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Abstract

Brewing lager  yeasts  (Saccharomyces  pastorianus)  should deal  with stressful  conditions

during  beer  fermentation,  including  ethanol  toxicity.  In  response  to  ethanol  toxicity,  different

biological mechanisms are modulated, including lipid biosynthesis. It is well known that during

beer  fermentation,  the composition of  yeast  membranes change in response to  ethanol  toxicity,

making  it  less  fluid  and  permeable.  Additionally,  neutral  lipids  and  lipid  droplets  (LDs)  are

produced in response to ethanol toxicity. LDs are membranous organelles that transport lipids and

proteins, acting as a hub for inter-organellar communication and module the activity of mechanisms

necessary  for  ethanol  tolerance,  like  proteostasis  and  autophagy.  Unfortunately,  little  is  known

about  the interplay of  lipid biosynthesis,  proteostasis,  and autophagy in lager  cells  during beer

fermentation.  Thus,  a  transcriptome  single  and  meta-analysis  using  publically  available  DNA

microarray data of lager yeast cells in conditions of beer fermentation and cell biomass propagation

was  used  to  select  all  the  upregulated  genes  associated  to  autophagy,  lipid  biosynthesis,  and

proteostasis (ALP) during beer fermentation. Following transcriptome data collection, a top-down

systems  biology  analyses  was  applied  with  the  design  of  an  ALP-associated  shortest  pathway

protein-protein network (ALP network), selection of central nodes and communities within ALP

network, and the observation of the overrepresented biological processes and cellular components

by gene  ontology  (GO) analysis.  The  transcriptome results  show the  upregulation  of  204 non

redundant ALP genes in conditions of beer fermentation, whose respective proteins interact in a

shortest pathway ALP network. Thirteen communities where selected from ALP network containing

overrepresented  processes  and  components  like  mitophagy,  cytoplasm-to-vacuole  transport,

pieacemeal micrautophagy of the nucleus, endoplasmic reticulum (ER) stress, ergosterol and lipid

biosynthesis, LDs, ER membrane, phagophore assembly, among others. These results indicated that

ethanol tolerance in lager yeasts could be due to the modulation of proteostasis and different forms
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of autophagy by lipid biosynthesis and LDs, and thus extending the importance of lipids for beer

fermentation.

Keywords: Lager yeasts, Lipid biosynthesis, Lipid droplets, Proteostasis, Autophagy, Ethanol 

tolerance.
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1. Introduction

Nowadays, there is a tendency of brewing industry in to adopt high gravity (HG) and very

high  gravity  (VHG)  fermentation  technologies  for  beer  production,  allowing  to  reduce  the

consumption of water during brewing process and increase the ethanol yield, thus maximizing the

brewing efficiency and reducing the costs  of production and energy demand  (Puligundla et  al.,

2019,  2011).  However,  the  accumulation  of  high  amounts  of  ethanol  (>  5%  v/v)  due  to  the

fermentation  of  HG/VHG worts  drastically  alter  the  yeast’s  physiology  (Hallsworth,  1998) and

promotes an ethanol stress response that recapitulate the molecular mechanisms associated to the

heat shock response (Odumeru et al., 1992; Piper, 1995). 

The ability of different yeast strains to couple the toxic effects of ethanol depends on the

modulation of cell membrane fluidity by modifying the ratio of incorporated saturated fatty acids

(SFAs) and unsaturated fatty acids (UFAs), and ergosterol content  (Ding et al., 2009). It is well

established that membrane-associated lipids have a strong influence in beer brewing, affecting the

fermentative  capacity  and  ethanol  tolerance  of  yeast  Saccharomyces  cerevisiae (ale  yeast)  and

Saccharomyces  pastorianus (lager  yeast)  (Ahvenainen,  1982;  Mishra and Kaur,  1991).  In  wine

yeast  strains,  high concentration  of  ergosterol  in  cell  membrane promotes  ethanol  tolerance  by

diminishing its fluidity (Aguilera et al., 2006); however, increased levels of UFAs in cell membrane

have an opposed effect of ergosterol by promoting its fluidity (Alexandre et al., 1994), and it was

found that the more yeast ethanol-tolerant strains incorporates long-chain fatty acids (C18:0 and C18:1)

compared  with  the  less  ethanol-tolerant  strain  (Chi  and  Arneborg,  1999).  Additionally,  high

concentrations of ethanol induce the fluidification and thinning of membranes, and changes in the

activity  of  membrane-associated  proteins  as  well  as  its  aggregation  (Thibault  et  al.,  2012).

