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Abstract

Excitatory synaptic signaling in cortical circuits is thought to be

metabolically expensive. Two fundamental brain functions, learning

and memory, are associated with long-term synaptic plasticity, but

we know very little about energetics of these slow biophysical pro-

cesses. This study investigates the interplay between stochastic BCM

type synaptic plasticity, its metabolic requirements, and the accu-

racy and retention of stored information in synaptic weights, within

the frameworks of stochastic dynamical systems and nonequilibrium

thermodynamics. The dynamic mean-field is derived for the synap-

tic weights, and it is found that the energy used by plastic synapses,

related to their information content, is primarily caused by fluctua-

tions in the synaptic weights and in presynaptic firing activity. Such

information-related plasticity energy rate, together with the accuracy

of stored information depend nonlinearly on key neurophysiological

parameters, which is due to bistability in the system: synapses plus

their postsynaptic neuron. At the onset of bistability, the memory

lifetime, its accuracy, and plasticity energy rate are all positively cor-

related and exhibit sharp peaks. However, in the bistable regime, the

accuracy of encoded information and plasticity energetics are gener-

ally anticorrelated, which suggests that a precise storing of synaptic

information neither has to be metabolically expensive nor it is limited

by energy consumption. Interestingly, such a limit on synaptic coding

accuracy is imposed instead by a derivative of the plasticity energy

rate with respect to the presynaptic firing, and this relationship has
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a general character that is independent of the plasticity type. An

estimate for primate neocortex reveals that a relative metabolic cost

of BCM type synaptic plasticity, as a fraction of the overall neuronal

cost, can vary from negligible to substantial, depending on a synaptic

working regime and presynaptic firing.

Email: jkarbowski@mimuw.edu.pl

Keywords: energy cost of synaptic plasticity; accurate storing of synaptic information;

bistability; memory lifetime; metabolism; thermodynamic limits on memory.
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1. Introduction

Information and energy are intimately related for all physical systems because in-

formation has to be written on some physical substrate which always comes at some

energy cost [1, 2, 3, 4, 5]. Brains are physical devices that process information and

simultaneously dissipate energy [6, 7] in the form of heat [8]. This energetic cost is rela-

tively high [7, 9, 10, 11], which is the likely cause for a sparse coding strategy in neural

circuits [12, 13]. Experimental studies [14, 15], as well as theoretical calculations based

on data [16, 17], indicate that short-term synaptic signaling is the major consumer of

metabolic energy.

Brains are also highly adapting objects, which learn and remember by encoding and

storing long-term information in excitatory synapses (dendritic spines) [18, 19]. These

important slow processes are driven by correlated electric activities of pre- and post-

synaptic neurons [20, 21, 22, 23, 24] and cause plastic modifications in spine’s intrinsic

molecular machinery, leading to changes in spine size, its conductance (weight) and

postsynaptic density (PSD) [18, 25, 26, 27]. Consequently synaptic plasticity and asso-

ciated information writing and storing must cost energy, since spines require chemical

energy for maintaining AMPA and NMDA receptors [28, 29], as well as for powering

various molecular processes associated with PSD [30, 31]. The most visible empirical

manifestation of the plasticity-energy relationship is present for mammalian cortical

development, during which synaptic density can change several fold and strongly cor-

relates with changes in glucose metabolic rate of cortical tissue [17]. Unfortunately,

despite a massive literature on modeling synaptic plasticity (e.g. [21, 22, 23, 24, 32, 33,
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34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]), our theoretical understanding of the energetic

requirements underlying synaptic plasticity and memory storing is currently lacking. In

particular, we do not know the answers to the basic questions, such as how does energy

consumed by plastic synapses depend on key neurophysiological parameters, and more

importantly, whether energy restricts the precision of synaptically encoded information

and its lifetime, and to what extent. Such a knowledge might lead to a deeper under-

standing of two fundamental problems in neuroscience: one related to the physical cost

and control of learning and memory in the brain [18, 19, 30, 37, 45, 46, 47], and another

more practical related to dissecting the contribution of synaptic plasticity to signals in

brain imaging [10, 14, 48, 49]. A recent study by the author [50] provided some answers

to the above questions, by analysing molecular data in synaptic spines and by modeling

energy cost of learning and memory in a cascade model of synaptic plasticity (mim-

icking molecular interactions in spines). From that study it follows that the average

cost of synaptic plasticity constitutes a small fraction of the metabolic cost used for

fast excitatory synaptic transmission, about 4 − 11%, and that storing longer memory

traces can be relatively cheap [50]. However, this study left open other questions, e.g.,

how does the energy cost of synaptic plasticity depend on neuronal firing rates, synap-

tic noise, and other neural characteristics, and what is the relationship between such

energy cost and a precise storing of synaptic information?

The main goal of this study is to uncover a relationship between synaptic plasticity,

its energetics, and a precise information storing at excitatory synapses for one of the

best known forms of synaptic plasticity due to Bienenstock, Cooper, and Munro, the

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.28.922948doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922948
http://creativecommons.org/licenses/by-nc-nd/4.0/


so-called BCM rule [21]. This is a different (more macroscopic) but a complementary

level of modeling to the one (microscopic) in [50]. Specifically, we want to find the

energy cost of maintaining an accurate information at synapses in the face of ongoing

variable neural activity and thermodynamic fluctuations inside spines associated with

variation in the number of membrane receptors. The phenomenological BCM rule has

been shown to explain several key experimental observations [51], and it is equivalent to

a more microscopic STDP rule [20, 23, 24] under some very general conditions [34, 52].

Since, the BCM rule is believed to describe initial phases of learning and memory [47],

the focus of this work is on the energy cost and coding accuracy of the early synaptic

plasticity, i.e. early long-term potentiation (e-LTP) and depression (e-LTD), which

lasts from minutes to several hours. We do not consider explicitly the effects of memory

consolidation that operate on much longer time scales and which are associated with

late phases of LTP and LTD (l-LTP and l-LTD) [40, 42, 53]. However, we do provide a

rough estimate of the energetics of these late processes, and they turn out to be much

less energy demanding than the early phase plasticity.

One can question whether the approach taken here, with the macroscopic BCM type

model, is reasonable for modeling and calculating energy cost of synaptic plasticity?

Maybe a more microscopic approach should be used with explicit molecular interactions

between PSD proteins? However, the basic problem with such a microscopic more

detailed approach is that we do not know most of the molecular signaling pathways

in a dendritic spine, we do not know the rates of various reactions, and even the basic

mechanism of encoding information at synapses is unclear. For example, for a long time
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it was thought that CaMKII persistent autophosphorylation provides a basic mechanism

of information storage via bistability [30, 31]. However, experimental data indicate that

CaMKII enhanced activity after spine activation is transient and lasts only about 2 min

[54], which casts doubts on its persistent enzymatic activity and its role as a “memory

molecule” (for a review see [55]). Taking all these uncertainties into account, it seems

that more macroscpic approach might be more reliable, at least partly.

Because synapses/spines are small, they are strongly influenced by thermal fluctu-

ations [18, 29, 56]. For this reason, this paper uses universal methods of stochastic dy-

namical systems and non-equilibrium statistical mechanics [57, 58, 59, 60, 61, 62, 63, 64].

The latter are generally valid for all physical systems, including the brain, operating

out of thermodynamic equilibrium. Regrettably, the methods of non-equilibrium ther-

modynamics have virtually not been used in neuroscience despite their large potential

in linking brain physicality with its information processing capacity, with two recent

exceptions [50, 65]. (This should not be confused with equilibrium thermodynamics,

whose methods have occasionally been used in neuroscience, although in a different

context, e.g., [12, 66, 67].)

General outline of the problem considered.

It is generally believed that long-term information in excitatory synapses is encoded in

the pattern of synaptic strengths or weights (membrane electric conductance), which

is coupled to the molecular structure of postsynaptic density within dendritic spines

[19, 30, 31, 45, 68]. This study considers the energy cost associated with maintaining

the pattern of synaptic weights. In particular, we analyze the energetics and information
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capacity of the fluctuations in the number of AMPA and NMDA receptors on a spine

membrane, or equivalently, fluctuations in the synaptic conductance. Such a variability

in the receptor number tends to spread the range of synaptic weights (affecting their

structure and distribution) that has a negative consequence on the encoded information

and can lead to its erasure. In terms of statistical mechanics, the receptor fluctuations

increase the entropy associated with the distribution of synaptic weights, and that

entropy has to be reduced to preserve the information encoded in the weights. This very

process of reducing the synaptic entropy production is a nonequilibrium phenomenon

that costs some energy, which has to be provided by various processes involving ATP

generation [57].

The BCM type of synaptic plasticity used here is a phenomenological model that

does not relate in a straightforward way to the underlying synaptic molecular processes.

Empirically speaking, a change in synaptic weight in e-LTP is caused by a sequence of

molecular events, of which the main are: activation of proteins in postsynaptic density,

which subsequently stimulates downstream actin filaments elongation (responsible for

a spine enlargement), and AMPA and NMDA receptor trafficking [28, 29]. Therefore,

it is assumed here that BCM-type rule used here macroscopically reflects broadly these

three microscopic processes, especially the first and the last. (Spine volume related to

actin dynamics is not explicitly included in the model, although it is known experi-

mentally that spine volume and conductance are positively correlated [18].) Thus, it is

expected that the synaptic energy rate calculated here is related to ATP used mainly

for postsynaptic protein activation (through phosphorylation process [68]) and recep-
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tor insertion and movement along spine membrane. Obviously, there are many more

molecular processes in a typical spine, but they are either not directly involved in spine

conductance variability or they are much faster than the above processes (e.g. releasing

Ca2+ from internal stores is fast). A detailed empirical estimation based on molecular

data suggests that protein activation via enhanced phosphorylation is the dominant

contribution to the energy cost (ATP rate) of synaptic plasticity [50]. Therefore, the

theoretical energy rate of synaptic plasticity determined here should be viewed as a

minimal but a reasonable estimate of energetic requirement of LTP and LTD, and it is

strictly associated with the information encoded in synaptic weights.

Experimental data show that excitatory synapses can exist in two or more stable

states, characterized by discrete synaptic weights or sizes [18, 69, 70, 71, 72, 73]. Data on

a single synapse level indicate that synapses can operate as binary elements either with

low or high electric conductance [70, 71]. On the other hand, the data on a population

level, more relevant to this work, show that synapses can assume more than two stable

discrete states [18, 72, 73]. In either case, the issue of bistability vs. multistability

is not yet resolved. In this study, a minimal scenario is considered in which synapses

together with its postsynaptic neuron can effectively act as a binary coupled system,

characterized by a single variable, which is the mean-field postsynaptic current with

one or two stable states. The bistability is produced here on a population level from

an extended BCM model, which in principle allows for continuous changes in synaptic

weights for the individual synapses. The important point is that these continuous

weights are correlated, due to plasticity constraints, and thus converge on a mean-field
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population level either to one or to a couple of stable values.

Synaptic plasticity processes are induced by a correlated firing in pre- and post-

synaptic neurons, and thus a model of neuron activity is also needed. This study uses

a firing rate neuron model of the so-called class one nonlinear firing rate curve, which

is believed to be a good approximation to biophysical neuronal models [74, 75]; see the

Methods for details.

The paper is organized as follows. First, we derive an effective equation for the mean-

field stochastic dynamics of the synaptic currents starting from the BCM plasticity rule.

Then, we translate this effective equation into probabilistic Fokker-Planck formalism,

and derive an effective steady-state potential for the synaptic current. With the help

of the effective potential we find entropy production and Fisher information associated

with the synaptic plasticity stochastic dynamics. Entropy production is related to the

energy cost of BCM plasticity, while the Fisher information is related to the accuracy

of encoded information in synapses (strictly in the mean-field synaptic current) about

the presynaptic input. Details of the calculations are provided in the Methods (and

some in Supporting Information S1).
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2. Results

Effective equation for stochastic BCM-like synaptic plasticity: separation of

time scales.

