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Abstract 

In this study, we test the hypothesis that noninvasive markers of brain development reflect the 
spatiotemporal patterning of genes underlying corticogenesis during gestation and the developmental 
staging of the neonatal brain. Additionally, we test the selective vulnerability of molecular processes 
underlying cortical development to disruption following preterm birth. We find that gene expression in 
the fetal cortex is mirrored by a principal mode of variation in the neonatal cortex. Specifically, 
regional variation in cortical morphology and microstructure reflect differences in developmental 
maturity across cortical areas, indexed by the differential timing of gene expression across multiple 
cell types in the fetal cortex. Further, the effects of preterm birth are temporally and spatially 
coincident to developmental processes involving the differentiation and specialisation of cortical 
oligodendrocyte populations. This work provides an experimental framework to link molecular 
developmental mechanisms to macroscopic measures of cortical anatomy in early life, demonstrating 
the relationship between fetal gene expression and neonatal brain development and highlighting the 
specific impact of early exposure to the extrauterine environment due to preterm birth. 
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Introduction 
The human cortex is composed of functionally distinct regions organised within broadly hierarchical 

systems.1–4 While the mechanisms behind the emergence of this complex topography are not yet fully 

understood, cortical patterning is underwritten by dynamic regulation of gene transcription during 

gestation.5–8 The advent of modern transcriptomic technologies has allowed the precise mapping of 

cortical gene expression in the prenatal period.9,10 Differential gene transcription across cortical 

regions is most pronounced during prenatal development and varies along a well defined gradient 

from lower to higher order areas.6,8,9,11 Interruption to the precisely timed dynamics of gene 

transcription during gestation is implicated in the onset of common developmental cognitive and 

neuropsychiatric disorders.12–15 

 

Recently, the post mortem transcription of thousands of genes across the adult brain has been 

compiled to form brain-wide, gene expression atlases.16 This allows precise comparison between 

spatial patterns of cortical gene expression and neuroanatomy quantified using Magnetic Resonance 

Imaging (MRI).17,18 Neuroimaging studies have found patterns of gene expression in the adult cortex 

are mirrored by regional variation in cortical morphometry19,20 and functional organisation,21 and are 

associated with neuroimaging markers of developmental disorders.22,23 Similar databases detailing 

cerebral gene transcription across the full human lifespan from early embryonic stages to adulthood 

are now available.9,12 This has created an unprecedented opportunity to explore the molecular 

correlates of neuroimaging markers of early brain development. 

 

Advances in neonatal neuroimaging now permit the quantification of developmental neuroanatomy in 

vivo at a higher-resolution than previously possible.24–28 Imaging studies of the developing human 

brain shortly after birth have characterised a highly dynamic period of cerebral change defined by 

significant increases in brain volume,29,30 cortical thickness and surface area,31–35 progressive white 

matter myelination36–40 and ongoing configuration and consolidation of functional brain networks.41–43 

Further, the truncation of gestation due to preterm birth is associated with widespread alterations in 

brain development indexed by MRI at the time of normal birth,44–49 highlighting the sensitivity of 

noninvasive neuroimaging to detect disruptions in early developmental processes. 

 

The combination of these technologies opens a new window on early brain development, facilitating a 

comparison between patterns of prenatal cortical gene expression and the development of the brain 

at around the time of birth, as well as providing a platform to test mechanistic hypotheses about the 

impact of early disruptions to brain development during gestation. In this study, we explore the 

association between in vivo measures of cortical morphometry at birth and regional patterns of fetal 

gene transcription to test the hypothesis that noninvasive markers of brain development reflect the 

spatiotemporal patterning of genes underlying corticogenesis during gestation and the developmental 

staging of the neonatal brain. Additionally, we test the selective vulnerability of molecular processes 

underlying cortical development to disruption following preterm birth.  
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We find that gene expression in the fetal cortex is mirrored by a principal mode of variation in cortical 

morphometry at birth. Regional variation in cortical development is predicted by the differential timing 

of gene expression across the cortex and truncation of the intrauterine period by preterm birth is 

encoded by effects that suggest a selective vulnerability of developmental cell populations to early 

extrauterine exposure. 

 

Results 

A principal organisational gradient in the neonatal cortex 

Using high-resolution structural and diffusion MRI data acquired from a large cohort of healthy 

neonates (n=292, 54% male, median [range] gestational age at scan = 40.86 [37.29-44.71]), we 

extracted six measures of cortical morphology (cortical thickness) and microstructure (T1w/T2w 

contrast; Fractional Anisotropy, FA; Mean Diffusivity, MD; Intracellular Volume Fraction, fICVF; and 

Orientation Dispersion Index, ODI) from eleven cortical regions-of-interest (ROI) with corresponding 

mRNA-sequencing in a prenatal transcriptomic dataset12 (Fig 1A, Fig S1). 