Unfortunately, little is known about how lipids can modulate different biological mechanisms in

yeast cell during beer fermentation besides affecting membrane structure and/or permeability. For

example, membrane fluidification by ethanol activates the ER-linked UPR mechanism  (Navarro-
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Tapia  et  al.,  2018) and  additional  roles  of  lipids  in  proteostasis  have  been  proposed,  like  the

remotion of unfolded proteins from ER by lipid droplets (LDs) (Vevea et al., 2015), which are an

important  and  highly  dynamic  cytoplasmic  organelle  that  connect  different  parts  of  the  cell,

including ER (Jacquier et al., 2011), mitochondria  (Pu et al., 2011), peroxisome (Kohlwein et al.,

2013), and vacuole (Barbosa et al., 2015). Interestingly, ER stress induces the formation of LDs (Fei

et  al.,  2009) and stimulate  lipid biosynthesis  that  are  associated with ER membrane expansion

during UPR (Cox et al., 1997; Schuck et al., 2009). Additionally, lipid biosynthesis coordinate the

proteotoxic  response  of  both  mitochondria  and  cytosol  (Kim  et  al.,  2016).  Thus,  it  can  be

hypothesize that LDs and lipid biosynthesis are integrative processes necessary for proteostasis in

different organelles. In fact, regulation of inter-organellar proteostasis is an important mechanism

for stress tolerance and recently was shown that beer fermentation promotes in lager yeast cells a so

called “inter-organellar/cross-organellar communication/response” (CORE mechanism), a series of

signaling-associated protein networks that regulate the inter-organellar proteostasis, which includes

the endoplasmic reticulum (ER) and mitochondria unfolded protein responses (UPRs), chaperone

and  co-chaperone  activity,  and  N-glycosylation  quality  control  pathway proteins.  (Telini  et  al.,

2020). One major aspect of inter-organellar proteostasis mechanism induced by ethanol stress is the

coordination  and/or  activation  of  organellar-linked  microautophagy  responses,  like  mitophagy

(Carmona-Gutierrez  et  al.,  2012) and  lipophagy  of  LDs  (Vevea  et  al.,  2015).  Moreover,

macroautophagy can also be induced by reactive oxigen species (ROS) generated from damaged

mitochondria promoted by ethanol stress (Jing et al., 2018). 

Thus, the purpose of this work is to evaluate how lipid metabolism interplay with different

mechanisms linked to inter-organellar proteostasis  and autophagy in lager brewing yeast during

beer fermentation. In this sense, public available DNA microarray gene expression sets from lager

yeast in different times of fermentation and propagation were selected and a transcriptome single-

and meta-analysis was performed. The pan differentially expressed genes (Pan-DEGs) were used to
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generate  a  protein-protein  interactome (PPI)  network  followed  by  local  and global  topological

analyses as well as a gene ontology (GO) evaluation of major clusters find within the PPI network.

The data gathered from transcriptome and PPI network analyses indicated a cross-communication

of  different  pathways  linked  to  inter-organelles  proteostasis,  autophagy,  and  lipid  metabolism

during lager beer fermentation.

2. Experimental procedures

2.1. DNA microarray gene expression datasets selection and analysis 

DNA  microarray  gene  expression  datasets  (GSE9423,  GSE10205,  and  GSE16376)

containing  the  transcriptome  data  of lager  yeast  CB11  strain  (Saccharomyces  pastorianus)  in

conditions of industrial beer fermentation (F) and cell biomass propagation (P) in different times

were obtained from Gene Expression Omnibus (GEO) database [http://www.ncbi.nlm.nih.gov/gds]

(Table S1). The GSE9423 dataset contains the transcriptome data matrix of lager yeast CB11 strain

in both conditions of cell biomass propagation and beer fermentation (Gibson et al., 2008) and was

defined as transcriptome single analysis. By its turn, GSE10205 and GSE16376 data matrix, which

individually describes the transcriptome of CB11 strain in fermentation and propagation conditions,

respectively, were combined for a differentially expressed gene (DEG) meta-analysis (Figure 1). 

The analysis  of  transcriptome datasets  was performed in  the  R platform (https://www.r-

project.org) with different packages (Figure 1). For data matrix importing, processing, and array

quality  analysis,  the  GEOquery,  affy,  and  arrayQualityMetrics  packages  were  respectively

employed  (Davis and Meltzer, 2007; Gautier et al., 2004; Kauffmann et al., 2009). Differentially

expressed gene (DEG) analysis was performed with limma package (Ritchie et al., 2015). The False

Discovery Rate (FDR) algorithm, implemented in limma package (Ritchie et al., 2015), was used to

access DEGs significance level. DEGs from DNA microarray single- (GSE9423) and meta-analysis