In this section an effective equation for population averaged synaptic current is derived,

starting from the BCM plasticity rule. This single mean-field synaptic equation will be

much easier to handle analytically than many coupled equations describing the dynamics

of the system of many synapses on a typical neuron.

We consider a sensory neuron with N plastic excitatory synapses (dendritic spines).

We assume that synaptic weights wi (i = 1, ..., N), corresponding to spine electric

conductances, change due to two factors: correlated activity in presynaptic and post-

synaptic firing rates (fi and r, respectively), and thermodynamic fluctuations in spine

conductance (∼ σw). The latter are caused by an internal thermal noise present in

spines because of their small size (< 1 µm) and relatively small number of molecular

components [18, 56]. The dynamics of synaptic weights is given by a modified BCM

plasticity rule [21]:

dwi

dt
= λfir(r − θ) − (wi − ǫa)

τw
+

√
2σw(τffi)

z

√
τw

ηi (1)

τθ
dθ

dt
= −θ + αr2, (2)

where λ is the amplitude of synaptic plasticity controlling the rate of change of synaptic

conductance, τw is the weights time constant controlling their decay duration, θ is the
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homeostatic variable the so-called sliding threshold (adaptation for plasticity) related

to an interplay of LTP and LTD with time constant τθ, and α is the coupling intensity

of θ to the postsynaptic firing rate r. The parameter σw is the standard deviation

of weights (in units of conductance) due to stochastic intrinsic fluctuations in spines,

which are represented as Gaussian white noise ηi with zero mean and Delta function

correlations, i.e., 〈ηi(t)〉η = 0 and 〈ηi(t)ηj(t
′)〉η = δijδ(t − t′) [58]. For the thermal

noise we consider two exclusive cases: either noise amplitude is independent of the

presynaptic firing rate fi (z = 0) or it is proportional to fi (z = 1). The time scale

τf of fluctuations in fi was added in the noise term to maintain the dimensionality of

σw in units of conductance. Finally, the product ǫa is the minimal synaptic weight

when there is no presynaptic stimulation (fi = 0), where the unitless parameter ǫ≪ 1.

There are two modifications to the conventional BCM rule: the stochastic term ∼ σw,

and the decay term of synaptic weights with the time constant τw, which is key for

reproducing a binary nature of synapses [70, 71] and for determining energy used by

synaptic plasticity.

The conventional BCM rule (i.e. for τw 7→ ∞ and σw = 0) describes temporal

changes in synaptic weights due to correlated activity of pre- and post-synaptic neurons

(both fi and r are present on the right in Eq. (1)). These activity changes can either

increase the weight, if postsynaptic firing r is greater than the sliding threshold θ (this

corresponds to LTP), or they can decrease the weight if r < θ (corresponding to LTD).

The interesting aspect is that θ is also time dependent, and it responds quickly to

changes in the postsynaptic firing. In effect, when both dynamical processes in Eqs.
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(1-2) are taken into account, the synapse is potentiated for low r (LTP) and depressed

for high r (LTD).

The stochastic system of N+1 equations described by Eqs. (1) and (2) is intractable

analytically, because it is a coupled nonlinear system. The coupling takes place via

postsynaptic firing rate r, which depends on all synaptic weights wi. Therefore, the

first goal is to reduce this multidimensional system into a single effective equation

that would be amenable to analytical considerations, and which enable us to obtain

explicit formulae for synaptic energy rate and coding accuracy. Such reduction can

be done because of the time scale separation between neural firing dynamics (changes

typically on the order of seconds or less) and between synaptic plasticity (changes on

the timescale of minutes/hours). Moreover, we assume that the two synaptic plasticity

processes, described by Eqs. 1 and 2, have two distinct time scales, and the dominant is

τw. This is in agreement with empirical observations and estimations, since τw must be

of the order of 1 hr to be consistent with slice experiments, showing wiping out synaptic

potentiation after about 1 hr when presynaptic firing becomes zero [76, 77]. (Note that

τw refers to the decay of synaptic weights to the baseline value ǫa, and it should not be

confused with a characteristic time of plasticity induction, which is controlled by the

product λfir in Eq. (1) and which can be much faster, ∼ minutes [70, 71].) On the

other hand, the time constant τθ must be smaller than about 3 min for stability reasons

[47, 77], and it even has been estimated as small as ∼ 12 sec [78]. Consequently, for

times of the order of τw, we have dθ/dt ≈ 0, which implies that θ ≈ αr2. The details of

the reduction procedure can be found in the Methods, and we obtain a single plasticity
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equation for a population averaged excitatory postsynaptic current v per spine, which

is related to wi and fi by v ∼ (1/N)
∑

i fiwi. The result is

dv

dt
= hr2(1 − αr) − (v − ǫcfo)/τw +

√
2σv√
τw

η. (3)

This equation essentially couples slow synaptic activities with fast neural activities,

and gives a single equation describing the mean-field dynamics of the coupled system:

synapses plus their postsynaptic neuron. In Eq. (3), the symbol h is the driving-

plasticity parameter given by

h = λβ(f 2
o + σ2

f), (4)

with fo and σf denoting the mean and standard deviation of presynaptic firing rates,

and β depending on neurophysiological parameters related to synaptic currents as

β = q|Vr|(τnmda + τampa), where q is the probability of neurotransmitter release, Vr

is the neuron resting membrane potential, and τnmda, τampa are the time constants for

NMDA and AMPA receptors (see the Methods for details). Mathematically, the driving-

plasticity h is proportional to the product of plasticity amplitude λ and the presynaptic

driving (f 2
o + σ2

f), which implies that h grows quickly with the presynaptic firing rate.

Physically, h is proportional to the electric charge that, on average, can enter the spine

due to a correlated activity of pre- and post-synaptic neurons (h has a unit of electric

charge). This means that the magnitude of h is a major determinant of the plasticity
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(driving force counteracting the synaptic decay), since larger h can experimentally cor-

respond to more Ca+2 entering the spine and a higher chance of invoking a change in

synaptic strength, which agrees qualitatively with the experimental data [28, 30].

The rest of the parameters in Eq. (3) are c = aβ, and η = (
∑

i ηi)/
√
N , which

denotes a new (population averaged) Gaussian noise with zero mean and delta func-

tion correlations. This population noise has the amplitude σv, which corresponds to a

standard deviation of v when h = 0, and it is given by

σv =
βσw√
N
τ z
f

(

f z+1
o + zσz+1

f

)

. (5)

Note that σv scales as 1/
√
N , and it is a product of the intrinsic synaptic conductance

noise and of the presynaptic neural activity. The latter implies that a higher presynaptic

activity amplifies the current noise. Note also that fluctuations in the presynaptic firing

rate (∼ σf ) enter σv only when z = 1, which relates to the fact that these fluctuations

are much faster (∼ τf) than the internal variability in synapses (∼ τw).

In Eq. (3), the postsynaptic firing rate r assumes its quasi-stationary value (due to

time scale separation), and is related to v through (for details see the Methods):

r =
1

2

(

−A2κ+
√
A4κ2 + 4A2v

)

, (6)

where A is the postsynaptic firing rate amplitude, and κ is the intensity of firing rate
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r adaptation. Broadly speaking, the magnitude of κ reflects the strength of neuronal

self-inhibition due to adaptation to synaptic stimulation (see Eqs. 16 and 17 in the

Methods). Generally, increasing κ leads to decreasing postsynaptic firing rate r (Fig. 1).

For κ = 0, we recover a nonlinear firing rate curve (square root dependence on synaptic

current v) that is characteristic for class one neurons [74, 75], while for sufficiently large

κ, i.e. for κ ≫ 2
√
v/A, we obtain a linear firing rate curve r(v) ≈ v/κ (Fig. 1A).

Equations (3) and (6) form a closed system for determining the stochastic dynamics of

the postsynaptic current v.

Bistability in mean-field synaptic current and an effective potential.

For cortical neurons the number of spines per neuron are very large (N ∼ 104 [79, 80]),

and thus one can expect that σv is small and consequently the fluctuations around the

population average current v are rather weak. The results described below are obtained

in the limit of very large N .

In the deterministic limit (N 7→ ∞; σv = 0), the plasticity model in Eq. (3) can

generate two stable stationary (steady-state) solutions corresponding to weak and strong

currents/synapses. This can be seen by putting dv/dt = 0 in Eq. (3), and rearranging

it to the form

v = g(v), (7)

where the right hand side of this equation, g(v) = ǫcfo + τwhr
2(1−αr), and it depends
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on v only through r as in Eq. (6). Moreover, the function g(v) has a maximum with

height proportional to h. When h is very small, Eq. (7) has only one solution v ∼ O(ǫ)

(i.e. one intersection point of the curves representing the functions on the right and on

the left; Fig. 1B). This solution corresponds to weak synapses and monostable regime.

Increasing h, by increasing f0, causes an increase in the maximal value of the right hand

side in Eq. (7), such that more solutions are possible (Fig. 1B). In particular, when h

grows above a certain critical value hcr, Eq. (7) generates 3 solutions (one ∼ O(ǫ) and

two other ∼ O(1)), of which the middle one is unstable (Fig. 1B). This case corresponds

to bistable regime with two stable solutions, representing weak and strong synaptic

currents that can be called, respectively, “down” and “up” synaptic states. These two

states could hypothetically be related to thin and mushroom dendritic spines, with

small and large number of AMPA receptors, respectively [81]. For very large driving-

plasticity h the two lower solutions disappear and we have again a monostable regime

with strong synapses only (Fig. 1B).

A geometrical condition for the emergence of bistability is when the function g(v)

in Eq. (7) first touches tangentially the line y = v, i.e. when dg/dv = 1 (Fig. 1B).

Solving this condition together with Eq. (6) yields for ǫ ≪ 1 the critical value of the

driving-plasticity parameter hcr as

hcr =
ακ

τw

(

1 +
√

1 + (ακA2)−1

)2

+O(ǫ). (8)

Note that for very fast decay in Eq. (3), i.e. for τw 7→ 0, the bistability is lost, since
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then hcr 7→ ∞, and there is only one solution corresponding to weak synapses v ∼ O(ǫ).

Bistability is also lost in the opposite limit of extremely slow decay, τw 7→ ∞, but in

this case the only solution corresponds to strong synapses. Interestingly, for very strong

neural adaptation, κ 7→ ∞, the bistability also disappears, since then hcr 7→ ∞. This

case corresponds to extremely small postsynaptic firing rates, r ≈ v/κ ≈ 0 (Fig. 1A),

and indicates the absence of a driving force capable of pushing synapses to a higher

conducting state. On the other hand, when there is no adaptation, κ 7→ 0, the critical

hcr 7→ (τwA
2)−1, i.e. it is finite. This means that it is easier to produce synaptic

bistability for neurons with stronger nonlinearity in their firing rate curves (see Eq. 6;

Fig. 1A).

For N large but finite the description becomes probabilistic since σv > 0, and one

can map Eq. (3) for the dynamics of v into an equation for the dynamics of the

probability distribution of v conditioned on fo, i.e. P (v|fo), described by a Fokker-

Planck equation (see Eq. 26 in the Methods). In the stochastic stationary state,

characterized by the stationary probability distribution Ps(v|fo), we can define a new

and important quantity called an effective potential Φ(v|fo), which is a function of the

synaptic current v. The effective potential Φ is proportional to the amount of energy

associated with the synaptic plasticity described by Eq. (3), and it is related to the

stationary probability distribution Ps(v|fo) via Φ(v|fo) ∼ − lnPs(v|f0) [58]. If we use

a mechanical analogy and treat v as a spatial coordinate, then synaptic plasticity can

be visualized as a movement in v space (state transitions), which is constrained by the

energy related to Φ. This means that the shape of the function Φ(v) determines what
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kind of motions in v-space (state space) are possible or more likely. In particular, the

binary nature of synaptic plasticity given by Eq. (3) can be described as transitions

between two wells of the effective potential Φ(v|f0), corresponding to weak and strong

synapses (e.g. [24, 32, 39]). These transitions can be thought as “hill climbing” process

in the v space, which requires energy due to a barrier separating the two wells (Fig. 2).