 

We used a hierarchical clustering algorithm to characterise inter-regional variation in neonatal cortical 

morphology and microstructure, grouping regions-of-interest together based on the similarity of their 

metric profiles (Fig 1B). Regional clustering was repeated with 10,000 bootstrapped samples, 

selecting n subjects with replacement from the full term-born cohort before calculating the group 

average matrix and clustering. Using the silhouette score50, a measure of intra-cluster coherence, to 

select the optimal number of clusters, we identified four regional clusters (mean ± S.D. silhouette 

score = 0.67 ± 0.01, 10,000 bootstraps; Fig S2), the membership of which reflected, in part, a basic 

functional hierarchy within the cortex. We found the silhouette score of the four-cluster solution was 

significantly greater than expected by chance after comparison to a null distribution built from 

permuting assigned regional cluster labels (p<0.001, 10,000 permutations). Pairwise distances in the 

metric profile data were significantly preserved by the four-cluster solution (cophenetic correlation = 

0.90), compared to a second null distribution drawn from simulated multivariate data with matched 

covariance (see Methods; p<0.001, 10,000 samples). 

 

Clusters 1 and 2 comprised higher order cortical regions including frontal (dorsolateral prefrontal, 

DLPFC; ventrolateral prefrontal, VLPFC; orbitofrontal, OFC) cortex, inferior parietal cortex (IPC) and 

inferior temporal cortex (ITC) in cluster 1, and medial frontal cortex (MFC) and superior temporal 

cortex (STC) in cluster 2. In contrast, cluster 3 comprised primary sensorimotor regions in the auditory 

(A1C), motor (M1) and sensory (S1) cortex. Primary visual cortex (V1) formed its own cluster separate 

to other sensory regions. 
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Figure 1: A principal organisational gradient in the neonatal cortex as indexed by multi-modal MRI. A. 

Average cortical imaging metrics in a cohort of healthy, term-born neonates (n=292). Metrics derived from 

structural MRI (T1/T2 contrast, cortical thickness) and diffusion MRI model parameters using DTI (FA and MD) 

and NODDI (fICVF and ODI). Cortical regions-of-interest based on anatomical references with corresponding 

developmental transcriptomic data (see Methods). B. Clustering of mean regional cortical metrics. Metrics are Z-

transformed across regions to facilitate comparison; darker colours indicate relatively lower values. C. Z-scored 

cortical metrics are shown for each subject grouped within each cortical region-of-interest and coloured by 

cluster.  Bottom row shows cortical regions coloured by cluster membership. D. PCA weights for each metric for 

the first two principal components, coloured by cluster. E. Position of each cortical region-of-interest based in 

PCA state space, the position of each region is dictated by its component score for the first two principal 

components. Regions are labelled and coloured by cluster. 
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Similar regional profiles are evident across metrics (Fig 1C) with the pattern of inter-regional variation 

reflecting the full transcortical patterns shown in Fig 1A. Comparable regional patterns were observed 

in FA and cortical thickness, and between ODI, fICVF and the T1w/T2w contrast (Fig 1B,C), with 

higher FA, thicker cortex and a higher T1w/T2w contrast in primary somatomotor cortex (Fig 1A, C). 

MD displayed an opposing trend across regions, lowest in primary somatomotor regions (cluster 3) 

and highest in fronto-parietal regions (cluster 1). Performing an omnibus test, we found significant 

differences across clusters in all metrics except for MD (repeated measures ANOVA: FA F3,855=11.4, 

p<0.001; fICVF F3,855=3.9, p=0.008; MD F3,855=0.5, p=0.63; ODI F3,855=7.2, p<0.001; T1w/T2w 

F3,855=8.3, p<0.001; thickness F3,855=53.9, p<0.001). 

 

Based on the similarities in cortical patterning across metrics, we hypothesised that regional variation 

across metrics could be represented by a small number of latent factors. Using Principal Component 

Analysis (PCA), we sought a small set of factors, each a linear combination of the original imaging 

metrics, to maximally explain variance in the full set of cortical measures. Using the group-average 

region × metric matrix (Fig 1B), we found that the first two components explained 72.3% and 19.3% of 

the total variance, respectively (Fig 1D,E).  

 

The first component (PC1) ordered cortical regions along a principal gradient with clusters 1 (DLPFC, 

VLPFC, OFC, IPC, ITC) and 3 (A1C, M1, S1) situated at opposite ends. This gradient is apparent in 

all cortical metrics, most strongly in T1/T2 contrast, fICVF and mean diffusivity (Fig S3). The second 

principal component (PC2) predominantly captured anatomical and microstructural differences in V1 

compared to other primary cortex (Fig 1C). Clear separation between primary and higher-order 

cortical regions is apparent based on regional PC1 scores (Fig 1E) lending support to the idea that 

correlated regional variation across multiple MRI metrics at birth reflects a shared perspective of basic 

cortical organisation. 

