performed using MATLAB version 2019b. 

3. Results 

Figure 1 shows the axial slices of the 90 scans after preprocessing, linear registration to the MNI-

ICBM152 template, and brain extraction. 
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Figure 1. Axial slices of the preprocessed images, after denoising, inhomogeneity correction, intensity normalization, 

and brain extraction. Scans are ordered chronologically. 
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FAST failed to produce an output for two of the images, while FreeSurfer did not produce an 

output for one case with some imaging artefacts (Figure 1, row 7, column 8). The latter case was 

removed from all analyses. All other tools processed all images successfully.  

Figure 2 shows axial slices of the average template as well as the silver standard tissue 

segmentation masks generated by each method. Figure S.2 shows axial slices covering the brain 

overlayed with segmentations from each method, for one scan example (Philips Intera scanner 3T). 

Table 1 shows the average overall Dice Kappa comparing each segmentation against the silver 

standard as well as the average Dice Kappas separately for each manufacturer. Figure 3 shows 

boxplots of the Dice Kappas for each tissue type across scanner manufacturers. 

 

Figure 2. Axial slices showing the template created from the original T1w MRIs, and the silver standard segmentations 

of this template from Atropos, BISON, Classify_Clean, FAST, FreeSurfer, and SPM12. 
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Across tissue types, BISON had the lowest overall variability in Dice Kappas, followed by SPM12. 

For GM, BISON had the highest overall Dice Kappa (0.94±0.01), followed by SPM12 and 

Atropos; while Atropos had the highest overall Dice Kappa for WM (0.94±0.02), followed by 

BISON and SPM12. To assess the statistical significance of the results, paired t-tests were 

performed on the Dice Kappa values of all pairs of segmentation techniques, and the resulting p-

values were corrected for multiple comparisons (FDR). Figure 4 shows the negative logarithm of 

the FDR corrected p-values. All methods tended to have higher Dice Kappa values for scans from 

Siemens compared to Philips and GE. 

Table 1. Average Dice Kappas for each method for all individual scans, when compared to the silver standard 

segmentation on the template. Values indicate mean ± standard deviation. All values are in % of total intracranial 

volume. 

Tissue Gray Matter White Matter Cerebrospinal Fluid 

Method Overall GE Philips SIEMENS Overall GE Philips SIEMENS Overall GE Philips SIEMENS 

Atropos 0.92±0.03 0.88±0.06 0.91±0.03 0.93±0.02 0.94±0.02 0.92±0.04 0.94±0.01 0.95±0.01 0.85±0.03 0.82±0.02 0.83±0.03 0.87±0.03 
BISON 0.94±0.01 0.93±0.01 0.93±0.01 0.94±0.01 0.93±0.01 0.92±0.01 0.93±0.01 0.94±0.01 0.82±0.03 0.80±0.02 0.81±0.02 0.83±0.03 
Classify 0.91±0.02 0.91±0.02 0.91±0.02 0.92±0.02 0.92±0.02 0.91±0.03 0.91±0.01 0.93±0.02 0.81±0.03 0.80±0.03 0.80±0.03 0.81±0.03 
FAST 0.87±0.02 0.85±0.03 0.87±0.02 0.88±0.01 0.91±0.01 0.91±0.01 0.91±0.01 0.90±0.01 0.82±0.04 0.78±0.04 0.80±0.04 0.85±0.03 
FreeSurfer 0.84±0.01 0.84±0.01 0.84±0.02 0.85±0.01 0.89±0.01 0.89±0.01 0.89±0.01 0.89±0.01 0.69±0.03 0.67±0.03 0.69±0.02 0.69±0.03 
SPM12 0.93±0.01 0.92±0.02 0.93±0.01 0.94±0.01 0.93±0.01 0.92±0.02 0.93±0.01 0.94±0.01 0.84±0.04 0.82±0.02 0.82±0.03 0.85±0.03 
 

 

Figure 3. Representation of Dice Kappa results from Table 1 for individual image segmentation, when compared to 

the silver standard segmentation mask, for tissue volumes across scanner manufacturers. GM=Gray Matter. 