The effective potential Φ can be found explicitly as (see the Methods)

Φ(v|fo) =
v

τw

(

1

2
v − ǫcfo

)

− h

[

κr3
(

1

3
− αr

4

)

+
r4

A2

(

1

2
− 2αr

5

)

]

. (9)

Note that the second term in Φ (with the large bracket) is proportional to the plasticity

amplitude λ through h. This term depends on v through the firing rate r (see Eq. 6).

In general, the functional form of the potential Φ(v|fo) determines the thermodynamics

of synaptic memory, and thus it is an important function.

The shape of the potential Φ(v|fo) depends on the relative magnitude of the driving-

plasticity h and the inverse of the decay time constant 1/τw (Fig. 2A). In fact, there are

two competing terms in Φ that are controlled by 1/τw and h. The first term (∼ 1/τw)

maintains monostability, while the second (∼ h) promotes bistability. For h greater than

the critical value hcr (Eq. 8), there is bistability and Φ has two minima corresponding

to up (strong) and down (weak) synaptic states (Fig. 2A), similar to the result for the

deterministic limit. For very large h, there is again only one minimum related to strong

synapses (Fig. 2A).

Due to fluctuations in the presynaptic input and in the internal synaptic machinery,
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the mean-field synaptic current v can make occasional transitions between up and down

states, which makes it effectively metastable. The dwelling times in both states (Tu, Td)

can be found from the classic Kramers “escape” formula (Eq. 29; [58]), and they are

generally much larger than the time constant τw (Fig. 2B). The characteristic memory

time Tm in the synaptic system is strictly related to Tu and Td by Eq. (32). Generally,

the memory lifetime is very small in the monostable regime (Tm ∼ τw), i.e. for small

presynaptic firing (Fig. 2B). However, it jumps by several orders of magnitude when

synapses become bistable (i.e. when h ≈ hcr), but then Tm monotonically decreases

with increasing fo (Fig. 2B).

The probabilities for synaptic currents in up and down states, pu and pd, are propor-

tional to the dwelling times Tu and Td via Eq. (30). These probabilities are important

for determining analytically synaptic energy rate and Fisher information (see below).

Energy rate of synaptic plasticity.

The power dissipated by synaptic plasticity Ė, or its metabolic rate, is proportional

to the average temporal rate of the effective potential decrease, i.e. −〈dΦ(v|f0)/dt〉,

where 〈...〉 denotes averaging with respect to the probability distribution P (v|fo). Since

the potential Φ(v|f0) depends on time only through v, after rearranging we get Ė ∼

−〈(dv/dt)(dΦ/dv)〉. Thermodynamically, this formula is equivalent to the entropy pro-

duction rate associated with the stochastic process described by Eq. (3), and repre-

sented by the effective potential Φ(v|fo) [57, 60, 61, 62, 63]. The synaptic plasticity

energy rate Ė can be found analytically using 1/N expansion, and in the steady state

takes the form (see Methods):
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Ė =
Eoσ

2
v

4τw

∑

i=d,u

pi

(Φ
(2)
i )2

[

3(Φ
(3)
i )2 + 2Φ

(2)
i Φ

(4)
i

]

+O(1/N2), (10)

where Eo is the characteristic energy scale for variability in spine conductance (it pro-

vides a link with an underlying molecular processes; see the Methods), and Φ
(n)
i denotes

the nth derivatives of the potential with respect to v at v = vi, which can be easily found

from Eq. (9). Note that in Eq. (10) the terms of the order O(1) disappear, and the

first nonzero contribution to Ė is of the order O(1/N), since σv ∼ 1/
√
N . Moreover,

to have nonzero power in this order, the potential Φ(v) must contain at least a cubic

nonlinearity.

Eq. (10) indicates that energy is needed for plasticity processes associated with

the potential Φ “hill climbing”, which is in analogy to the energy needed for a particle

trapped in a potential well (of a certain shape) to escape. The energetics of such a

“motion” in the v-space depends on the shape of the potential, which is mathematically

accounted for by various higher-order derivatives of Φ. Thus, a fraction of synapses that

were initially in the down state (pd) can move up the potential gradient to the up state

by overcoming a potential barrier, but this requires the energy that is proportional to σ2
v

and to the derivatives of the potential. By analogy, a similar picture holds for synapses

that were initially in the up state. The prefactor σ2
v in Eq. (10) indicates that the

transitions up↔down, as well as local fluctuations near these states, cost energy that

is proportional to the intrinsic thermodynamic noise in spines (∼ σw) and presynaptic

activity (including its fluctuations ∼ f z+1
o +zσz+1

f ). The important point is that if there
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is no intrinsic spine noise (σw = 0), then there are no transitions between the up and

down states in the steady state, and consequently there is no energy dissipation (σv = 0),

regardless of the fast presynaptic input magnitude. In such a noiseless stationary state,

the plasticity processes described by Eq. (3) are energetically costless, since there are

no net forces that can change synaptic weight, or mathematically speaking, that can

push synapses in the v-space. (This is not true under non-stationary conditions when

there is some temporal variability in one or more parameters in Eq. 3, leading to

dissipation, but the focus here is on the steady state). This situation resembles the

so-called “fluctuation-dissipation” theorem known from statistical physics [57, 58, 59],

where thermal fluctuations always cause energy loss. In our case, this fluctuation-

dissipation relationship underlines a key role of thermodynamic fluctuations for the

metabolic load of synaptic plasticity.

The synaptic energy rate (Eq. 10) depends on neurophysiological parameters that

are hidden in the derivatives of Φ. The exact dependencies on these parameters are

complicated, but we can make some approximations and obtain a more explicit formula

for Ė. The two basic approximations are that (i) the current v in the down state is

small O(ǫ), and (ii) the coexistence of up and down states takes place mostly for h close

to hcr (transition point to bistability), such that the term (h−hcr)
−1 is relatively large.

Taking these steps into account the approximate form of Ė is

Ė ≈ 3Eoσ
2
vh

4[κ+O(ǫ)]4

(

4pd

[

hτw + ακ+
2

A2

]

+
α2κ2Bpu

τw(h− hcr)

)

+O(ǫ), (11)
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where B is the dimensionless parameter B = (1+
√

1 + d)4/[
√

1 + d(1+2d+
√

1 + d)2],

with d = (ακA2)−1 (B is between 0 and 4). The second term in the large bracket ∼ pu

is present only when h > hcr, i.e. when there is synaptic bistability (pu > 0).

Eq. (11) has an interesting interpretation. The terms in the large bracket propor-

tional to pd and pu are proportional to the energy rates associated with the transitions

down → up and up → down, respectively. These transitions cost energy because they

are associated with overcoming the potential barrier separating the up and down states.

Interestingly, the cost of the transition from the down to up state is proportional to

hτw, i.e. driving-plasticity parameter, and inversely proportional to the amplitude of

postsynaptic firing rate 1/A2. The latter means that for large amplitude A, the transi-

tions down → up are less likely and hence they cost less energy. The opposite is true

for the transitions up → down (terms ∼ pu), which are enhanced for large A (through

the parameter B), and hence cost more energy. Moreover, the transition up → down

is amplified and is very energetic for h close to hcr, i.e. in the regime when bistability

first appears. This is due to the factor (h− hcr)
−1 present in Eq. (11), which signifies

a sort of phase transition up↔down. For h larger than hcr, the transitions from the

up to down states are rare and consequently they use less energy; this is the regime of

energetic efficiency (see also below). However, when h≫ hcr, there is only the up state

(pd 7→ 0; Fig. 2A) with large fluctuations around it that cost progressively more energy

(the prefactor σ2
vh grows with firing rate f0 and with h).

The dependence of the synaptic plasticity metabolic rate on the average presynaptic

firing fo is shown in Fig. 3, together with a comparison of the exact and approximate
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formulas for Ė (Eqs. 10 and 11). Generally, the energy rate Ė for z = 1 is about

two-three orders of magnitude larger than for z = 0, which are the cases for synaptic

noise either multiplied by presynaptic firing rate or not. For z = 0, the approximation

to Ė given by Eq. (11) is very good only for low firing rate; at higher frequencies

they start to deviate (Fig. 3). For z = 1, the approximation to Ė is very good in a

broad range of fo except at the transition point to bistability (h ≈ hcr). The behavior

of Ė on fo can be divided roughly into three phases, which are determined chiefly by

whether synapses are in mono- or bistable regimes. In both cases of z, the energy rate

Ė starts from a low level at monostable regime and increases weakly with increasing fo

up to an onset of bistability, where the behavior of Ė is dramatically different for z = 0

and z = 1 (Fig. 3). For z = 1 there is a sharp peak in the energy rate for h ≈ hcr

(phase transition) accompanied by a subsequent broad minimum (coexistence of weak

and strong synapses), and then a monotonic increase of Ė for larger fo (monostability

with strong synapses). For z = 0 there is no peak at h ≈ hcr, but rather a cusp, and

then there is a monotonic increase of Ė with increasing fo. The lack of the peak for

z = 0 is related to the fact that pu increases weakly and smoothly form extremely small

values without a sudden jump as for z = 1, which effectively smoothes out the behavior

of Ė (see also below).

The results in Fig. 3 show that the cases with z = 0 and z = 1 differ qualitatively

in terms of the dependence of pd, pu and Ė on the average presynaptic firing rate fo.

For z = 0, there are sharp transitions form synaptic monostability to bistability, and

generally the bistable region is very narrow in comparison to the case for z = 1. This
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implies that for z = 0, the synapses are mostly either exclusively in the down or in

the up state, which does not seem to be realistic. For that reason, in the remaining of

the paper, we focus mostly on the case with a broad bistable coexistence, i.e. the case

z = 1.

Energy cost of plastic synapses as a fraction of neuronal energy cost: com-

parison to experimental data.

In order to assess the magnitude of the synaptic plasticity energy rate, we compare it

to the rate of energy consumption by a typical cortical neuron for short-term signaling

and maintaining of the resting potential [10]. The neural signaling includes spiking

activity and synaptic transmission, which are known to consume the majority of the

neural energy budget [10, 16, 17]. The ratio of the total energy rate used by plastic

synapses NĖ to the neuron’s energy rate Ėn (given by Eq. (40)) is computed for dif-

ferent presynaptic firing rates and different cortical regions. In Figs. 4 and 5, we show

the results for human and macaque cerebral cortex. These plots indicate that synaptic

plasticity contribution depends strongly on the presynaptic firing rate fo, and ranges

from negligible (∼ 0.001−0.01%) to substantial (∼ 20−30%), depending mostly on the

proximity to the point of bistable phase transition, cortical area, and neuronal firing

rate adaptation κ (Figs. 4 and 5). For example, for human cortex the ratio NĖ/Ėn is

generally larger in the visual cortex than in the frontal (Fig. 4), whereas for macaque

cortex the reverse is observed (Fig. 5). Moreover, the plasticity contributions to neu-

ronal metabolism are qualitatively very similar for human and macaque cortex, despite

large differences in their sizes (compare Figs. 4 and 5).
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Information encoded by plastic synapses.

Information or memory written in the synaptic structure about the average input fo

is encoded in the synaptic current probability distribution P (v|f0). This distribution

is exponentially related to the potential Φ(v|f0) in the stochastic steady state (see Eq.

27). Accuracy of the encoded information can be characterized by Fisher information

IF [82]. In general, larger IF implies a higher coding precision. Fisher information can

be derived analytically (see the Methods) as

IF (fo) =
τ 2
wpupd

σ4
v

[

∆Φ′

ud − 2
σ′

v

σv
∆Φud

]2

[1 +O(1/N)] +O(1), (12)

where ∆Φud = Φ(vu) − Φ(vd), with the currents vu, vd in the up and down states (Eq.