The principal imaging gradient is associated with regional patterns of gene 

expression in mid-gestation 

Using a developmental transcriptomic dataset of bulk tissue mRNA data sampled from cortical tissue 

in 16 prenatal human specimens,12 we compared regional variation in cortical MRI metrics with 

prenatal gene expression in anatomically-correspondent cortical regions. Through comparison to five 

independent single-cell RNA studies of the developing fetal cortex,10,12,51–53 we selected a set of 5287 

marker genes shown to be differentially expressed in cortical cells during gestation. We used a 

nonlinear mixed-effects approach to model developmental changes in gene expression as a smooth 

function of age, accounting for inter-specimen variability. This nonlinear model provided a better fit of 

the expression data for all genes compared to a comparable linear model (range AIC difference:-10.7 

to -94.6; range BIC difference: -2.1 to -58.9). 

 

Focusing first on the spatial variation in gene expression across the cortex, we calculated specimen- 

and age-corrected RPKM values for each gene using the residuals of the nonlinear mixed model (Fig 
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S4). We then tested the association between spatial variation in gene expression during gestation and 

the principal imaging gradient at birth using non-parametric correlation (Kendall’s 𝜏) between age-

corrected RPKM values and PC1 score across cortical regions. Of 5287 genes, 120 displayed a 

significant (positive or negative) correlation with the principal imaging gradient (PC1) after correction 

for multiple comparisons with False Discovery Rate (p<0.05). In total, 71 genes were positively 

correlated with PC1, with increasing expression in regions with a positive PC1 score (mean ± S.D. 𝜏 = 

0.208 ± 0.023) and 49 genes displayed the opposite relationship, with higher expression in regions 

with a negative PC1 score (mean ± S.D. 𝜏 = -0.208 ± 0.022).  

 

We reasoned that genes associated with the patterning of cortical morphometry at birth may underpin 

important neurodevelopmental functions. To test this, we performed an over-representation analysis 

(ORA) for ontological terms associated with specific biological processes in both gene lists. Of 71 

genes with spatial patterns of expression that were positively associated with PC1 (denoted PC+), 61 

(86%) were annotated to specific functional terms. Using all protein-coding genes transcribed in the 

bulk RNA dataset as the background reference set, we found significant enrichment of several 

neurodevelopmental terms including: stem cell differentiation (FDR=0.001, enrichment ratio=9.32), 

neuron migration (FDR=0.03, enrichment=7.94) and forebrain development (FDR=0.004, 

enrichment=5.65) (Fig 2A; Table S1). Terms relating to stem cell and neuronal differentiation 

remained significantly enriched when restricting the background reference set to only include genetic 

markers of fetal cortical cells (n=5287; Table S1). No biological terms were significantly enriched in 

genes with a spatial pattern of expression negatively correlated to PC1 (denoted PC-). 

 

Performing weighted gene correlation network analysis (WGCNA)54 on the PC+ gene set, we 

identified two co-expressed gene modules (Fig 2B). The largest, Module 1, contained 53 genes 

including a tightly correlated set of developmental genes with roles in regulating cell growth and 

differentiation including EOMES, NEUROD4, SFRP1 and TFAP2C and was significantly enriched for 

GO terms: nervous system development (GO ID: 7399) and system development (GO ID: 48731, both 

FDR-corrected p=0.047). On average, expression of genes within Module 1 was highest in younger 

tissue samples, peaking at around 120 post-conceptional days and decreasing thereafter (Fig 2D). 

The smaller, second module (Module 2) contained 13 genes, with roles including neuronal signalling 

(ERBB4, CALB2, SCGN) and neuronal differentiation (ZNF536, DLX1). Top enriched GO terms 

included synapse maturation (GO ID: 60074) and synapse organisation (GO ID: 50808, both 

p=0.059). Average modular gene expression accelerated rapidly between 75 and 125 post-

conceptional days, increasing slowly across the remaining age range (Fig 2D). In the PC- gene set, 3 

small modules of 7 genes each were identified (Modules 1N-3N; Fig S5), including genes with high 

neuronal expression (Module 1N; CDKL5, ZBTB18, SORCS1), and genes involved in cellular 

processes including adhesion and signalling (Module 2N: ACTN2, PTPN2, SSX2IP) and metabolic 

activity (Module 3N: DUSP7, ST3GAL1) although no biological terms were significantly enriched in 

any module.  All three modules exhibited a later peak in average expression between 175 and 200 

postconceptional days (Fig S5). 
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Figure 2: Genes associated with neuronal differentiation are differentially expressed along the principal 

imaging gradient. A. Volcano plot showing enrichment of GO terms (Biological Processes) in genes with age-

corrected expression that is positively associated with PC1. Significantly enriched terms (FDR < 0.05) are 

labelled. Gene co-expression analysis of all PC+ genes revealed two modules (B: Module 1; C: Module 2; 

topological overlap matrix showing all inter and intra-modular connections; B, inset). Intra-modular connections 

are shown with node size and colour indicating strength, and edge thickness and colour indicating weight. D. 