(GSE10205 versus GSE16376) with mean |logFC|  ≥ 2.0 and FDR < 0.05 were selected and were

specifically filtered for annotated autophagy, lipid metabolism, and proteostasis (ALP) associated
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genes  using  the  annotated  data  for  Saccharomyces  cerevisiae from  Saccharomyces Genome

Database (https://www.yeastgenome.org). The ALP files containing the curated data used in this

work  are  also  available  in  https://github.com/bonattod/Lipid_stress_data_analysis.git  under  the

names  “Autophagy_Table.txt”,  “Lipid_metabolism_Table.txt”,  and  “Proteostasis_Table.txt”.  For

further  analyses,  only  upregulated  DEGs  in  beer  fermentation  compared  to  yeast  biomass

propagation observed for both DNA microarray single- and meta-analysis were selected. 

Common ALP-associated DEGs present in all DNA microarray single- and meta-analysis

were sort out (Pan-DEGs) and a meta-log2FC ± standard deviation (SD) was calculated. Pan-DEGs

associated with lipid droplets in yeast were also selected using the data of (Grillitsch et al., 2011).

Finally, ALP-associated Pan-DEGs were used for ALP network design and analyses (Figure 1).

2.2. Network design and topology analyses

Initially, a protein-protein interactome network for Saccharomyces cerevisiae was designed

from interactome data downloaded from STRING 11.0 (https://string-db.org) and processed in R

environment (Figure 1). This yeast interactome was filtered by selecting the subscore information

channels named “experiments” and “curated databases”, following by the generation of a combined

score from the two channels using the equation described by von Mering et al. (2005). The resulting

“String_data_2019_11.txt” file used for network design and topology analysis containing the source

nodes (“Feature”), the target nodes (“Feature_2”) and the edge information (“combined_score) can

be  downloaded  from  the  GitHub  repository

(https://github.com/bonattod/Lipid_stress_data_analysis.git).  From  this  major  yeast  interactome

network, an ALP network was obtained from the analysis and selection of the shortest pathway

among the Pan-DEGs using the R package igraph  (Csardi and Nepusz, 2006) and visualized in

Cytoscape  3.7.2  (Shannon et  al.,  2003) by  means  of  RCyc3  package  (Gustavsen  et  al.,  2019)

(Figure 1). Once generated, the ALP network was evaluated considering node’s centrality and the

presence of communities/clusters. 
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For centrality analysis (Figure 1), the node degree and betweenness, both implemented in

the R package igraph  (Csardi  and Nepusz,  2006),  where calculated.  Node degree  indicates  the

number of connections that a specific node have, while betweenness indicates the number of the

shortest paths that pass through each node. All nodes that have a degree value above the mean node

degree  value  for  that  network  were  called  “hubs”.  On  the  other  hand,  all  nodes  that  have

betweenness values above the mean betweenness value of the network were named as “bottleneck”

(Yu et al., 2007). Finally, the combination of node degree and betweenness scores allows to group

the nodes into four major groups: (i) hub-bottleneck (HB), (ii) nonhub-bottleneck (NHB), (iii) hub-

nonbottleneck (HNB), and (iv) nonhub-nonbottleneck (NHNB). The HB group represents all those

nodes that potentially have control of the flow of information through the network topology and

display key regulatory functions in the cell (Yu et al., 2007).

Cluster analysis was performed in R environment using the walktrap community finding

algorithm described by Pons and Latapy (2005) and fully implemented in igraph package (Csardi

and Nepusz, 2006). Specific cluster were selected on basis of two criteria: (i) presence of HB nodes

and (ii) presence of Pan-DEGs (Figure 1). The selected clusters were visualized in Cytoscape 3.7.2

(Shannon et al., 2003) using the R package RCyc3 (Gustavsen et al., 2019) (Figure 1).

2.3. Gene ontology analysis

The  biological  processes  and  cellular  component  associated  with  selected  clusters  from

proteostasis-lipid metabolism network were obtained using the R package clusterProfile (Yu et al.,

2012) (Figure 1). The degree of functional enrichment for a given biological process category was

quantitatively  assessed  (p-value  <  0.01)  using  a  hypergeometric  distribution.  Multiple  test

correction was also assessed by applying FDR algorithm  (Benjamini and Hochberg,  1995) at  a

significance  level  of  p <  0.05.  Semantic  comparison  among  biological  processes  and  cellular

component associated to the nodes’ clusters were made using R package GOSemSim  (Yu et al.,

2010) (Figure 1)  using FDR < 0.01 and q-value < 0.05. Heatmaps combining GOs and selected
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clusters  from  autophagy-lipid  metabolism-proteostasis  network  were  designed  with  R  package

ComplexHeatmap  (Gu et al.,  2016) (Figure 1), where rows and columns were grouped using  k-

means distance method.