28), and the prime denotes a derivative with respect to fo. Note that, in the leading

order, IF depends on the derivatives of Φ with respect to fo.

The first term in Eq. (12) ∼ 1/σ4
v ∼ N2 corresponds to the contribution from the

bistable regime, and it is much larger than the contribution denoted as O(1) corre-

sponding to the monostability. In the bistable interval, IF should have a maximum

when pupd is maximal, i.e. when pu ≈ pd ≈ 0.5. In the monostable regime, the first

term disappears and IF becomes of the order of O(1), which is the primary reason

why IF (and coding accuracy) is several orders of magnitude smaller when synapses are

monostable (see below).
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Accuracy and lifetime of synaptically stored information vs plasticity energy

rate.

How the long-term energy used by synapses relates to the accuracy and persistence

of stored information? The above results indicate that Ė and IF depend inversely on

the synaptic noise σv, suggesting that its lowering should be beneficial since gain in

information is accompanied by a decrease in synaptic energy rate.

A more complicated picture emerges if other parameters are varied, notably driving

presynaptic input fo (Fig. 6). At the onset of bistability, Fisher information IF and

memory lifetime Tm both increase dramatically with a corresponding sharp increase

in energy rate Ė, which implies that initial improvement in information accuracy and

its retention cost a huge amount of energy, which is something one can expect from a

physical point of view [1, 2, 3, 4, 5]. However, for higher fo, when weak and strong

synapses coexist there is a different trend. In this coexistence region when fractions of

weak and strong synapses are roughly similar, Fisher information has a second broad

maximum, memory lifetime weakly decreases, whereas the synaptic energy rate exhibits

a very broad minimum (Fig. 6). Moreover, this minimal value of Ė is on the level of

values in the monostable phase. This implies that an improvement in memory fidelity

in the bistable region does not require an additional energy load. For even higher

presynaptic input, when synapses tend to monostability with only the up state present,

Ė increases monotonically due to broad fluctuations around this state, while IF and Tm

decrease, which in turn indicates an inefficiency of information storing in this region.

These considerations can be visualized by comparing the ratios of IF/Ė and Tm/Ė with
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energy rate Ė as a function of fo (Fig. 7). It is shown that IF/Ė and Tm/Ė have maxima

corresponding to minimal values of Ė. This means that the biggest gains in synaptic

information precision and lifetime per energy used are achieved for the bistable phase

where the energy expenditure for plasticity is the smallest (Fig. 7). Taken together,

these results suggest that storing of accurate information in synapses can be relatively

cheap, and thus metabolically efficient, but only in a region with comparable fractions

of weak and strong synapses.

The dependence of Ė, IF , and Tm on the basic neurophysiological parameters

(λ, κ, τw) is shown in Figs. (8-10). Qualitatively, these relationships are nonlinear

and similar to the dependence of Ė, IF , and Tm on presynaptic firing fo, with peaks at

the onsets of bistability. Note that Ė generally increases with the plasticity amplitude

λ, except the interval of a narrow peak (Fig. 8), and decreases strongly with neural

adaptation κ (Fig. 9). The latter dependence is expected based on Eq. (11), where

the energy rate Ė contains the prefactor ∼ 1/κ4. Physically, this reflects the fact that

increasing κ causes the decrease in the postsynaptic firing rate r, which leads to less

dissipated energy. Interestingly, for τw 7→ ∞, i.e. for extremely slow synaptic processes,

we obtain that Ė 7→ 0, which implies that in this case synaptic plasticity could in prin-

ciple be reversible, without dissipation (Fig. 10). This is a hint that the late phases

of synaptic plasticity, related to memory consolidation could be energetically relatively

cheap.
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Precision of coding memory is restricted by sensitivity of synaptic plasticity

energy rate on the driving input.

The above results suggest that synaptic energy utilization does not limit directly the

coding precision of a stimulus, because there is no a simple relationship between Fisher

information and power dissipated by synapses. However, a careful inspection of the

curves in Fig. 6 suggests that there might be a link between IF and the derivative

of Ė with respect to the driving input fo. In fact, it can be shown that in the most

interesting regime of synaptic bistability, to the leading order in 1/N expansion, we

have either (see the Methods)

IF (fo) =
(p′u)

2

pupd
[1 +O(1/N)] , (13)

or equivalently

IF (fo) =
(Ė ′/∆Ė)2

pupd
[1 +O(1/N)] , (14)

where the prime denotes derivative with respect to fo, and ∆Ė is the difference between

energy used by strong and weak synapses. It is important to stress that simple formulas

(13) and (14) have a general character, since they do not depend explicitly on the

potential Φ, and thus they are independent of the plasticity type model. Eq. (13) shows

that synaptic coding precision increases greatly for sharp transitions from mono- to

bistability, since then (p′u)
2 is large. Additionally, Eq. (14) makes an explicit connection
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between precision of synaptic information and nonequilibrium dissipation. Specifically,

the latter formula implies that to attain a high fidelity of stored information, the energy

used by synapses Ė does not have to be large, but instead it must change sufficiently

quickly in response to changes in the presynaptic input.

We can also estimate a relative error ef in synaptic coding of the average presynaptic

firing fo. This error is related to Fisher information by a Cramer-Rao inequality ef ≥

(fo

√
IF )−1 [82]. Using Eq. (14), in our case this relation implies

ef ≥
√
pupd

fo|Ė ′/∆Ė|
. (15)

The value of the product pupd is in the range from 0 to 1/4. In the worst case scenario

for coding precision, i.e. for pupd = 1/4, this implies that a 10% coding error (ef = 0.1),

corresponds to the relative sensitivity of the plasticity energy rate on presynaptic firing

f0|Ė ′/∆Ė| = 5. Generally, the larger the latter value, the higher precision of synaptic

coding. In our particular case, this high level of synaptic coding fidelity is achieved for

the larger neural adaptation (κ = 0.012), which uses less synaptic energy (Figs. 6 and

7). This is yet another indication that precise coding does not have to involve more

energy; in this case the reverse is observed (Fig. 6).
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3. Discussion

General summary.

Neural computation is thought to be metabolically expensive [7, 8, 9, 10, 11, 13, 16], and

it must be supported by cerebral blood flow and constrained by underlying microvas-

culature and neuroanatomy [83, 84]. It is shown here that an important aspect of this

computation, namely long-term synaptic plasticity involved in learning and memory,

constitutes only a small fraction of that overall energy cost, and precise memory storing

can be relatively cheap. This conclusion agrees qualitatively with the results of a recent

study on synaptic plasticity and memory storing in a class of cascade plasticity models

supported by empirical estimates [50].

Specifically, in this study, the energy cost of long-term synaptic plasticity was deter-

mined and compared to the accuracy and lifetime of an information stored at excitatory

synapses. The plasticity model used is an extension of BCM synaptic plasticity [21],

and is similar to the one analyzed in Ref. [77], except the form of the postsynaptic firing

rate and the noise term. The key formulas for the synaptic energy rate and Fisher in-

formation (Eqs. 10 and 12) were derived analytically for the stochastic stationary state

applying (i) the timescale separation between neural and synaptic plasticity activities,

(ii) dimensional reduction, and (iii) using 1/N expansion (small synaptic fluctuations

on a population level), where N is the average number of excitatory synapses per neu-

ron. The formulas in Eqs. (10) and (12) contain various derivatives of the effective

potential Φ, which encodes the plasticity rules and which is proportional to the poten-

tial energy associated with plasticity events related to synaptic weight variability. In
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this scenario, the synaptic plasticity corresponds to a driven stochastic motion of the

population averaged postsynaptic current v in the space constrained by the potential Φ,

in analogy to a ball moving on a rugged landscape with a ball coordinate corresponding

to v. Because our potential can exhibit two minima separated by a potential barrier,

the plasticity considered here can be viewed as a stochastic process of “hill climbing”,

or transitions between the two minima (the idea of “synaptic potential” was used also

in Refs. [24, 32, 39]).

The energy rate of plastic synapses Ė (power dissipated by plasticity) is the energy

used for climbing the potential shape in v-space, and it is proportional to the average

temporal rate of decrease in the potential, −〈dΦ/dt〉, due to variability in v. In terms

of thermodynamics, the plasticity energy rate Ė is equivalent to the entropy produc-

tion rate, because synapses like all biological systems operate out of thermodynamic

equilibrium with their environment and act as dissipative structures [57]. Dissipation

requires a permanent influx of energy from the outside (provided by blood flow [83])

to maintain synaptic structure, which in our case is the distribution of synaptic weight

or strength. A physical reason for the energy dissipation in synapses is their submicro-

scopic size promoting relatively large internal thermal fluctuations that tend to wipe

out the pattern of synaptic weights. Thermodynamically speaking, this means reducing

the synaptic order and thus increasing synaptic entropy. To preserve the order, this in-

creased entropy has to be “pumped out”, in the form of heat, by investing some energy

in the process, which relates to ATP consumption.

The thermal synaptic noise can be additionally enhanced by presynaptic input vari-
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ability, and both of these factors interact nonlinearly and drive synapses far from ther-

modynamic equilibrium to two metastable states, weak and strong, which allows binary

memory storing at some metabolic cost. As a consequence of the nonlinear interactions,

and jumping between weak and strong states, the plasticity energy rate and accuracy of

information coding in synapses depend highly nonlinearly on all essential neurophysio-

logical parameters, such as presynaptic input, plasticity amplitude, postsynaptic firing

rate adaptation, and plasticity time constant (Figs. 8-10). Despite these complexities,

a simple general relationship was found that links the accuracy of stored information

with the sensitivity of synaptic energy rate on driving input and probabilities for find-

ing synapses in up and down states (Eqs. 13 and 14). These relationships are general

in the sense that they are independent of a specific plasticity model, because they are

not directly dependent on the potential Φ (the plasticity type is fully specified in the

potential Φ; see Eq. 9). In addition, Eq. (14) reveals that there is a thermodynamic

constraint on the fidelity of long-term synaptic information, suggesting a link between

nonequilibrium thermodynamics and synaptic memory.

The synaptic bistability considered here emerges on a population level, i.e. for the

effective Eqs. (3) and (6). This means that majority synapses of a neuron participate in

a coordinated switching between up and down states, due to fluctuations in the presy-

naptic firings and internal thermal noise. This mechanism is different from a mechanism

found in Refs. [70, 71], where bistability was reported on a level of a single synapse.

(However, from these papers it is difficult to judge how long the potentiation lasts in

the absence of presynaptic stimulation). Our scenario for bistability is conceptually
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closer to the model of synaptic bistability proposed by Zenke et al 2015 [85], which

also emerges on a population level. Interestingly, both models, the one presented here

and the one in [85], exhibit the so-called anti-Hebbian plasticity, in the sense that LTP

(i.e. v̇ > 0) appears for low firing rates, instead of LTD as for classical BCM rule.

However, in the present model the initial LTP window is very narrow, and appears for

very small postsynaptic firing rates r < (cf0/κ)ǫ ∼ O(ǫ). This feature is necessary for

stable bistability, and does not contradict experimental results on BCM rule verifica-

tion [86], showing LTD for low firing rates. The reason is that these experiments were

performed for firing rates above 0.1 Hz, leaving uncertainty about LTP vs. LTD for

very low activity levels (or very long times).

The cooperativity in synaptic bistable plasticity found here is to some extent similar

to the data showing that neighboring dendritic spines interact and tend to cluster

as either strong or weak synapses [87, 88]. These clusters can be as long as single

dendritic segments, which is called “clustered plasticity hypothesis” [87, 88]. However,

the difference is that in the present model there are no dendritic segments, and spatial

dependence is averaged over, which leads effectively to one synaptic “cluster” either

with up or down states.

Out of two models of synaptic noise, i.e. z = 0 and z = 1 in Eq. (1), it seems

that the case z = 1 better describes neurophysiological data, since it generates a much

broader bistability regime (Fig. 3A).
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Coding of more accurate information in synapses need not require an extra

cost.