Module specific developmental trajectories. Average trajectories estimated using nonlinear mixed effects 

modeling for all genes in Module 1 (right) and Module 2 (left), shaded area indicates 95% C.I. 

 

Imaging-gene associations are enriched for specific cell types in the fetal cortex 

To explore these relationships further, we reconstructed cellular gene expression profiles by stratifying 

the bulk tissue expression data using genetic markers of cell type derived from single-cell RNA 

studies of the fetal cortex.  

 

Sets of genetic markers for eleven cortical cell classes were initially compiled by combining lists of 

genes that are differentially expressed in fetal cortical cell populations (Table S2). To verify this 

grouping, we calculated the average expression trajectories for all genetic markers within each cell 

type across gestation and used them to calculate a 2D embedding using Uniform Manifold 

Approximation and Projection (UMAP; Fig 3).55 Proximity in the embedded space reflects similarity 
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between average trajectories of gene expression within cell type over time. In the embedded space, 

cell types clustered by assigned class, and maturational timing (precursor or mature), as well as within 

cellular subtype (eg: inhibitory and excitatory neurons). Average trajectories for 10 cell classes 

(excluding a non-specific neuronal class) are shown in Fig S6.  

 

We then tested the enrichment of each cell class within the PC+ and PC- gene sets. We found that 

PC+ genes were significantly enriched for genes expressed by precursor cells (p=0.0003), 

specifically, for genes expressed by intermediate progenitor cells (enrichment ratio = 1.63, p=0.0002; 

Table S3) and inhibitory neurons (enrichment ratio = 3.2, p<0.0001; Fig 3C; Table S3). Posthoc 

analysis within cell class, revealed specific inhibitory neuron subtypes present in the mid-fetal brain 

and enriched in the PC+ gene set included migrating cortical interneurons from the caudal ganglionic 

eminence (In_5,53 IN-CTX-CGE2,52  both p<0.0001) and newborn interneurons originating in the 

medial ganglionic eminence (nIN1;52 p=0.0017). Finally, we tested whether genes in significantly 

enriched cell classes were also enriched within specific co-expression modules (Fig 2B). We found 

that Module 1 was enriched for progenitor genes (enrichment=1.95, p<0.0001) with 34 out of 53 

modular genes also expressed by progenitor cells, in addition to 13 genes expressed by inhibitory 

neurons (enrichment=2.28, p=0.003). Module 2 contained 11 genes (out of 13) expressed by 

inhibitory neurons (enrichment=7.9, p<0.0001), and 4 expressed by progenitor cells (p>0.05). When 

only considering genes unique to each cell class, Module 1 was enriched significantly for progenitor 

genes (shared genes: MCM2, ILDR2, EOMES, DBN1, NEUROD4, KLHL9, NHLH1), and Module 2 for 

inhibitory neuron genes (CALB2, THRB, SCGN, ERBB4). 

 

In contrast, PC- genes, with a spatial pattern of expression that was higher in primary somatomotor 

regions, were enriched for genes expressed by mature cell types (enrichment=1.18, p=0.002). In 

terms of cell class, genes expressed by oligodendrocytes were enriched within PC-, though not 

significantly (enrichment=1.75, p=0.056; Fig 3C; Table S3). When considering only marker genes 

uniquely expressed by each cell class, PC- genes were enriched for unique excitatory neuronal genes 

(enrichment=2.14, p=0.008; Table S4). Posthoc analysis within this class revealed a single enriched 

early maturing excitatory neuronal subtype (Ex_4,53, p<0.0001). In terms of co-expression modules, 6 

out of 7 genes in Module 1N were expressed by fetal excitatory neurons (enrichment = 2.07, 

p=0.022). 
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Figure 3: Cell-specific gene expression is associated with cortical morphology at birth. A. UMAP 

embedding of 86 cell types based on trajectories of relative gene expression over time recovers cell classes, cell 

timing (B. bottom row, left) and neuronal subtype (B. bottom row, right) but not study (B. top row). C. Enrichment 

ratio for marker genes expressed by each cell class is shown for PC+ (first) and PC- (second) associated gene 

sets, with cell-type specific enrichment shown for all 86 cell types (darker colour represent higher enrichment 

ratio). 

Variation in genetic maturation during gestation predicts cortical development at birth 

These data suggest that the spatial patterning of gene expression in the developing cortex is mirrored 

by regional variation in cortical morphology and microstructure at birth. The observed differences in 

expression across cortical areas additionally suggest a gradient of neurobiological maturation (Fig 

4A), potentially represented by the differential timing of gene expression across regions. 