2.4. Data sharing repository

All  files  and  figures  generated  for  this  work  can  be  freely  downloaded  from

https://github.com/bonattod/Lipid_stress_data_analysis.git.

3. Results

3.1. Transcriptome single and meta-analysis of genes associated to autophagy, lipid metabolism,

and proteostasis in lager yeast CB11 strain during beer fermentation

The  initial  comparison  of  DNA microarray  transcriptome  analyses  of  GSE9423  dataset

(single analysis;  Figure  1)  and GSE10205 versus  GSE16376 datasets  (meta-analysis;  Figure 1)

indicated a similar pattern of up- and downregulated differentially  expressed genes (DEGs) for

lager yeast CB11 strain in condition of industrial  beer fermentation compared to yeast biomass

propagation  (Figures  2A and  B).  The  transcriptome  single  analysis  showed  a  total  of  5,134

upregulated  and  4,954  downregulated  DEGs  (Figure  2A;  Table  S2),  while  a  total  of  10,258

upregulated and 9,342 downregulated DEGs was observed for transcriptome meta-analysis (Figure

2A; Table S2). It should be pointed that the high frequency of total down- and upregulated DEGs

observed is due to gene redundancy found in different contrasts for both single and meta-analysis.

After removing the gene data redundancy in both transcriptome single and meta-analysis, it was

observed  1,315  upregulated  and  1,209  downregulated  non-redudant  (unique)  DEGs  for  single

analysis, and 1,727 upregulated and 1,502 downregulated non-redudant DEGs for meta-analysis

(Figure 2B). 

Once the transcriptome single- and meta-analysis were generated (Table S2), the next step

was  evaluate  the  expression  profile  of  genes  annotated  for  autophagy,  lipid  metabolism,  and

proteostasis  (ALP)  mechanisms.  For  this  purpose,  the  curated  gene  information  for  ALP
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mechanisms available in the  Saccharomyces Genome Database (Figure 1) was used as a filter to

select the associated under- and overexpressed DEGs. The filtered transcriptome data showed that

the total (redundant) and non-redundant frequency of overexpressed ALP DEGs were higher than

underexpressed ALP DEGs in both single-  and meta-analysis  (Figures  2C and D).  Considering

overexpressed ALP DEGs, a high frequency of upregulated genes associated with lipid metabolism

was  observed  in  both  transcriptome  data  analyses,  followed  by  proteostasis-  and  autophagy-

associated  genes,  respectively  (Figures  2C and D).  Interestingly,  the  number  of  redundant  and

unique underexpressed ALP DEGs was similar in all transcriptome datasets evaluated (Figures 2C

and D). Then, this first transcriptome data evaluation was followed by a specific analysis of the

absolute and average frequencies of ALP DEGs present in each pairwise beer fermentation and

yeast cell propagation timepoints contrasts (Figure 3; Tables S3 and S4). It was observed that the

absolute  and  average  frequencies  of  down-  and  upregulated  ALP  DEGs  in   different  beer

fermentation and early cell propagation timepoints contrasts was low (0 hours for single- and meta-

analysis; 4 hours for meta-analysis) (Figure 3; Tables S3 and S4). On the other hand, the absolute

and average numbers of up- and downregulated ALP DEGs increased in all contrasts made between

different fermentation and advanced propagation timepoints (from 8 to 30 hours of propagation) for

both  transcriptome single  and meta-analysis  (Figure  3;  Tables  S3 and S4).  For  the  subsequent

transcriptome and systems biology analyses, only the overexpressed non redundant (unique) ALP

DEGs observed in all pairwise contrasts were considered.

3.2. Differentially expressed pan genes (Pan-DEGs) linked to autophagy, lipid metabolism, and

proteostasis in lager yeast CB11 strain during beer fermentation

When both transcriptome single and meta-analyses where compared, the frequency of non

redundant overexpressed ALP DEGs for each of three mechanism evaluated was similar (Figure

4A).  In  this  sense,  autophagy  display  the  lowest  frequency  of  overexpressed  DEGs  for  each

transcriptome analysis made (27 DEGs for single analysis and 42 for meta-analysis; Figure 4A). By
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its  turn,  proteostasis  have 76 overexpressed DEGs for single analysis  and 88 for meta-analysis

(Figure 4A), while lipid metabolism have the highest frequency of overexpressed DEGs (121 DEGs

for single analysis and 138 for meta-analysis; Figure 4A). 