The most striking result of this study is that storing memory about presynaptic firing

rate fo does not have to be metabolically expensive. Strictly speaking, the information

encoded at synapses, i.e., its accuracy and lifetime, do not have to correlate positively

with the energy used by synapses (Figs. 6 and 7). Such a correlation is only present at

the onset of synaptic bistability, where a dramatic increase in information precision and

lifetime is accompanied by a sharp and large increase in energy rate, but not further.

In fact, near the broad peak of Fisher information, when the probabilities of having

weak and strong synapses are approximately equal, the synaptic energy rate Ė exhibits

a declining tendency and is close to its minimum that is comparable to values of Ė in

the monostable phase (Fig. 6). This result suggests an energetic efficiency of stored

memory in the bistable synaptic regime, i.e. relatively high information gain per energy

used (Fig. 7).

An additional support for the energetic efficiency of synaptic information comes

from the fact that energy used Ė and coding precision IF depend the opposite way on

synaptic noise σv (compare Eqs. (10) and (12)). Thus, reducing σv (e.g. by decreasing

σw) will simultaneously increase the precision of synaptic information and decrease

synaptic dissipation.

Taken together, these findings are compatible with a recent study [89] showing that

abstract stochastic systems with memory, operating far from thermodynamic equilib-

rium, can be the most predictive about an environment if they use minimal energy.
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Fundamental relationship between synaptic coding precision and sensitivity

of dissipated energy on driving input.

Estimating an external variable is never perfect, and it is shown here that synaptic

coding accuracy is not restricted by available energy rate, but it is instead limited by

the derivative of the energy rate with respect to an average input. The fundamental

relationship linking memory precision and synaptic metabolic sensitivity is present in

Eq. (14), which is valid regardless of the specific plasticity mechanism, as long as

synapses can exist in two metastable states. This binary synaptic nature is a key

feature enabling a high fidelity of long-term synaptic information [70], despite ongoing

neural activity, which is generally detrimental to information storing [41]. Specifically,

for realistic neurophysiological parameters, it is found that the lower bound on the

relative coding error in synapses can reach 0.1 (for higher neuronal adaptation), which

again indicates a high precision of the stored information despite large fluctuations in

presynaptic neural activities (large σf ).

Thermodynamics of memory storing and bistability.

The general lack of high energetic demands for sustaining accurate synaptic memory

may seem non-intuitive, given an intimate relation between energy and information

known from classical physics [3]. For example, transmitting 1 bit of information through

synapses is rather expensive and costs 104 ATP molecules [7], and a comparative num-

ber of glucose molecules [17], which energetically is much higher (∼ 105kT ) than a

thermodynamic minimum set by the Landauer limit (∼ 1kT ) [1]. Moreover, one might

expect that larger spines with more storing capacity in their molecular structures should
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also use more energy for maintaining these structures by synthesizing more proteins to

balance their degradation [30, 31]. Additionally, there are classic and recent theoretical

results that show dissipation-error tradeoff for biomolecular processes [60, 61, 90, 91, 92].

How can we understand our result in that light?

First, there is a difference between transmitting information and storing it, primarily

in their time scales, and faster processes generally need more power (see also below).

Second, it is good to keep in mind a distinction between potential energy (correlated

with spine size, number of proteins, etc) and dissipated energy (correlated with driving

frequency, thermal fluctuations, and turnover rates of various processes making a spine).

In our case, the decrease in the dissipated energy with increasing presynaptic input

in the bistable phase is associated with the appearance and deepening of the second

minimum in the effective potential that traps synapses and counteracts their large

fluctuations, which are always associated with energy dissipation [57]. One can also use

a different, information related, reasoning.

It is known from thermodynamics that erasing an information can be more energy

costly than storing information [1, 2], since the former process is irreversible and is

always associated with energy dissipation, and the latter can in principle be performed

very slowly (i.e. in equilibrium with the environment) without any heat released. In

our system, the information is maximal for intermediate presynaptic input generating

metastability with two synaptic states (Fig. 2). If we decrease the input below a certain

critical value, or increase it above a certain high level, our system becomes monostable,

which implies that it does not store much information (entropy is close to zero). Thus,
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the transition from bistability to monostability is equivalent to erasing the information

stored in synapses, which according to the Landauer principle [1, 4] should cost energy.

Third, the papers showing energy-error tradeoff in biomolecular systems [60, 61, 92,

91, 90] use fairly linear (or weakly nonlinear) models, while in our model the plasticity

dynamics is highly nonlinear (see Eqs. 1 and 3). Additionally, we consider the prediction

of an external variable (average input fo), in contrast to some of the biomolecular models

[91, 90], which dealt with estimating errors in an internal variable.

Cost of synaptic plasticity in relation to other neural costs.

The energy cost of synaptic plasticity is a new and an additional contribution to

the overall neural energy budget considered before and associated with action poten-

tials, short-term synaptic transmission, maintenance of negative resting potential, and

nonsignaling factors [10, 93]. Those earlier studies provided important order of magni-

tude estimates based on ATP turnover rates, but they had mainly a phenomenological

character and cannot be directly applied to nonlinear phenomena underlying synap-

tic plasticity. Contrary, the current approach and the complementary approach taken

in [50] are based on “first principles” taken from non-equilibrium statistical physics

and in combination with neural modeling can serve as a basis for future more sophis-

ticated calculations of energy used in excitatory synapses, possibly with inclusion of

some molecular detail (e.g. [30, 31, 45]).

The estimates performed here indicate that for human and macaque cortex the en-

ergy dissipated by synaptic plasticity, thought of as binary changes in the mean-field

synaptic current, is strongly dependent on the presynaptic firing rate. Consequently,
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the plastic energy rate contribution can account for a total neuronal energy rate at the

level of ∼ 0.01 − 20%, which means that for some intervals it can be negligible, while

for others it can be significant (Figs. 4 and 5). This strong dependence on presynaptic

firing is consistent with a strong dependence of CaMKII autophosphorylation level on

Ca2+ influx frequency to a dendritic spine [94], which should translate to a similar de-

pendence of ATP consumption rate related to protein activation on presynaptic firing.

Moreover, these results raise the possibility of observing or measuring the energetics of

synaptic plasticity. The results presented here indicate that the energy rate of plasticity

depends nonmonotonically on firing rate with a large peak near the transition to bista-

bility (Figs. 3-6). In contrast, the neuronal energy rate related to short-term signaling

depends monotonically on firing rate (see Eq. 38 and Refs. [8, 10, 17]). Thus metabolic

peaks of plasticity, however small they are, should in principle be detectable if a local

cortical circuit is driven by frequencies promoting the onset of synaptic bistability. It

is hard to propose a specific imaging technique for detecting synaptic plasticity peaks,

but nevertheless, it seems that techniques relying on spectroscopy, e.g., near-infrared

spectroscopy with its high spatial and temporal resolution, could be of help.

Regardless of whether the energetics of synaptic plasticity is observable or not,

it could have some functional implications. For example, it was reported that small

regional decreases in glucose metabolic rate associated with age, and presumably with

synaptic decline, lead to significant cognitive impairment associated with learning [95].

A relatively small contribution of plasticity to global cortical metabolism for some

intervals is in large part due to relatively slow dynamics of spine conductance decay,
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quantified by τw ∼ 1 hr [76, 77], which characterizes early phase of LTP and LTD (Ė ∼

1/τw in Eq. 10). Late phases of LTP and LTD, during which memory is consolidated,

are much slower and they are governed by timescales of the orders of days [40, 53].

Consequently, one can expect that these processes, as well as equally slow homeostatic

synaptic scaling [96], should be energetically inexpensive. The energetics of these very

slow processes were not included in the budget of the energy scale Eo (present in Eq.

10, and estimated in the Methods), since we were concerned only with the early phases

of LTP and LTD, which are believed to be described by BCM model (both standard

and extended). Nevertheless, for the sake of completeness, we can estimate the energy

cost of the late LTP and LTD, as well as energy requirement of changing spine volume

(also not included in the budget of Eo).

It is believed that protein synthesis, which is associated with l-LTP and l-LTD,

underlines synaptic consolidation and scaling [45]. There are roughly 104 proteins in

PSD including their copies [97], on average each with ∼ 400 − 500 amino acids, which

are bound by peptide bonds. These bonds require 4 ATP molecules to form [93],

which is 4 · 20kT of energy [98]. This means that chemical energy associated with PSD

proteins is about (3.2−4.0) · 108kT , i.e. (1.6−2.0) · 107 ATP molecules, or equivalently

(1.4 − 1.75) · 10−12 J. Given that an average lifetime of PSD proteins is 3.7 days [99],

we obtain the energy rate of protein turnover as ∼ (4.6 − 5.8) · 10−18 W, or 52 − 65

ATP/s per spine. For human cerebral cortex with a volume of 680 cm3 [100] and average

density of synapses 3 · 1011 cm−3 [101], we have 2 · 1014 synapses. This means that the

global energy cost of protein turnover in spines of the human cortex is (9.2−11.5) ·10−4
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W, or equivalently (1−1.3) ·1016 ATP/s, which is extremely small (∼ 0.01%) as human

cortex uses about 5.7 Watts of energy [8].

The changes in spine volume are related directly to the underlying dynamics of

actin cytoskeleton [102, 103]. We can estimate the energy cost of spine size using a

mechanistic argument. Dendritic spine grows due to pressure exerted on the dendrite

membrane by actin molecules. The reported membrane tension is in the range (10−4−1)

kT/nm2 [104], with the upper bound being likely an overestimate, given that it is close

to the so-called rapture tension (1 − 2 kT/nm2), when the membrane breaks [104]. A

more reasonable value of the membrane tension seems to be 0.02 kT/nm2, as it was

measured directly [105]. Taking this value, we get that to create a typical 1 µm2 of

stable spine requires 2 · 104kT or 103 ATP molecules. Since the actin turnover rate in

spine is 1/40 sec−1 [102], which is also the rate of spine volume dynamics, we obtain that

the cost of maintaining spine size is 25 ATP/s. This value is comparable but two-fold

smaller than the ATP rate used for PSD protein turnover per spine (52 − 65 ATP/s)

given above.

How do the costs of protein turnover and spine mechanical stability relate to the

energy cost of e-LTP and e-LTD calculated in this paper using the extended BCM

model? From Fig. 6, we get that the latter type of synaptic plasticity uses energy

in the range (10−4 − 10−1)Eo per second per spine, depending mainly on the neural

adaptation amplitude κ. Since the energy scale Eo = 2.3 · 104 ATP (see the Methods),

we obtain that the energy cost of the plasticity related to e-LTP and e-LTD is 2.3−2300

ATP/s, i.e., it can be 50−100 times larger than the contributions from protein turnover
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and spine volume changes. This result strongly suggests that the calculations of the

energetics of synaptic plasticity based on the extended BCM model provide a large

portion (perhaps even the majority) of the total energy required for the induction and

maintenance of synaptic plasticity.
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4. METHODS

Neuron model.

We consider a sensory neuron with a nonlinear firing rate curve (so called class one,

valid for most biophysical models) and with activity adaptation given by [74, 75]

τr
dr

dt
= −r + Ā

√

Isyn − s (16)

τa
ds

dt
= −s + κ̄r (17)

where r is the instantaneous neuron firing rate with mean amplitude Ā, s is the adapta-

tion current (or equivalently self-inhibition) with the intensity κ̄, τr and τa are the time

constants for variability in neural firing and adaptation, and Isyn is the total excitatory

synaptic current to the neuron provided by N excitatory synapses, i.e., Isyn ∼ ∑

i fiwi

(see Eq. 19 below). In order to ensure a saturation of the firing rate r for very large

number of synapses N , and for s to be relevant in this limit, Ā and κ̄ must scale as

Ā = A/
√
N and κ̄ = Nκ. In a mature brain N can fluctuate due to structural plasticity,

but we assume in agreement with the data [80] that there is some well defined average

value of N .