 

To test this hypothesis, we created a model of cortical maturity to capture the relationship between the 

regional timing of gene expression and tissue maturation. Surmising that tissue maturity would be 

indexed by a unique pattern of age-dependent gene expression dictated by the developmental 

maturity of different cell populations, we first trained a regularised kernel regression model to predict 

the age of each prenatal specimen (n=16) using expression over time of the 120 regionally-variant 

genes (PC+ and PC-). Using a leave-one-out (LOO) framework, we modelled the association between 

mean cortical gene expression (averaged over regions) and specimen age using data from 15 out of 

16 brains. We then used this model to predict age based on the regional gene expression profiles 
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from each of the left-out specimen’s 11 cortical samples. We repeated this process for all 16 

specimens. Using this method, we created a regional ‘genetic maturation index’ (GMI), subtracting 

specimen age from LOO-predicted age for each cortical sample within a specimen, such that a 

positive value indicates that genetic maturity within a region is relatively advanced (and therefore 

predicted to be older) compared to the rest of the cortex and vice versa 

 

We found that genetic maturity varied both across cortical regions and across gestation. We observed 

an increasingly negative association develop over gestation between a cortical region’s genetic 

maturity based on n=120 significant genes and its position along the principal imaging gradient at birth 

(r=-0.90, p=0.001, 1000 permutations, Fig 4B,C) such that, in the oldest sample, regional genetic 

maturity was correlated negatively with PC1 score (r [95% C.I.]=-0.45  [-0.14, -0.74], Table S5) and 

most advanced in primary somatomotor regions M1 (GMI [95% C.I.]=5.07 [-3.8,13,9]) and S1 

(GMI=10.53 [1.7,19,9]). This relationship was also present, though weaker, in a larger model, using 

expression data from all genes (r=-0.61, p=0.049; Figure S7). We confirmed the specificity of this 

relationship by confirming that the correlation between PC1 and genetic maturity over time was 

significantly larger than equivalent models using random selections of n=120 genes from the larger 

gene set (mean |r|=0.51, p=0.001, 1000 permutations).  

 

Using nonlinear models of gene expression over time, we evaluated regional genetic maturity at 

several points across gestation (Fig 4D). We found that the relative maturity of regions compared to 

the rest of the cortex varied over time. Primary somatomotor regions (cluster 3) remained relatively 

advanced throughout gestation, with an average positive genetic maturity index at all timepoints.In 

contrast, V1 (cluster 4; Fig 4D) remained relatively delayed across gestation. A divergence in maturity 

becomes apparent within higher-order regions (cluster 1) by mid-gestation, with some cortical areas 

(IPC, ITC) falling behind other regions towards the time of birth. These patterns were largely repeated 

in the larger gene set (Fig S7). 
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Figure 4: Genetic maturity correlates with regional variation in cortical morphometry at birth. A. 

Developmental patterns of mean cortical gene expression illustrated in each specimen for all 120 regionally 

variant genes (PC+ and PC-), ordered by age. B. The relationship between predicted and true sample age for all 

cortical regions, calculated using leave-one-out cross-validation. Regression lines are plotted separately for each 

region, and coloured by position along the principal imaging gradient. C. Correlation between regional variation in 

cortical morphometry (given by position along PC1) and genetic maturity in each specimen, plotted against 

specimen age. Error bars indicate 95% C.I.  D. Developmental trajectories of genetic maturation for regions 

within each imaging cluster ordered by position along the principal gradient (left-to-right: A1C, S1, M1;  MFC, 

STC; V1; DLPFC, VLPFC, OFC, IPC, ITC). Density plots show the difference between model-predicted age and 

sample age (5,000 bootstrapped gene samples). Positions to the left of 0 indicate regions that are less mature 

compared to the mean. Five time windows through gestation are shown, with age in postconceptional days. E. 

Absolute correlations between differential tissue maturity based on the modelled expression of genes from 10 cell 

classes at 260 days post-conception and group average metrics of cortical morphometry at birth. Dendrograms 

shows cell classes with similar differential maturity across cortical regions at around the time of birth.  
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Finally, we re-calculated regional genetic maturity using only the expression profiles of genes 

expressed by each cell class. By comparing regional variation in cell-specific genetic maturity at 260 

days post-conception with each cortical metric, averaged across the group (Figure 4E), we found that 

measures of cortical microstructure (fICVF, T1/T2 contrast, MD, FA and ODI) correlated most strongly 

with the differential timing across regions of gene expression associated with oligodendrocytes 

(r=0.76, 0.62, -0.58, 0.69 and 0.42 respectively). Where FA and fICVF displayed similar correlations 

across multiple cell classes, mean T1/T2w contrast and MD showed some specificity, correlating most 

strongly with oligodendrocytes (r=0.62, -0.58 respectively), excitatory neurons (r=0.47, -0.44) and 

endothelial cells (r=0.55, -0.42). In contrast, regional variation in cortical thickness correlated most 

strongly with both differential maturity in genes expressed by inhibitory neurons (r=0.43).  

The principal imaging gradient is altered following preterm birth 

Based on this evidence, we hypothesised that an interruption to the length of gestation would yield 

differences in cortical morphology indexed by variation along the principal imaging gradient. To test 

this, we compared cortical morphology in healthy neonates (n=292) to a cohort of preterm-born 

infants scanned at term-equivalent age (n=64, 59% male; mean [S.D] gestational age at birth = 32.00 

[3.88] weeks). 