The next point of this analysis was to evaluate the frequency of common ALP DEGs shared

by both transcriptome data (Figure 4B). It could be observed that for lipid metabolism there is 117

non redundant DEGs commonly observed in both transcriptome analyses, while proteostasis share

71 DEGs, and autophagy display 26 common DEGs (Figure 4B and C). These overlapping ALP

DEGs  were  selected  as  ALP-associated  common  (Pan)-DEGs  (Table  S6)  and  their  expression

patterns was evaluated. 

Thus, considering the expression pattern of ALP Pan-DEGs (Figure 4D and Table S6), it was

observed that the median value of meta-log2FC was similar for autophagy (meta-log2FC = 2.39),

lipid metabolism (meta-log2FC = 2.57), and proteostasis (meta-log2FC = 2.68). Additionally, the

minimal  and  maximal  values  of  meta-log2FC among  ALP Pan-DEGs  groups  was  also  similar

(Figure 4D), where autophagy-associated Pan-DEGs display minimal and maximal values of meta-

log2FC from 2.13 to 4.39, while proteostasis Pan-DEGs display a meta-log2FC from 2.09 to 4.45,

and lipid metabolism Pan-DEGs from 2.04 to 4.17 (Figure 4D). 

The similar expression pattern of ALP Pan-DEGs prompt to evaluate how these elements are

potentially connected each other in terms of protein-protein interactions (PPI) by means of a top-

down systems biology approach using  S.  cerevisiae interactome data  (Figure 1).  Moreover,  the

importance of these ALP Pan-DEGs for PPI network local and global topologies was also measured,

as well as the overrepresented biological processes and cellular components within the PPI network.

3.3. Top-down systems biology analysis of autophagy, proteostasis, and lipid metabolism-associated

pan-DEGs

The resulting ALP Pan-DEGs obtained from transcriptome analyses were selected as seeds

to generate a shortest pathway PPI network using the publically available S. cerevisiae interactome
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data  (Figure  1).  In  this  sense,  the  yeast  interactome  data  was  previously  filtered  using  only

databases and experiments as evidences of interaction among proteins (as described previously in

this work), and then allowing to get an interactome network composed by 5,063 nodes and 185,404

edges  (please  refer  to  the  Supplementary  Files  “graph_string_db_exp.txt”  and

“Cytoscape_data.cys” available at https://github.com/bonattod/Lipid_stress_data_analysis for more

details). Then, a subnetwork containing all the shortest pathways among the proteins coded by ALP

DEGs was generated from the yeast interactome network (Figure 1). This subnetwork named as

“ALP network” containing 1,705 nodes and 22,806 edges (Figure 5A) and included almost all ALP

Pan-DEGs with exception of the genes FAT3, IZH2, IZH4, MZM1, OPI10, PPX1, and TMA17 that

could be not be mapped using the currently available interactome data from S. cerevisiae.

Following the generation of ALP network, a node centrality analysis was performed in order

to identify all those nodes that exert a local influence in the network’s topology and, consequently,

have relevant roles in the ethanol stress tolerance of lager yeast cells during beer fermentation. For

this purpose, two centralities commonly used for PPI networks were selected, the node degree and

betweenness. The node degree evaluate the potential of a protein to connected with different other

proteins and thus composing functional complexes (Yu et al., 2007). In this sense, all proteins with

values of node degree above the mean value of node degree of the network were defined as hubs

(Yu et al., 2007). By its turn, the betweenness allow to evaluate the ability of a node to connect

different  cluster/communities  of  nodes,  thus  serving as  a  “bottleneck” for  where  the biological

information can traverse from a community to another (Yu et al., 2007). By combining both node

degree and betweenness centralities analyses, it is possible to select nodes that display a high value

of these two parameters,  defining then as the hub-bottleneck (HB) nodes (Figure 5B).  The HB

nodes are critical elements within a network since they concentrate the highest number of shortest

pathways and connections with other nodes, being important components for signal transduction

among protein clusters/communities (Yu et al., 2007). Thus, the centrality analysis of ALP network
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indicated  the  presence  of  423  HB  nodes,  221  hub-nonbottleneck  (HNB)  nodes,  59  nonhub-

bottlenenck  (NHB)  nodes,  and  1,002  nonhub-nonbottleneck  (NHNB)  nodes  (Figure  5B  and

Supplementary  File  “topologies_lipid_stress_data.txt”  available  at

https://github.com/bonattod/Lipid_stress_data_analysis).  Once the  central  nodes  in  ALP network

were defined, it is necessary to know if they are organized in communities within the network. In a

general sense, a graph community can be defined as a specific network topology that contain nodes

highly  connected  betweenn  then  but  have  low  degree  values  with  other  nodes  outside  the

community.  Moreover,  node communities  can be potentially  associated with specific  biological

processes (Pons and Latapy, 2005; Ravasz et al., 2002). In order to identify the nodes communities

in the ALP network, the walktrap community (WTC) algorithm was applied  (Pons and Latapy,

2005), which allows to efficiently find nodes communities by using the random walks technique.