The neuron is driven by stochastic presynaptic firing rates fi (i = 1, ..., N) that

depend on time according to

dfi

dt
= −(fi − fo)

τf
+

√
2σf√
τf

ξi (18)
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where fo is the mean firing rate, τf is the time constant of temporal changes in fi, σf is

the firing rate noise amplitude, and ξi is the Gaussian white noise with zero mean and

Delta function correlations, i.e., 〈ξi(t)〉ξ = 0 and 〈ξi(t)ξj(t′)〉ξ = δijδ(t − t′) [58]. The

prefactor
√

2/τf in front of the noise ξi comes from the desire to have the stationary

standard deviation of fi equal exactly to σf .

The synaptic current Isyn has two additive components related to AMPA and NMDA

receptors, Isyn = Iampa + Inmda, with the receptor currents

Iampa = qqampa|Vr|τampagampa
∑N

i=1 fiM
ampa
i ,

and

Inmda = qqnmda|Vr|τnmdagnmda
∑N

i=1 fiM
nmda
i ,

where q is the probability of neurotransmitter release, Vr is resting membrane po-

tential of the neuron, gampa and gnmda are single channel conductances of AMPA and

NMDA receptors, qampa and qnmda are probabilities of their opening with characteristic

times τampa and τnmda. The symbols Mampa
i and Mnmda

i denote AMPA and NMDA

receptor numbers for spine i. Data indicate that during synaptic plasticity the most

profound changes are in the number of AMPA receptors Mampa and opening probability

of NMDA qnmda [18, 28, 106]. We define the excitatory synaptic weight wi as a weighted

average of AMPA and NMDA conductances, i.e.,

wi = (τnmdaqnmdaM
nmda
i gnmda + τampaqampaM

ampa
i gampa)/(τnmda + τampa).

This enables us to write the synaptic current per spine, i.e. v = Isyn/N (which is

more convenient to use than Isyn), as
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v =
β

N

N
∑

i=1

fiwi, (19)

where β = q|Vr|(τnmda + τampa). The current per spine v is the key dynamical variable

in our dimensional reduction procedure and subsequent analysis (see below).

Separation of time scales and dimensional reduction.

The time scales related to neuronal firing rates and firing adaptation τf , τr and τa are

much faster than the time scale τw associated with synaptic plasticity. Therefore, for

long times of the order of τw, firing rate r and postsynaptic current adaptation s are in

quasi-stationary state, i.e., dr/dt ≈ ds/dt ≈ 0. This implies a set of coupled algebraic

equations:

r = A
√

v − s/N

s = Nκr, (20)

which yields a quadratic equation for r, i.e., r2 + A2κr − A2v = 0. The solution for r,

which depends on v, is given by Eq. (6).

The equation for fi (Eq. 18) can also be solved using the known methods of linear

stochastic differential equations [58], and the result is
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fi(t) = fo +

√
2σf√
τf

∫ t

−∞

dx ξ(x)e−(t−x)/τf . (21)

This equation indicates that presynaptic firing rates fluctuate around average value fo

with standard deviation ∼ σf . The important point is that these fluctuations are fast,

on the order of τf (∼ 0.1 − 1 sec), which is much faster than the timescale τw. For

τf 7→ 0, the fluctuations disappear due to suppressing nature of the exponent under the

integral.

Now we focus on the population averaged synaptic current v. Since v is proportional

to weights wi, and because r depends directly on v, it is possible to obtain a closed form

dynamic equation for plasticity of v. Thus, instead of dealing with N dimensional dy-

namics of synaptic weights, we study a one dimensional dynamics of the average current

v. This dimensional reduction is analogous to observing the motion of a center of mass

of many particle system, which is easier than simultaneous observation of the motions

of all particles. Such an approach is feasible for an analytical treatment where one can

directly apply the methods of stochastic dynamical systems and thermodynamics [58].

The time derivative of v, given by Eq. (19), is denoted with dot and reads

v̇ = (β/N)
∑

i=1(ḟiwi + fiẇi) ≈ (β/N)
∑

i=1 fiẇi,

where we used the fact that fluctuations in fi are much faster than changes in weights

wi, and hence fi are in stochastic quasi-stationary states (〈dfi/dt〉ξ ≈ 0). Now, using

Eq. (1) for ẇi and quasi-stationarity of θ, we obtain the following equation for v̇:
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v̇ =
λβ

N
r2(1 − αr)

N
∑

i=1

f 2
i − 1

τw

(

v − ǫc

N

N
∑

i=1

fi

)

+

√
2βσwτ

z
f

N
√
τw

N
∑

i=1

f z+1
i ηi, (22)

where c = aβ. The next step is to perform averaging over fast fluctuations in presynaptic

rate fi (averaging over noise ξ), by assuming that noise in the presynaptic input and

intrinsic noise in spines are uncorrelated, i.e. 〈ηiξi〉η,ξ = 〈ηi〉η〈ξi〉ξ = 0.

We need to find the following three averages: 〈∑N
i=1 fi〉ξ, 〈

∑N
i=1 f

2
i 〉ξ, and 〈∑N

i=1 f
z+1
i ηi〉ξ

(for z = 0, 1).

From Eq. (21) it follows that 〈fi〉ξ = f0, and thus the first average is

〈
N
∑

i=1

fi〉ξ = Nfo. (23)

For the second average we also use Eq. (21) and write

∑N
i=1〈f 2

i 〉ξ = Nf 2
o + 2

√
2(foσf/

√
τf )

∑

i

∫ t
−∞

dx 〈ξi(x)〉ξ e(x−t)/τf

+ (2σ2
f/τf )

∑

i

∫ t
−∞

dx1

∫ t
−∞

dx2 〈ξi(x1)ξi(x2)〉ξ e(x1+x2−2t)/τf .

Since 〈ξi(x)〉ξ = 0 and 〈ξi(x1)ξi(x2)〉ξ = δ(x1 − x2), we find the second average as

〈
N
∑

i=1

f 2
i 〉ξ = N(f 2

o + σ2
f ). (24)

The third average can be decomposed as 〈∑N
i=1 f

z+1
i ηi〉ξ =

∑N
i=1〈f z+1

i 〉ξ ηi, since the
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noise η is independent of the noise ξ. For z = 0, we obtain directly from Eq. (21) that

〈fi〉ξ = fo, while for z = 1 we have again 〈f 2
i 〉ξ = f 2

o + σ2
f . Thus, the third average can

be written as

〈
N
∑

i=1

f z+1
i ηi〉ξ = N(f z+1

o + zσz+1
f )ηi. (25)

The final step is to insert the averages in Eqs. (23-25) into the equation for v̇ (Eq. 22).

As a result we obtain Eq. (3) in the main text, which is a starting point for determining

energetics of synaptic plasticity and information characteristics.

Distribution of synaptic currents: weak and strong synapses.

Stochastic Eq. (3) for a population averaged synaptic current v corresponds to the

following Fokker-Planck equation for the current probability distribution P (v|fo; t) con-

ditioned on fo [58]:

∂P (v|fo; t)

∂t
= − ∂

∂v
(F (v)P (v|fo; t)) +

σ2
v

τw

∂2P (v|fo; t)

∂v2
, (26)

where the function F (v) = hr2(1 − αr) − (v − ǫcfo)/τw, with h = λβ(f 2
o + σ2

f ), and r

depends on v as in Eq.(6). The stationary solution of this equation is of the form [58]
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Ps(v|fo) = Z(fo)
−1 exp

(

−τw
σ2

v

Φ(v|fo)

)

, (27)

where Z(fo) is the normalization factor dependent on fo, and the effective potential

Φ(v|fo) for synaptic current v is Φ(v|fo) = − ∫ v
0 dx F (x). The explicit form of Φ(v|fo)

is shown in Eq. (9).

Local minima of Φ correspond to metastable states, and their number is conditioned

on whether the driving-plasticity parameter h is greater than the critical value hcr

given by Eq. (8). This critical value can be alternatively found by requiring that the

second derivative of the potential Φ becomes positive in the up state. For h < hcr, the

potential Φ has one minimum related to weak currents or weak synapses (monostability),

while for h > hcr an additional minimum appears (bistability) that is related to strong

currents or synapses. The two minima are separated by a maximum corresponding to

a potential barrier. Metastable values of v can be found from the condition dΦ/dv = 0,

which is equivalent to finding the fixed points of Eq. (3) in the deterministic limit.

Formal solution of this nonlinear equation can be found using an ǫ expansion, i.e.

r = r0 + r1ǫ + O(ǫ2), where ǫ ≪ 1 (see Suppl. Inform.). As a result of this procedure

we obtain for down state (weak synapses) vd and for up state vu (strong synapses):

vd = cfoǫ+O(ǫ2)

vu = κru + (ru/A)2 +O(ǫ) (28)
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where ru =
(

hτw −A−2 +
√

(hτw − A−2)2 − 4ακhτw
)

/(2αhτw). The separating poten-

tial barrier between up and down states occurs for vmax, which has a similar form as vu

with the exception of a negative sign in front of the square root inside ru.

Probabilities for weak and strong synapses.

In the bistable regime, the mean-field synaptic current can jump between up and down

states. These transitions, depression and potentiation, are caused by fluctuations in

the input firing rate fi (proportional to σf ) and internal thermodynamic fluctuations

in synaptic conductance wi (proportional to σw). From a physical point of view, this

corresponds to a noise induced “escape” of some synapses through a potential barrier.

Average dwelling times in the up (Tu) and down (Td) states can be determined from

the Kramers’s formula [58]:

Ti =
2π

√

Φ
(2)
i |Φ(2)

max|
exp

(

τw
σ2

v

∆Φi

)

, (29)

where the index i = d or i = u, Φ
(2)
i and Φ(2)

max are the second derivatives of the

potential at its minima (v = vi) and maximum (v = vmax), and the potential difference

∆Φi = Φ(vmax)−Φ(vi) > 0. Note that for large number of synapses N , the exponential

factor in Eqs. (29) can be large, which can lead to very long dwelling times that are

generally much longer than any time scale in the original Eqs. (1-2) and (16-18). The
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fact that the times Tu and Td are long but finite is an indication of metastability of

“locally” stable up and down synaptic states.

The probabilities for synapses in the up (pu) and down (pd) states can be determined

using the above dwelling times as:

pd =
Td

Td + Tu
, (30)

and pu = 1−pd. Note that when Tu/Td ≪ 1, most of the time synapses are in the lower

state. Also, in the monostable regime where only down state is present, we set pu = 0

by default.

Memory lifetime.

Synaptic memory lifetime Tm is defined as a characteristic time the synapses remember

a perturbation to their steady state distribution. Mathematically, it means that we

have to consider a time-dependent solution of the probability density P (v|f0; t) to the

Fokker-Planck equation given by Eq. (26). This solution can be written as [58, 59]

P (v|fo; t) = Ps(v|fo) +
∞
∑

k=0

e−γktψk(v|fo), (31)

where γk and ψk(v|fo) are appropriate eigenvalues and eigenvectors. The eigenvalues
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are inverses of characteristic time scales, which describe a relaxation process to the

steady state. The smallest eigenvalue, denoted as γ0, determines the longest relaxation

time 1/γ0, and we associate that time with the memory lifetime Tm. It has been shown

that γ0 = 1/Td + 1/Tu [58, 59], which implies that

Tm =
TuTd

Tu + Td

. (32)

A similar approach, through eigenvalues, to estimating the memory lifetime was adopted

also in [107].

Approximation of the synaptic current distribution by bimodal distribution.

In the limit of very large N the stationary distribution Ps(v|fo) has either one (monosta-

bility) or two (bistability) maxima corresponding to the minima of the potential Φ(v|fo).