WM=White Matter. CSF= CerebroSpinal Fluid. 
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Figure 4. Negative logarithm of FDR corrected p-values of paired t-tests between Dice Kappa values of segmentation 

technique pairs. Values higher than 1.3 are statistically significant. 

Table 2 shows average estimated volumes for GM, WM, and CSF from each scanner, as well as 

the averages separately for each manufacturer. Table 3 shows the estimated volumes differences 

across manufacturers, obtained from the linear regression model (eq. 1). Significant differences 

(after FDR correction) are displayed in bold font. Figure 5 shows boxplots of the acquired volumes 

for each tissue type across scanner manufacturers. Figure S.3 shows boxplots of the acquired 

volumes across scanner models. 

BISON had the lowest overall variability, followed by FreeSurfer, and SPM12 (Table 2). Atropos 

estimated significantly greater GM volumes and significantly lower CSF volumes in Siemens 

scans, compared with the other two manufacturers (Table 3). BISON estimated significantly 

greater GM volumes and significantly lower WM volumes in GE scans, compared with the other 

two manufacturers. FAST estimated significantly lower GM volumes and significantly higher CSF 

volumes in GE scans compared with Siemens, and significantly greater GM volumes and 

significantly lower WM volumes in Siemens scans compared with Philips. Similarly, FreeSurfer 

estimated significantly greater GM volumes and significantly lower WM volumes in Siemens 

scans compared with Philips. SPM12 estimated significantly lower WM volumes and higher CSF 

volumes in Siemens scans compared with Philips. 

Table 2. Average tissue volumes for each method. Values indicate mean ± standard deviation normalized by the 

intracranial volume. 

Tissue Gray Matter White Matter Cerebrospinal Fluid 

Method Overall GE Philips SIEMENS Overall GE Philips SIEMENS Overall GE Philips SIEMENS 

Atropos 47.64±1.9 46.25±4.9 46.97±1.2 48.24±0.7 39.97±1.8 41.04±5.3 40.05±1.3 39.80±0.7 12.39±0.9 12.70±0.7 12.98±0.8 11.96±0.7 

BISON 57.60±0.4 58.25±0.3 57.38±0.3 57.67±0.5 34.49±0.4 33.72±0.2 34.57±0.4 34.55±0.4 7.90±0.3 8.01±0.2 8.05±0.3 7.78±0.3 

Classify 53.11±3.0 54.93±3.8 53.12±3.8 52.91±2.4 33.05±1.7 32.77±1.9 33.71±2.1 32.69±1.3 13.83±2.0 12.30±2.2 13.16±2.2 14.32±1.7 

FAST 49.35±2.2 47.55±1.8 47.92±2.4 50.45±1.3 33.74±1.2 34.09±0.8 34.56±1.4 33.31±1.1 16.90±1.8 18.35±1.9 17.50±2.0 16.24±1.3 

FreeSurfer 49.80±0.7 49.89±0.5 49.24±0.6 50.13±0.6 39.52±0.8 39.39±1.2 39.92±0.9 39.33±0.5 10.67±0.9 10.71±1.2 10.83±0.9 10.53±0.8 

SPM12 57.76±1.3 57.21±2.5 57.95±1.5 57.73±0.8 33.08±1.1 33.73±2.0 33.57±1.3 32.72±0.6 9.12±0.9 9.03±1.1 8.48±0.7 9.50±0.6 
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Table 3. Volume differences across scanner manufacturers. Values represent beta estimate. Significant results after 

FDR correction (threshold =0.05) are shown in bold font. GM=Gray Matter. WM=White Matter. CSF= CerebroSpinal 

Fluid. FDR= False Discovery Rate. 