 

First, we projected each individual’s region × metric matrix onto the first principal imaging component 

(Fig S8). After correcting for age at scan and sex, regional variation along PC1 explained significantly 

less variance in preterm individual’s imaging data than those born at term (ANCOVA: F=7.9, p=0.005; 

Fig 5A). Across both groups, the mean variance explained by PC1 increased with age (Fig 5A; 

F=46.0, p<0.001), with a stronger association in the preterm cohort (interaction: F=6.63, p=0.01) 

suggesting that the establishment of a principal imaging gradient is ongoing around the time of birth 

and altered by events surrounding preterm birth. 

 

As the same set of eigenvectors are used to project each individual’s data into the principal gradient 

space, differences in the variance explained by PC1 are dictated by individual differences in cortical 

metrics. We sought to establish the specific effects of preterm birth on cortical development by 

investigating group differences across all measures. Using mixed effects linear models including 

effects of age, birth status and regional PC1 score, we confirmed a significant main effect of birth 

status on all cortical metrics except for ODI (Table S6-8). 

 

The largest effect was evident in cortical T1w/T2w contrast (F1,354=135.53, p<0.0001, Cohen’s d=1.62; 

Table S8). On average, cortical T1w/T2w was significantly lower in preterm infants with post hoc 

analysis confirming this effect was apparent across all image clusters (GLM correcting for age at scan 

and sex: all p<0.001). In addition, in the preterm cohort, lower gestational age at birth was associated 

with a lower T1w/T2w contrast in all cortical clusters (GLM: all p<0.01). To a lesser extent, both 

intracellular volume fraction and FA were, on average, higher in preterm infants (d=0.32, 0.55 

respectively), although the direction of this effect was not consistent across cortical regions (Fig S9). 
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In contrast, average cortical mean diffusivity (d=-1.17) and, to a lesser extent, cortical thickness (d=-

0.65) were higher in preterm infants, with the largest differences in primary visual and sensorimotor 

regions (clusters 4 and 3, respectively; Fig S9).  

 

The magnitude of regional group differences across all cortical metrics varied as a function of PC1 

(Table S7). This effect was again most apparent in T1w/T2w contrast (Fig 5B) where the differences 

between term and preterm groups formed a strong negative association with PC1 (r = -0.78, p=0.023 

after FDR correction). Similar trends were seen in the other metrics, although none reached 

significance (|r| = 0.32 to 0.68, all p>0.05).  

 

We show cortical differences following preterm birth occur in line with the principal gradient and are 

most apparent in T1/T2w contrast. As such, regional variation in the T1w/T2w contrast acts as a 

sensitive marker of both tissue maturity in the healthy newborn brain and the adverse impact of 

preterm birth on cortical development. 

Potential vulnerability of cellular processes to the timing of preterm birth 

Finally, we investigated the potential that the differences observed in preterm cortex may reflect a 

selective vulnerability in specific cell populations due to coincidental timing of extrauterine exposure 

following preterm birth and temporal variations in gene expression. Focusing on the cortical 

differences observed in T1/T2w contrast, we first estimated gene expression trajectories over the 

latter stages of gestation (160 to 260 post-conceptional days, approximately 25 to 39 weeks 

gestational weeks). We then split this preterm period into 10 age windows and within each, we 

identified genes with expression significantly correlated to the magnitude of group differences in 

T1/T2w contrast at term-equivalent age (FDR-corrected p<0.05, Fig 5C), and tested for the 

enrichment of gene expression by each of 10 fetal cell types within each windowed gene set. In the 

early preterm period, we found that mean regional differences in T1w/T2w contrast at term-equivalent 

ages were significantly associated with genes expressed by both inhibitory and excitatory neurons 

(windows 1, 2, 3 and 5, hypergeometric statistic: p<0.05). In contrast, later in gestation, T1w/T2w 

differences correlated with the expression of genes enriched for microglia and endothelial cells 

(windows 8,9 and 10; all p<0.05). However, genes enriched for oligodendrocyte expression were 

significantly associated with T1/T2w differences across the full preterm period (windows 1,2 and 8,9 

and 10, all p<0.05; Fig 5C, middle). We confirmed the association with oligodendrocyte cell lineage by 

performing an independent cell-specific enrichment analysis56 of genes correlated with T1/T2w 

differences across the preterm period (Fig S10). 

 

We identified genes expressed by oligodendrocytes across multiple age windows (Fig 5D). We found 

that genes associated with T1w/T2w differences changed across the preterm period, with some 

exhibiting high expression early (e.g.: NPC1, AQP6, ANKS1B) or late (e.g.: PLLP, MOBP) and several 

expressed across the full period (e.g.: MP1, TOMIL2, OMG). Using the STRING database,57 we 

identified protein-protein interactions between genes expressed across at least 3 age windows (Fig 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.28.922849doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922849
http://creativecommons.org/licenses/by-nc/4.0/


Ball et al. Cortical morphometry at birth relates to fetal gene expression 
 

 13 

5E) and found 7 interaction networks, 4 including more than 3 genes (Table S8). We performed a 

functional enrichment analysis of Reactome pathways58 to identify specific molecular processes 

involving genes in each PPI network and identified significantly enriched pathways in 4 networks 

(each FDR<0.05; Fig 5E, Table S9).  