For N 7→ ∞ these maxima become sharp peaks, represented by delta functions at points

vd and vu. This suggests that for large but finite N we can approximate Ps(v|fo) as a

sum of two Gaussians centered at vd and vu that are weighted by the probabilities of

synapses in the up and down states:

Ps(v|fo) ≈ Ps(v|fo)app =
∑

i=d,u

pie
−(v−vi)2/2σ2

i

√

(π/2)σ2
i [1 + erf(vi/

√

2σ2
i )]

(33)

where v is in the range (0,∞), erf(x) is the error function, and the effective standard
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deviation σi of the synaptic current is given by σi = σv/
√

τwΦ
(2)
i ∼ 1/

√
N , for up

(i = u) and down (i = d) states, where Φ
(2)
i is the second derivative of the potential

with respect to v at vi. This approximation enables us to determine analytically the

amount of dissipated energy by plastic synapses and accuracy with which they encode

information.

Entropy production rate, entropy flux, and power dissipated by plasticity.

Processes underlying synaptic plasticity are irreversible (e.g. AMPA receptor traffick-

ing, PSD protein phosphorylation, as well as protein synthesis and degradation [28, 29])

and operate out of thermodynamic equilibrium, and therefore require energy influx. At

a stochastic steady state, this energy is dissipated as heat, which roughly corresponds to

a metabolic rate of synaptic plasticity. The rate of dissipated energy is proportional to

the average rate of decrease in the effective potential Φ, or equivalently to the entropy

production rate [57].

Given the above, we can write the energy rate for synaptic plasticity Ė as Ė ∼

−〈dΦ(v|f0)/dt〉 = −〈Φ(1)v̇〉, where Φ(1) is the first derivative of Φ with respect to v,

the symbol v̇ is the temporal derivative of v, and the averaging 〈...〉 is performed over

the distribution P (v|f0). The second equality follows from the fact that v is the only

variable in the potential that changes with time on the time scale τw. Next, we can

use Eq. (3) in the equivalent form, namely v̇ = −Φ(1) +
√

2/τwσvη, and this equation

resembles the motion of an overdamped particle (with negligible mass) in the potential

Φ, with v playing the role of a spatial coordinate. After that step, we can write the
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energy rate as Ė ∼ 〈[Φ(1)]2〉 −
√

2/τwσv〈Φ(1)η〉. The final step is to use the Novikov

theorem [108] for the second average, i.e. 〈Φ(1)η〉 = 1
2

√

2/τwσv〈Φ(2)〉. This leads to

Ė ∼ σ2
v

τw

(

−〈Φ(2)〉 + (τw/σ
2
v)〈[Φ(1)]2〉

)

.

We can obtain a similar result for Ė using a thermodynamic reasoning. The dynam-

ics of synaptic plasticity is characterized by the distribution of synaptic currents per

synapse P (v|fo), which evolves in time according to Eq. (26). With this distribution we

can associate the entropy S(t), defined as S(t) = − ∫∞0 dv P (v|fo) lnP (v|fo), measuring

the level of order in a typical spine. It can be shown [57, 62, 63] that the temporal deriva-

tive of the entropy, dS/dt, is composed of two competing terms, dS/dt = Π − Γ, called

entropy production rate (Π) and entropy flux (Γ), both per synapse. In the case of ther-

modynamic equilibrium, which is not biologically realistic, one has dS/dt = Π = Γ = 0,

and there is neither energy influx to a system nor dissipated energy to the environment.

However, for processes out of thermodynamic equilibrium, relevant for spine dynam-

ics, we still can find a stationary regime where entropy of the spine does not change,

dS/dt = 0, but entropy flux Γ and entropy production Π are nonzero and balance each

other [57, 62]. It is more convenient to determine the stationary dissipated power by

finding the entropy flux, which is given by [62, 63] (see Suppl. Infor.)

Γ =
τw
σ2

v

〈[Φ(1)]2〉 − 〈Φ(2)〉 (34)

Note that Eq. (34) is very similar in form to the energy rate Ė derived above; the two

expressions differ only by the factor σ2
v/τw, and none of them has the units of energy (Γ
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has the unit of the inverse of time). Thus, we need to introduce the energy scale in the

problem. Generally, the stationary dissipated power per synapse Ė can be written as

Ė = EoΠ = EoΓ [57], where Eo is the characteristic energy scale associated with spine

conductance changes, and its value is estimated in the next section.

It is not possible to find analytically the entropy flux Γ for an arbitrary probability

distribution in Eq. (34). In particular, it is not feasible for the distribution Ps(v|f0) in

Eq. (27). However, Γ can be explicitly determined for the approximation to Ps(v|f0)

given by Eq. (33). Generally speaking, for very large synaptic number per neuron N ,

the probability distribution in Eq. (33) has two sharp maxima corresponding to two

most likely synaptic currents vd and vu. Consequently, the values of v that are the

closest to vd and vu provide the biggest contributions to the averages in the entropy

flux Γ. The whole mathematical procedure is called a saddle point approximation, and

it represents a series expansion in powers of 1/
√
N or the widths of the maxima σi,

as both parameters are proportional. Specifically, for any differentiable function G(v)

with two peaks at v = vd and v = vu, its average with respect to the approximate

distribution Ps(v|fo) in Eq. (33) up to the order 1/N2 is (see Suppl. Info.):

〈G(v)〉 =
∑

i=d,u

pi

(

Gi +
σ2

i

2
G

(2)
i +

σ4
i

8
G

(4)
i

)

+O(σ6
i ), (35)

where σi is given in Eq. (33), Gi = G(vi), and G
(2)
i , G

(4)
i are the second and forth

derivatives of G with respect to v at vi. This equality enables us to find the averages

〈[Φ(1)]2〉 and 〈Φ(2)〉 (see also Suppl. Info):
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〈Φ(2)(v)〉 =
∑

i=u,d

pi

[

Φ
(2)
i + (σ2

i /2)Φ
(4)
i

]

+O(σ4
i ), (36)

where Φ
(n)
i = Φ(n)(vi), and

〈[Φ(1)(v)]2〉 =
∑

i=u,d

pi

(

σ2
i (Φ

(2)
i )2 + (σ4

i /4)[3(Φ
(3)
i )2 + 4Φ

(2)
i Φ

(4)
i ]
)

+O(σ6
i ). (37)

Note that Φ
(1)
i = −F (vi) = 0, which is the reason for the lack of the first derivative

of Φ in Eq. (37). Having these averages, we can determine analytically the power per

synapse Ė. The result is Eq. (10) above.

Estimation of the characteristic energy scale for synaptic plasticity.

Dendritic spine is a composite object with multiple components and many degrees of

freedom [25, 26, 27, 29], and hence the characteristic energy scale Eo is much bigger

than kT , where k is the Boltzmann constant and T is the tissue absolute temperature

(T ≈ 310 K). The changes in spine conductance on time scale of ∼ 1 hr, i.e. for e-

LTP and e-LTD, are induced by protein interactions in PSD [30, 45] and subsequent

membrane trafficking associated with AMPA and NMDA receptors [28, 29, 109]. Pro-

tein interactions are powered by phosphorylation process, which is one of the main

biochemical mechanism of molecular signal transduction in PSD relevant for synaptic
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plasticity [68, 110]. Phosphorylation rates in an active LTP phase can be very fast, e.g.,

for CaMKII autophosphorylation they are in the range 60 − 600 min−1 [111]. Other

processes in a spine, most notably protein turnovers in PSD (likely involved in l-LTP

and l-LTD), are much slower ∼ 3.7 days [99], and therefore their contribution to the

energetics of the early phase of spine plasticity seems to be much less important (see,

however Discussion for an estimate of the protein turnover energy rate).

The energy scale for protein interaction can be estimated as follows. A typical

dendritic spine contains about 104 proteins (including their copies) [97]. One cycle

of protein phosphorylation requires the hydrolysis of 1 ATP molecule [112, 113], which

costs about 20kT [98]. Each protein has on average 4-6 phosphorylation sites [114, 115].

If we assume conservatively that only about 20% of all PSD proteins are phosphorylated,

then we obtain the energy scale for protein interactions roughly 2 · 105kT , which is

8.6 · 10−16 J.

Energy scale for receptor trafficking can be broadly decomposed into two parts:

energy required for insertion of the receptors into the spine membrane, and energy

related to their horizontal movement along the membrane to the top near a presynaptic

terminal. The insertion energy for a typical protein is either about 3−17 kcal/mol [116]

or 8 − 17kT [117], with the range spanning 4 − 25kT , and is caused by a deformation

in the membrane structure [116]. Since an average spine contains about 100 AMPA

[118, 119] and 10 NMDA [120] receptors, we obtain the total insertion energy in the

rage 500 − 3200kT . The second, movement contribution can be estimated by noting

that typical forces that overcome friction and push macromolecules along membrane
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are about 10 pN, and they are powered by ATP hydrolysis [121]. AMPA and NMDA

receptors have to travel a spine distance of about 1 µm [122], which requires the work

of 110 · 10−11 · 10−6 N·m= 1.1 · 10−15 J or 2.5 · 105kT . The latter figure is 100 times

larger than the insertion contribution, which indicates that the energy scale for receptor

trafficking is dominated by the horizontal movement and is similar to the above for

protein phosphorylation.

To summarize, the total energy scale Eo for spine conductance is about Eo = 2·10−15

J, or equivalently 4.6 · 105kT (or 2.3 · 104 ATP molecules).

Neuron energy rate related to short-term signaling.

We provide below an estimate of the energy used by a sensory neuron for short-term

signaling for the sake of comparison with the energy requirement of synaptic plastic-

ity. It has been suggested that the majority of neuronal energy goes to pumping out

Na+ ions (Na+-K+-ATPase), which accumulates mostly due to neural spiking activity,

synaptic background activity, and passive Na+ influx through sodium channels at rest

[10]. It has been shown that this short-term neuronal energy cost can be derived from

a biophysical neuronal model, compared across species, and represented by a relatively

simple equation [8, 17]:

CMRglu = a0 + a1〈r〉 + bρsfo, (38)
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where CMRglu is the glucose metabolic rate [in µmol/(cm3· min)], ρs is the synaptic

density, 〈r〉 is the average postsynaptic firing rate, and the parameters a0, a1, and b

characterize the magnitude of the above three contributions to the neural metabolism,

i.e. resting, firing rate, and synaptic transmission, respectively [17]. The average post-

synaptic rate 〈r〉 is found from Eq. (35):

〈r〉 =
∑

i=u,d

pi

(

ri −
σ2

iA
4

(κA2 + 2ri)3

)

, (39)

where ri = r(vi) in Eq. (6).

According to biochemical estimates, one oxidized glucose molecule generates about

31 ATP molecules [123]. In addition, 1 ATP molecule provides about 20kT of energy

[98]. This means that the short-term energy rate per neuron, denoted as Ėn, is given

by

Ėn = 31 · 20
NAkT

ρn
CMRglu, (40)

where NA is the Avogadro number, and ρn is the neuron density. We estimate the ratio

of the synaptic plasticity power to neural power, i.e. Ė/Ėn across different presynaptic

firing rates for three areas of the adult human cerebral cortex (frontal, temporal, and

visual), and two areas of macaque monkey cerebral cortex (frontal and visual).

The values of the parameters a0 and a1 in Eq. (38) are species- and area-independent,
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and they read a0 = 2.1 · 10−10 mol/(cm3 s), and a1 = 2.3 · 10−9 mol/cm3 [17]. The

rest of the parameters take different values for human and macaque cortex. Most of

them are taken from empirical studies, and are given below. The parameter b, present

in Eq. (38), is proportional to the neurotransmitter release probability and synaptic

conductance, and it was estimated based on fitting developmental data for glucose

metabolism CMRglu and synaptic density ρs (which vary during the development) to

the formula (38) [17].