Method Gray Matter White Matter Cerebrospinal Fluid 

t-stat 
GE vs. 
Philips 

GE vs. 
SIEMENS 

SIEMENS  
vs. Philips 

GE vs. 
Philips 

GE vs. 
SIEMENS 

SIEMENS  
vs. Philips 

GE vs. 
Philips 

GE vs. 
SIEMENS 

SIEMENS  
vs. Philips 

Atropos -0.72 -2.05 1.33 0.99 1.32 -0.32 -0.28 0.73 -1.01 

BISON 0.88 0.64 0.23 -0.84 -0.87 0.03 -0.03 0.23 -0.26 

Classify 1.81 2.15 -1.02 -0.95 0.07 -1.02 -0.86 -2.15 1.34 

FAST -0.92 -3.54 2.63 -0.36 1.03 -1.39 1.28 2.51 -1.24 

FreeSurfer 0.65 -0.23 0.88 0.58 -0.53 1.11 -0.12 0.14 -0.26 

SPM12 -0.74 -0.54 -0.21 0.16 1.07 -0.91 0.58 -0.53 1.11 

 

 

Figure 5. Tissue volumes across scanner manufacturers. GM=Gray Matter. WM=White Matter. CSF= CerebroSpinal 

Fluid. 

Table 4 shows the estimated differences between the segmented tissue volumes by each method 

for scans in low, medium, and high tertiles of SNR, obtained from the linear regression model (eq. 

2). Significant differences (after FDR correction) are displayed in bold font. Except for FreeSurfer, 

all methods had significantly different CSF estimates across high and low SNR tertiles. FAST and 

FreeSurfer had significantly higher WM volume estimates for high versus medium and low tertiles 

as well as corresponding significantly lower GM volume estimates. SPM12 had significantly 

higher WM volume estimates for high versus medium and low tertiles as well as corresponding 
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significantly lower CSF volume estimates. Atropos had a significantly lower estimate for GM 

volume of high versus low tertiles, and a corresponding higher estimate for WM volume. 

Table 4. Impact of SNR on estimated volumes. Values represent beta estimate. Significant results after FDR correction 

(threshold =0.05) are shown in bold font. SNR= Signal to Noise Ratio. GM=Gray Matter. WM=White Matter. CSF= 

CerebroSpinal Fluid. FDR= False Discovery Rate. 

Method Gray Matter White Matter Cerebrospinal Fluid 

t-stat 
Medium 
vs. Low 

High vs. 
Low 

High  

vs. 

Medium 

Medium 
vs. Low 

High vs. 
Low 

High  

vs. 

Medium 

Medium 
vs. Low 

High vs. 
Low 

High  

vs. 

Medium 

Atropos 0.16 -1.81 -1.97 -0.98 0.58 1.56 0.82 1.23 0.42 

BISON -0.34 -0.37 -0.03 0.11 -0.01 -0.12 0.23 0.38 0.15 

Classify -1.18 0.55 1.73 0.79 1.02 0.23 0.39 -1.56 -1.95 

FAST -1.63 -3.17 -1.54 0.10 1.36 1.26 1.53 1.81 0.27 

FreeSurfer -0.40 -0.98 -0.58 -0.39 0.50 0.89 0.79 0.48 0.31 

SPM12 -0.32 -0.65 -0.33 0.25 1.28 1.03 0.07 -0.63 -0.70 

 

Using the volume estimates from Table 2, the sample sizes necessary to detect a 1% reduction in 

the tissue volumes were estimated (Table 5, 80% power, 2-tailed significance). BISON had the 

smallest sample size requirement across all scanners and tissue types, followed by FreeSurfer, and 

SPM12. As expected, the necessary sample size decreased for all methods and tissue types when 

using data from one specific scanner.  

Table 5. Estimated sample size to detect a 1% reduction in the tissue volumes (80% power, 2-tailed significance). 

Tissue Gray Matter White Matter Cerebrospinal Fluid 

Method Overall GE Philips SIEMENS Overall GE Philips SIEMENS Overall GE Philips SIEMENS 

Atropos 127 93 21 12 162 136 32 16 417 27 107 115 

BISON 6 3 4 6 13 3 6 9 116 8 41 69 

Classify 253 41 144 94 210 29 110 73 1644 259 775 631 

FAST 158 11 72 32 102 7 48 51 893 89 364 288 

FreeSurfer 18 4 7 9 35 10 17 10 561 103 193 260 

SPM12 42 18 21 11 89 31 44 18 767 122 191 180 

 