By using the WTC algorithm, it were identified 36 communities associated to ALP network (see

Supplementary  File  “topologies_lipid_stress_data.txt”  available  at

https://github.com/bonattod/Lipid_stress_data_analysis).  For further analysis,  it  was necessary to

select the major ALP network-associated communities by considering the presence of HB nodes and

ALP Pan-DEGs within these communities. Thus, 13 communities were selected (Figure 5C and D;

Table S7), being Cluster 4 the largest community with 521 nodes and 4,424 edges and Cluster 31

the smallest community with 16 nodes and 69 edges (see Supplementary File “Cytoscape_data.cys”

available  at  https://github.com/bonattod/Lipid_stress_data_analysis).  Additionally,  Cluster  4  also

contains the largest number of ALP Pan-DEGs, while Cluster 24 contains only one ALP Pan-DEG

(Figure 6 and Table S7). 

Following the community detection, a gene ontology (GO) analysis was applied for each

one of the selected 13 clusters in order to identify the major overrepresented biological processes

(Figure 7 and Table S8) and the cellular components categories (Figure 8 and Table S9). The GO

analysis of clusters-associated overrepresented biological processes indicated that three groups of
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clusters  and  seven  groups  of  biological  processes  could  be  categorized  by  applying  k-means

distance (Figure 7). In this sense, the cluster group 1 (composed by clusters 3, 23, and 24) contain

major  biological  processes  associated  to  mitochondria  structure  and organization,  while  cluster

group  2  (composed  by  clusters  2,  9,  and  31)  is  associated  to  lipid,  ergosterol,  and  alcohol

metabolism (Figure 7). Both clusters groups 1 and 2 also contains proteins involved in oxidation-

reduction process (Figure 7). On the other hand, the cluster group 3 (composed by clusters 1, 4, 5, 6,

12,  10,  and 14) contains different  processes linked to autophagy and autophagosome assembly,

response  to  ER  stress  and  protein  folding,  piecemeal  microautophagy  of  the  nucleus  and

mitochondria  autophagy,  vesicle-mediated  transport,  among  different  other  biological  processes

(Figure 7). These data lead to the evaluation of the major cellular components associates with these

cluster. Again, three clusters groups were observed (Figure 8). Cluster group 1 (clusters 1, 4, and

31) mainly contain nodes associated with ER membrane and lipid droplet, where cluster group 2

(clusters 2, 3, 5, 9, and 23) is constituted by proteins found in mitochondria envelope and matrix,

Golgi apparatus, membrane protein complexes and organelles like peroxisome (Figure 8). Finally,

cluster group 3 (clusters 8 and 12) is made by proteins that are mainly found in cytoplasmic vesicles

and phagophore assembly site (Figure 8).

3.4. Evaluation of ALP Pan-DEGs linked to lipid droplet structure and function

Using the data available about the different proteins found associated to LD (Grillitsch et al.,

2011) and the ALP Pan-DEGs obtained in this work, it was possible to identify 17 overexpressed

ALP Pan-DEGs linked to LDs structure in lager yeast cells during beer fermentation in comparison

to propagated yeast cells (Figure 9A and B; Table S11). From these 17 LD-associated ALP Pan-

DEGs, 11 genes are directly involved with lipid metabolism and 6 genes are related to proteostasis

mechanisms (Table S11). 

4. Discussion
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The transcriptome and the systems biology data obtained in this work suggest that, during

lager beer fermentation, different genes coding for autophagy, proteostasis, and lipid metabolism are

positively modulated and their products cooperate in a shortest pathway PPI network, composing

different  clusters/communities  of  proteins  (Figure  5A  and  D).  The  GO  analysis  of  these

communities showed that they are associated to a large number of processes related to autophagy,

mitochondria  organization  and  activity,  ER  stress  and  Golgi  organization,  lipid/ergosterol

metabolism, cytoplasmic vesicles, lipid droplets (LDs), and phagophore assembly site (Figures 7

and 8). All these processes are known to be modulated by the stressful conditions that yeast cells

suffer during beer fermentation, including ethanol toxicity  (Telini et al.,  2020) and nitrogen and

carbohydrate starvation (Gibson et al., 2007). Nitrogen starvation is a key condition that promotes

autophagy  in  yeast  cells  (Cebollero  and  Reggiori,  2009),  and  despite  this  mechanism  is  well

characterized in yeast strains during wine fermentation (Piggott et al., 2011), the autophagy studies