 

Pathway enrichment analysis revealed significant gene associations across multiple time windows. 

Genes involved in NMDA signalling in the MAPK/ERK pathway (HSA-438066, HSA-442729, HSA-

442982; DLG1, GRIN2A) were significantly correlated to T1w/T2w differences across the majority of 

the preterm period. In contrast, regional expression of genes associated with the MyD88 signalling 

cascade (HSA-975871; S100B, RPS6KA2) were most closely correlated to T1w/T2w differences in 

the latter stages of gestation (windows 5 to 9 and 7 to 10, respectively). Other pathways linked genes 

expression over multiple time periods. Neurotrophin signalling pathways included genes OMG 

(correlated between windows 1-8) and ARHGEF10 (windows 2-5), and the Rho-GTPase signalling 

pathway (HSA-194840) included both ARHGEF10 and RHOB (windows 5-10). Finally, sphingolipid 

metabolism pathways included genes expressed across both the full window (ACER3, windows 2-9) 

and specifically in later gestation (SMPD1, windows 8-10). This highlights multiple metabolic signalling 

pathways occurring in developmental oligodendrocyte populations during the period most at risk of 

interruption by preterm birth with a regional specificity correlated to neuroimaging markers of preterm 

brain injury at birth.  

 

To further explore the potential functional role of genes associated with preterm brain differences, we 

performed an additional mammalian phenotype enrichment using the top 5% genes identified in each 

of the preterm age windows (n=1579 total). This yielded significant associations with several 

morphological and cerebral growth terms based on phenotypes surveyed in genetically-modified 

rodent models including slow embryonic growth (p=0.0003), decreased brain size (p=0.002) and 

impaired learning (p=0.043) (Table S10) providing pseudo-experimental evidence for the sensitivity of 

our approach to identify relevant disruptions to biological processes related to early brain growth. 
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Figure 5: Disruption of the principal imaging gradient in preterm-born infants. A. Group difference in 

individual variance explained by the principal imaging gradient in term (blue) and preterm (green) infants (left) 

and the relationship between age at scan and variance explained by the principal gradient across all cortical 

metrics (right). Regression lines are shown for term (blue) and preterm (green) infants with 95% C.I.  B. Group 

differences in T1w/T2w contrast, averaged across regions within each cluster (left). Clusters are ordered by 

position along the principal imaging gradient. Correlation between regional group differences in T1w/T2w contrast 

and PC1 score (left, regression shown with 95% C.I.). C. Enrichment of gene sets from 10 fetal cortical cell 

classes (top: neuronal; middle: non-neuronal; bottom: precursor) based on genes significantly associated (FDR 

p<0.05) with group differences in T1w/T2w contrast at 10 timepoints in the preterm period. D. Genes expressed 

by oligodendrocytes and significantly associated with group differences in T1w/T2w contrasts across at least 3 

age windows are shown. Dark green indicates periods where gene expression and T1w/T2w contrast were 

significantly correlated for each gene (FDR p<0.05) across the preterm period. E. Protein-protein interaction 

networks derived using STRING with the genes listed in D. Top functional enrichments of molecular pathways 

are shown where applicable. Genes within each enriched pathway are highlighted. 
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Discussion 
In this study, we aimed to test the hypothesis that noninvasive markers of brain development reflect 

the spatiotemporal patterning of genes underlying corticogenesis during gestation. We found that 

gene expression in the fetal cortex is mirrored by a principal mode of variation in the neonatal cortex. 

Specifically, regional variation in morphometry reflects differences in developmental maturity across 

cortical areas, indexed by the differential timing of gene expression across multiple cell types in the 

fetal cortex. Having established this relationship, we found that interruption to gestation through 

preterm birth resulted in a significant disruptions to MRI-based measures of cortical development by 

the time of normal birth. Further, the effects of preterm birth are temporally and spatially coincident to 

developmental processes involving the differentiation and specialisation of cortical oligodendrocyte 

populations. This work provides an experimental framework to link molecular developmental 

mechanisms to macroscopic measures of cortical anatomy in early life, demonstrating the relationship 

between fetal gene expression and neonatal brain development and highlighting the specific impact of 

early exposure to the extrauterine environment due to preterm birth. 

 

Using advanced MRI acquired close to the time of birth in a large, healthy neonatal population, we 

mapped multiple measures of cortical morphometry to a single mode of variation, or principal gradient.  