The following data are for an adult human cortex. The adult CMRglu is 0.27

µmol/(cm3·min) (frontal cortex), 0.27 µmol/(cm3·min) (visual cortex), and 0.24 µmol/(cm3·min)

(temporal cortex) [124]. The parameter b reads: 1.16 · 10−20 mol (frontal), 0.63 · 10−20

mol (visual), 0.17 · 10−20 mol (temporal) [17]. Note that the value of b is 7 times larger

for the frontal cortex than for the temporal, which might suggest that the product of

neurotransmitter release probability and synaptic conductance is also 7 fold larger in

the frontal cortex. This high difference may seem unlikely, however, it is still plausible,

given that the release probability is highly variable and can assume values between

0.05-0.7 [125, 126, 127, 128], and synaptic weights in the cortex are widely distributed

[72]. Neuron density ρn reads: 36.7·106 cm−3 (frontal), 66.9·106 cm−3 (visual), 59.8·106

cm−3 (temporal) [129]. Synaptic density ρs reads: 3.4 · 1011 cm−3 (frontal), 3.1 · 1011

cm−3 (visual), 2.9 · 1011 cm−3 (temporal) [101].

The following data are for an adult (6 years old) macaque monkey cortex. The adult

CMRglu is 0.34 µmol/(cm3·min) (frontal cortex), 0.40 µmol/(cm3·min) (visual cortex)

[130]. The parameter b reads: 0.4 · 10−20 mol (frontal), and 3.8 · 10−20 mol (visual) [17].
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Neuron density ρn reads: 9 · 107 cm−3 (frontal), 31.9 · 107 cm−3 (visual) [131]. Synaptic

density ρs reads: 5 · 1011 cm−3 (frontal) [132], 6 · 1011 cm−3 (visual) [133].

Fisher information and coding accuracy in synapses.

Fisher information IF (fo) about the driving input fo is a good approximation of the

mutual information between the driving presynaptic activity and postsynaptic current

v [134]. It is also a measure of the coding accuracy and it is defined as [82]

IF (fo) = 〈
(

∂ lnPs(v|fo)

∂fo

)2

〉. (41)

By a direct differentiation of Eq. (27) we get: (lnPs)
′ = −(lnZ)′ − τw(Φ/σ2

v)
′, where

a prime denotes a derivative with respect to fo. After averaging this expression, and

noting that 〈(lnPs)
′〉 = (

∫

∞

0 dvPs(v))
′ = 0, we obtain (lnZ)′ = −τw〈(Φ/σ2

v)
′〉. Thus,

Fisher information reads:

IF (fo) = τ 2
w

[

〈[(Φ/σ2
v)

′]2〉 − 〈(Φ/σ2
v)

′〉2
]

. (42)

Applying Eq. (35) to 〈[(Φ/σ2
v)

′]2〉 and 〈(Φ/σ2
v)

′〉2, we obtain:

〈
[(

Φ

σ2
v

)

′
]2

〉 =
∑

i=u,d

pi





[(

Φ

σ2
v

)

′

i

]2

+ σ2
i

(

Φ

σ2
v

)

′

i

(

Φ(2)

σ2
v

)

′

i



+O(σ4
i ), (43)
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and

〈
(

Φ

σ2
v

)

′

〉2 =





∑

i=u,d

pi

(

Φ

σ2
v

)

′

i





2

+





∑

i=u,d

pi

(

Φ

σ2
v

)

′

i









∑

j=u,d

pj

(

Φ(2)

σ2
v

)

′

j

σ2
j



+O(σ4
i ). (44)

Taking the difference of Eqs. (43) and (44), and noting that pi − p2
i = pupd, leads to

Eq. (12) in the leading order.

Derivatives of dwelling times and of synaptic energy rate.

Below, we obtain the derivatives of the key quantities, with respect to f0, in the bistable

regime. The ratio of the dwelling times in up and down synaptic states Tu/Td depends

exponentially on N (through 1/σ2
v) and on the difference of potentials in these states

(Eq. 29). Moreover, the potential Φ depends on input fo. Thus, to the leading order

in 1/N expansion, the biggest contribution to the derivative of Tu/Td with respect to

fo (denoted with prime) provides the exponent in Eq. (29), i.e.

(Tu/Td)
′ = −τw

σ2
v

(Tu/Td)

[

∆Φ′

ud − 2
σ′

v

σv

∆Φud

]

[1 +O(1/N)] , (45)

where ∆Φud = Φ(vu) − Φ(vd).

The energy rate given by Eq. (10) can be written equivalently as Ė = puĖu + pdĖd,

where the energy rates for states near the up and down states are
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Ėi = Eoσ2
v

4τw

[

3(Φ
(3)
i )2 + 2Φ

(2)
i Φ

(4)
i

]

/(Φ
(2)
i )2,

with i = u, d. Since the fractions pu and pd are proportional to the times Tu and Td,

and the latter are exponentially dependent on N , these fractions are the most sensitive

parts in the energy rate Ė on changes in fo to the leading order in 1/N expansion.

Using Eqs. (30) and (45), we find derivatives of pu and pd with respect to fo, and they

take the forms

p′u = −p′d = −τwpupd

σ2
v

[

∆Φ′

ud − 2
σ′

v

σv
∆Φud

]

[1 +O(1/N)] . (46)

Consequently, the fo derivative of the energy rate is

Ė ′ = −τwpupd

σ2
v

∆Ė

[

∆Φ′

ud − 2
σ′

v

σv
∆Φud

]

[1 +O(1/N)] , (47)

where ∆Ė = Ėu − Ėd. If we combine Eqs. (12), (46) and (47), we obtain to the leading

order Eqs. (13) and (14) in the Results for the bistable regime.

Parameters used in computations.

The following values of various parameters were used: Vr = −65 mV, q = 0.35 [127],

τnmda = 150 msec [120], τampa = 5 msec [119], τf = 1.0 sec, a = 1.0 nS, α = 0.3 sec [77],

ǫ = 3 · 10−4, A = 600 Hz/
√
nA, τw = 3600 sec [76, 77], σf = 10 Hz [135], σw = 1.0 nS
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[118, 119], N = 1.6 · 104 [79, 80]. The two undetermined parameters are λ and κ, and

two sets of values were used for them: κ = 0.001 (nA·sec), λ = 9.36 · 10−7 (nS·sec2),

and κ = 0.012 (nA·sec), λ = 10.2 · 10−6 (nS·sec2), in order to obtain a transition to

the bistable regime for fo ∼ 1 − 5 Hz. The value of A was chosen to obtain vu in the

neurophysiological range ∼ 1 pA [71].

Supporting Information.

S1 Text. This file contains the details of some calculations. (PDF)
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Figure Captions

Fig. 1

Firing rates and emergence of bistability. (A) Postsynaptic firing rates r as func-

tions of the population averaged synaptic current v for different neuronal adaptations

values κ (in nA·sec). Increasing κ causes decrease in r and makes the functional form

r(v) more linear. (B) Graphical solutions of Eq. (7) and multiple roots for stationary

v. For small driving-plasticity h there is only one intersection of g(v) and the line

y = v at v ∼ O(ǫ), corresponding to vd and monostability (dashed red line; f0 = 0.3

Hz, σf = 8 Hz). For higer h (h > hcr) there are three intersections, but the middle

one corresponds to an unstable solution, which in effect yields two stable solutions, i.e.

bistability (dashed-dotted yellow line; f0 = 5.0 Hz, σf = 10 Hz). When h is very large,

then there is only one intersection, and it occurs for large v, corresponding to monos-

tability with strong synapses vu only (dotted green line; f0 = 15.0 Hz, σf = 10 Hz).

For both panels z = 1. Additionally, in panel (B), κ = 0.001 nA·sec, λ = 9.36 · 10−7

nS·sec2.

Fig. 2

Effective synaptic potential, metastability, and memory lifetime. (A) The

metastable synaptic states can be described in probabilistic terms and correspond to

minima of an effective potential Φ(v|fo). For weak presynaptic driving input fo the

potential Φ has only one minimum at vd ∼ O(ǫ), related to weak synapses. If fo is

above a certain threshold, then the potential displays two minima, corresponding to

bistable coexistence of weak and strong synapses (vd and vu). In the bistable regime,

82

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.28.922948doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922948
http://creativecommons.org/licenses/by-nc-nd/4.0/


the synapses can jump between weak and strong states due to fluctuations in the input

and/or synaptic noise. (B) Characteristic long times in the up (Tu), down (Td) synaptic

states, and memory lifetime Tm as functions of presynaptic firing fo. Curves in (A) and

(B) are for z = 1, and κ = 0.001 nA·sec, λ = 9.36 · 10−7 nS·sec2; the rest of parameters

as in the Methods.

Fig. 3.

Fraction of weak synapses and synaptic energy rate vs presynaptic firing:

comparison of exact and approximate formulae. (A) Dependence of pd on presy-

naptic firing rate fo for z = 0 and z = 1. Note that for z = 0 the region of bistable

coexistence is very narrow, i.e. pd falls sharply from unity to zero. (B) Synaptic plas-

ticity energy rate Ė as a function of fo for z = 0 and z = 1. For z = 0, the approximate

formula (dotted line; Eq. 11) gives a good match to the exact formula (solid line; Eq.

10) only for low firing rates fo, whereas for z = 1 the approximate formula (dotted line)

gives a good match to the exact formula (solid line) for a wide range of fo, although the

approximation overshoots for h close to hcr. Note a pronounced peak for z = 1 when

synapses become bistable, which is absent for z = 0.

Fig. 4.

Energy cost of synaptic plasticity as a fraction of neuron’s energy cost for

human cerebral cortex. The ratio of the total energy rate used by plastic synapses

NĖ to neuron’s energy rate Ėn as a function of presynaptic firing rate fo for different

regions of the human cortex. Solid blue line corresponds to the visual cortex, dashed

red line to the frontal cortex, and dotted green line to the temporal cortex. Note that
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the ratio is the largest for the temporal cortex, and the smallest for the frontal cortex,

and they can differ by an order of magnitude. This result has to do with the value of the

empirically determined parameter b (proportional to synaptic weights and probability

of neurotransmitter release) in Eq. (38) for neuronal CMRglu, which is about 10 times

larger for the frontal cortex than for the temporal (the ratio is inversely proportional

to CMRglu). For stronger neuronal adaptation κ (lower panel), the ratio is about two

orders of magnitude smaller. Note that the energy contribution of plastic synapses to

the neuron’s energy budget is strongly dependent on fo, and it could be substantial

near the transition point to bistability. For all plots z = 1.

Fig. 5.

The same as in Fig. 4, but for macaque monkey cerebral cortex. Solid blue line

corresponds to the macaque visual cortex, and dashed red line to the frontal cortex. The

functional dependence for macaque cortex looks similar to the dependence for human

cortex, except that the ratio is now larger for the frontal cortex. For all plots z = 1.

Fig. 6.

Comparison of synaptic energy rate with accuracy and lifetime of stored

information as a function of presynaptic firing rate for z = 1. Note that at the

onset of bistability Ė, IF , and Tm all have large peaks. In addition, IF exhibit a second

broad maximum in the bistable regime where the energy rate Ė is minimal. For solid

lines κ = 0.001 nA·sec, and λ = 9.36 · 10−7 nS·sec2, while for dotted line κ = 0.012

nA·sec, and λ = 10.2 · 10−6 nS·sec2.
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Fig. 7.

Gains in information accuracy and lifetime per synaptic energy used. The

ratio IF/Ė (upper panel) and Tm/Ė (middle panel) are compared to the synaptic energy

rate Ė (lower panel) across different presynaptic firings. Note that IF/Ė and Tm/Ė

exhibit maxima in those locations where Ė has a broad minimum. For all panels z = 1.

Parameters for solid and dotted lines as in Fig. 6.

Fig. 8.

Synaptic energy rate, Fisher information, and memory lifetime as functions

of the plasticity amplitude λ. Note pronounced peaks at the onset of bistability.

For all panels z = 1.

Fig. 9.

Synaptic energy rate, Fisher information, and memory lifetime as functions

of firing rate adaptation κ. The general tendency is such that Ė decreases with κ,

while IF and Tm both increase (for small κ; bistable regime). Note pronounced peaks

at the onset of bistability. For all panels z = 1.

Fig. 10.

Synaptic energy rate, Fisher information, and memory lifetime as functions

of plasticity time constant τw. Note pronounced peaks at the onset of bistability.

For all panels z = 1.
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