in  lager  yeasts  are  virtually  absent.  Interestingly,  malt-derived wort  used  for  beer  fermentation

contains different types of nitrogen sources that could prevent the activation of autophagy (Gibson

et  al.,  2007);  however,  it  was  demonstrated  that  during  wine  fermentations  many  autophagy-

associated genes are upregulated even in the presence of nitrogen sources (Piggott et al., 2011). In

this work, the transcriptome data allow to observe the expression of different  ATG genes during

lager  beer  fermentation  (Table  S10),  many  of  these  genes  involved  in  the  regulation  of

macroautophagy and formation of phagosome, but also related to microautophagy of organelles like

mitochondria and nucleus (Table S10). From all autophagy-associated genes observed upregulated

in beer fermentation, three  ATG genes (ATG1, ATG8, and  ATG18) were characterized as a major

HB node in  the ALP network (Table S10).  ATG1, ATG8 and  ATG18 are  part  of  the  so called

“autophagy core machinery”, which are important for both micro- and macroautophagy (Lynch-Day

and Klionsky, 2010). In this sense, the transcriptome and systems biology data points that during

beer  fermentation  the  cytoplasm-to-vacuole  targeting  (Cvt)  mechanism,  mitophagy,  and  the
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piecemeal microautophagy of the nucleus (PMN) are potentially activated (Figure 7), all of three

depending on the activity of Atg1p, Atg8p, and Atg18p  (Kanki et  al.,  2015; Krick et al.,  2008;

Lynch-Day and Klionsky, 2010). While the importance of Cvt, mitophagy, and PMN to brewing

yeasts strains are unknown in the context of beer fermentation, it has been reported that these all

three  microautophagy  processes  are  important  for  yeast  cell  adaptation  in  a  fermentative

environment (Cebollero and Gonzalez, 2006; Kurihara et al., 2012). 

Another  fundamental  aspect  of  micro-  and macroautophagy mechanisms that  should  be

considered is the formation of autophagosomes, which are membranous vesicular structures that

deliver  different  cargo  components  for  degradation  in  the  vacuole  (Lamb  et  al.,  2013).  The

formation  of  autophagosomes  strongly  depends  on  the  lipid  biosynthesis  that  includes

triacylglycerols (TGs) and sterol esters (SEs) originated from ER membranes in the form of LDs

(Velázquez et al., 2016a). In fact, it was demonstrated that low levels of nitrogen sources and the

presence of glucose stimulate lipidogenesis in yeast and increases the number of LDs that, by its

turn, are required for efficient autophagy (Li et al., 2015). 

The transcriptome and systems biology data showed the upregulation of several genes linked

to neutral lipid biosynthesis as well as ergosterol in lager yeast cels during beer fermentation (Table

S10). Moreover, the GO analysis of cellular compartments linked to clusters 1, 4, and 31 indicate

the participation of the proteins coded by that genes in ER membrane structure and its association

with nuclear outer membrane and LDs (Figures 7 and 8). 

Besides the importance of lipid biosynthesis for autophagy, it is known that lipids could be

key molecules regulating proteostasis in addition to the well known modulation of cell membrane

permeability to ethanol (Aguilera et al., 2006; Chi and Arneborg, 1999; Ma and Liu, 2010). In fact,

lipid metabolism and LDs are important components of proteostasis, since it has been showed that

yeast  cells  defective  in  the  biosynthesis  of  neutral  lipids  and LDs display  a  chronic  ER stress

(Graef, 2018; Velázquez et al., 2016a). Additionally to proteostasis, LDs are essential components
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to macroautophagy  (Velázquez et  al.,  2016b; Velázquez and Graef,  2016),  having a role on the

assemble of autophagosomes and also in the induction of mitophagy  (Carmona-Gutierrez et al.,

2012) and microlipophagy  (Vevea et  al.,  2015).  Noteworthy,  six upregulated proteostasis  genes

described in this work that are linked to the inter-organellar proteostasis mechanism (CPR5, KAR2,

PDI1, PMT1, RPL5, and SSA1) (Telini et al., 2020) are also found in LDs structure (Figure 9B and

Table S10). Interestingly, ER stress can induce the formation of LDs (Fei et al., 2009) and it has

been reported that LDs interact with mitochondria and peroxisome by means of Erg6p (Pu et al.,

2011), a protein codified by ERG6 that was found upregulated in this work (Figure 9B and Table

S10)

Finally, despite the importance of LDs and lipid biosynthesis for different mechanisms and

organelles  (Barbosa et  al.,  2015), little is unknown how they regulate cell  viability and ethanol

tolerance in different brewing yeast strains in conditions of HG/VHG beer production. Considering