4. Discussion 

In this paper, we assessed the variability in tissue segmentation results for six publicly available 

and widely used tissue classification methods in the context of a large body of images for a single 

volunteer acquired on multiple scanner manufacturers and models across time. Such assessments 

are particularly important for the field of neuroimaging, given at present many researchers are 

transitioning to using large multi-center and multi-scanner databases in order to test their 

hypotheses with sufficient statistical power, and/or using machine learning techniques that require 

a large array of data. Our comparisons provide a benchmark for the expected variability and 
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systematic differences between results obtained from the same image processing pipeline for scans 

from different centers, as well as differences that can be expected when comparing volumetric 

results obtained from different pipelines. If such differences are systematic and consistent, one can 

select the algorithm with lowest variability, or adjust for the differences when using data from 

multiple scanner manufacturers. 

BISON GM segmentations showed the highest overlap (i.e. average Dice Kappa) with the silver 

standard obtained based on the average template, followed by SPM12 and Atropos. Atropos had 

the highest overlap for the WM segmentations, followed by BISON and SPM12. The overlap 

comparisons in general tended to agree with the volumetric comparisons, except for FreeSurfer 

results. This can be explained by the fact that the average template was preprocessed (i.e. denoised, 

non-uniformity corrected, and intensity normalized) prior to the FreeSurfer processing, whereas 

the individual scans processed by FreeSurfer were not. However, since FreeSurfer produced 

significantly poorer results when segmenting previously preprocessed images, we were not able to 

compare FreeSurfer results on scans that were consistently preprocessed. 

BISON had the lowest variability in its estimated tissue volumes, followed by FreeSurfer and 

SPM12 (Table 2). This lower variability might be due to the fact that BISON itself was trained 

based on a multi-center and multi-scanner dataset, and therefore was able to deal with some of the 

variabilities across scanners.  

SNR had a significant impact on many of the estimated volumes. All methods had significantly 

different CSF estimates across high and low SNR tertiles. FAST, FreeSurfer, and SPM12 also had 

significantly higher WM volume estimates for high versus medium and low tertiles as well as 

corresponding significantly lower GM volume estimates. Overall, BISON had the smallest amount 

of difference between the volumes estimated across SNR tertiles, followed by FreeSurfer. This is 

an important concern, particularly when using data from older 1.5T scanners which tend to have 

lower SNRs. These results also signify the importance of acquiring data with the best possible 

SNR to minimize the consequent variability in volumetric measurements. 

BISON had the smallest sample size requirement across all scanners and tissue types, followed by 

FreeSurfer, and SPM12. As expected, the necessary sample size decreased for all methods and 

tissue types when using data from one specific scanner. This is an important concern when 

designing multi-scanner studies that acquire data using scanners from different manufacturers. 
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One of the limitations of this study is the inconsistent distribution of the data across different 

scanners. Out of the 90 scans used in this study, nine scans were acquired on GE, 31 on Philips, 

and 50 on Siemens. In addition, mean ± standard deviation for age was 45.49 ± 1.07 for GE scans, 

42.28 ± 2.85 for Philips scans, and 44.85 ± 1.26 for Siemens scans. The differences between age 

at scan for Philips with the other two manufacturers were statistically significant (p<0.002). These 

differences might introduce some variability into the scanner comparisons results that are not 

caused by scanner differences. 

In this paper, we have compared the performance of six publicly available, widely used tissue 

classification methods on a travelling human phantom dataset, containing 90 scans across 28 sites, 

and with 12 different scanner models. Our comparisons provide a practical benchmark on the 

reliability of each technique, and the amount of variability that can be expected across scanners 

from different manufacturers and SNR levels when using multi-center and multi-scanner datasets. 
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Supplementary Materials 

 

Figure S.1. Axial slices showing the average SIMON brain. 
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Figure S.2. Axial slices comparing segmentations from Atropos, BISON, Classify_Clean, FAST, FreeSurfer, and 

SPM12 for one scan (Philips Intera 3T scanner). 
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Figure S.3. Estimated tissue volumes across scanner models. GM=Gray Matter. WM=White Matter. CSF= 

CerebroSpinal Fluid. 
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