LDs and its central role in inter-organellar communication as well as by promoting the activity of

autophagy and proteostasis, it become essential to understand the regulation and function of this

organelle in a beer fermentation environment. Moreover, how LDs are regulated and produced in a

context of a hybrid species, like the lager yeast Saccharomyces pastorianus (Gorter de Vries et al.,

2019), in comparison to its parental counterparts (Saccharomyces eubayanus and  Saccharomyces

cerevisiae) is an essential question in order to design new resistant lager strains to high ethanol

concentrations during HG/VHG beer production.
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Figure legends

Figure  1. Experimental  design  used  in  DNA microarray  single  and  meta-analysis  and

systems biology.  Abbreviation:  differentially  expressed  genes  (DEGs);  Saccharomyces  Genome

Database (SGD); gene ontologies (GO).

Figure 2. Frequency of total (A) and non-redundant or unique (B) differentially expressed

genes  (DEGs)  in  transcriptome  single-  (GSE9423)  and  meta-analysis  (GSE10205  versus

GSE16376). Specific DEGs associated to autophagy, proteostasis, and lipid metabolism (ALP) were

filtered from transcriptome single- (GSE9423) and meta-analysis (GSE10205 versus GSE16376)

and the frequency of total (C) and non-redundant or unique (D) ALP DEGs were determined. The

numbers inside the squares shown the total of underexpressed and overexpressed DEGs observed in

a specific contrast.

Figure  3. Frequency  of  total  under-  and  overexpressed  genes  associated  to  autophagy,

proteostasis, and lipid metabolism in different contrasts from transcriptome single- (GSE9423) and

meta-analysis (GSE10205 versus GSE16376).

Figure  4. Frequency  of  non-redundant  or  unique  overexpressed  genes  associated  to

autophagy, proteostasis, and lipid metabolism (ALP DEGs) in transcriptome single- (GSE9423) and

meta-analysis  (GSE10205  versus  GSE16376)  (A).  The  numbers  inside  the  squares  shown  the

frequency of overexpressed DEGs observed in a specific mechanism. The frequency of overlapping

ALP DEGs for both transcriptome analyses is indicated in the Venn diagram (B) and barplot (C).

The overlapping ALP DEGs were denominated as ALP Pan-DEGs and its expression values in log2

fold are shown in (D).

Figure 5. Shortest pathway protein-protein interaction (PPI) network obtained from ALP

Pan-DEGs (ALP network; A). From this ALP network, a centrality analysis was applied and the

nodes  were  classified  in  hub-bottleneck  (HB),  hub-nonbottleneck  (HNB),  nonhub-bottleneck

(NHB), and nonhub-nonbottleneck (NHNB) considering its nodes degree and betweenness values in
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comparison to the mean values of node degree and betweenness of the network (dashed lines; B).

Additionally,  communities/clusters  of  proteins  were  determined  within  the  ALP network  and

selected considering the presence of ALP Pan-DEGs (C) and HB nodes (D). In (C), the diameter of

dots is proportional to the number of ALP Pan-DEGs found in the community/cluster. In (D), HB

nodes are represented by square elements.

Figure 6. Expression data for ALP Pan-DEGs found in the selected communities/clusters

derived from the ALP network.  The mean expression values are indicated by log2 fold change ±

standard deviation (SD) on the x-axis. Gene names are indicated on the y-axis.

Figure 7. Heatmap plot  showing the  clustered  biological  processes  obtained from gene

ontology analysis  of ALP network-associated communities/clusters.  Heatmap rows and columns

were grouped using the k-means distance method. Horizontal and vertical dotted lines indicate the

cut-off point used to define the numbered rows and column groups.

Figure 8. Heatmap plot  showing the  clustered  cellular  components  obtained from gene

ontology analysis  of ALP network-associated communities/clusters.  Heatmap rows and columns

were grouped using the k-means distance method. Horizontal and vertical dotted lines indicate the

cut-off point used to define the numbered rows and column groups.

Figure  9. Venn  diagram showing  the  intersection  of  ALP Pan-DEGs  and  lipid  droplet

associated proteins (A). In (B), mean expression values of ALP Pan-DEGs whose products are also

found  in  lipid  droplets.  The  expression  values  are  indicated  by  log2  fold  change  ±  standard

deviation (SD) on the y-axis and the gene names are indicated on the x-axis.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 9.
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Highlights for review

1. Transcriptome data of lager yeast show the importance of lipids in beer fermentation.

2. Systems biology show the interplay of lipid metabolism, autophagy, and proteostasis.

3. Lipid droplets coordinate autophagy and proteostasis during beer fermentation.
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