This gradient represented a broadly hierarchical organisation in the neonatal brain, with lower order 

sensory and motor regions situated opposite to higher-order regions including parietal, frontal and 

superior temporal cortex. Cortical hierarchies are a common organisational feature of the mammalian 

brain,59–65 represented by regional variations in cell populations,62 gene expression,16,66 and 

connectivity59 as well as MRI-based measures of functional topography67 and cortical morphometry in 

both adults68 and infants.69 The optimal mapping of cortical properties onto one or two lower 

dimensions remains an area of active research,2 however, several studies have demonstrated that 

variation along one hierarchy is largely reflected by differences in another,63,70,71 suggesting that 

lower-order representations of cortical organisation largely capture shared views of latent 

neurobiological variation. An important benefit of this approach is the reduction of multiple metrics into 

a single measure per subject. In our case, this takes advantage of the inherent redundancy across 

multiple MRI measures of the same cortical regions, producing a latent representation of cortical 

morphometry across scales. Here, we applied a simple linear mapping, arranging cortical regions 

along a single dimension using PCA. This was sufficient to explain a significant proportion of variation 

in MRI-based metrics, with regions with similar cortical profiles clustering together along the principal 

gradient. Organisation along this gradient was correlated with spatial gene expression gradients and 

measures of cortical maturity based on developmental variations in gene expression across multiple 

cell types. Comparison to cell-specific gene expression profiles in late gestation suggested that MRI-

based markers of cortical morphology at birth correlated with genes expression by cell populations 

involving oligodendrocytes, maturing neurons and endothelial cells. This correlation potentially reflects 

a spatial variation in the developmental timing of processes associated with myelination, neuronal 
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arborisation and the continued maturation of the brain’s vascular networks at around the time of 

birth.72–78 

 

The advent of modern transcriptomic technologies has enabled detailed analyses of the foundational 

molecular mechanisms underpinning corticogenesis in the human fetal brain.9,10,12,52,53 Resolved to 

the level of individual cells, recent studies have performed systematic explorations of gene expression 

dynamics across cell-cycle progression, migration and differentiation of several major cell types in the 

fetal brain.10,53 Combined with regional expression levels of bulk tissue mRNA measured across 

multiple cortical areas, this allows the spatio-temporal mapping of cell-specific gene expression 

profiles in the developing brain.52 Here, we used a development atlas of gene expression, measured 

across 11 cortical regions from 12 to 37 post-conceptional weeks in 16 separate brain specimens.12 

This data resource provides unparalleled access to the developmental mechanisms ongoing in the 

cortex during gestation. We found that cortical gene expression during gestation varies along a spatial 

gradient described by MRI-based markers of cortical morphometry that appears to reflect the 

differential intrinsic timing of developmental processes across regions.6,9 We found that a number of 

genes vary across cortical areas in line with the imaging gradient. In particular, we found that genes 

with relatively higher expression in higher order regions during gestation were associated with 

developmentally earlier processes including neuronal differentiation and migration and were 

predominantly expressed by intermediate precursor cells and early-maturing inhibitory neurons. Using 

an alternative approach in four mid-gestation brain samples (aged 16-21 pcw), Miller et al. identified a 

generally rostro-caudal gradient of gene expression progressing along the contours of the developing 

brain and anchored in frontal and temporal cortex.9 While some overlap was evident, 60/73 (82%) 

frontally-enriched genes included in both studies were also positively correlated with the imaging 

gradient, this may indicate the presence of multiple overlapping intrinsic hierarchies or cellular 

gradients underlying cortical development.62,66 Using a machine-learning approach designed to 

accommodate the large number of genes assayed, we established that the maturation of a given 

tissue sample could be accurately determined based on temporally-evolving profiles of gene 

expression. Using the relative advancement or delay in tissue maturity across regions, we observed a 

correlation between emerging differences in regional genetic maturity and the MRI imaging gradient at 

term. We identified an interaction between the relative rate of development across regions and length 

of gestation. This was most notable in the protracted developmental trajectory of the visual cortex in 

midgestation, as noted elsewhere.9 Overall, our results lend evidential support to the presence of 

heterogeneous corticogenetic timing over gestation.79–83  

 

We hypothesised that interruption to gestation would lead to cortical disruptions aligned to the 

principal imaging gradient, and therefore reflecting a deleterious interaction with genetically-

determined developmental programs ongoing in the cortex in the latter stages of gestation. To test 

this, we compared cortical development in healthy newborns to a cohort of preterm-born infants 

scanned at the time of normal birth. In line with previous observations,24,35,46,84–86 we found significant 

differences across most cortical metrics of macro- and microstructure in the preterm brain. The 
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magnitude of differences between cohorts aligned with the principal imaging gradient suggesting a 

differential impact of perinatal adversity on cortical development that is potentially encoded by a 

selective vulnerability across regions due to differential rates of maturation. Adverse intrauterine 

environments can result in altered patterns of cortical gene expression 87–89 however, we remain 

cautious on speculating about the causal mechanisms that may underlie the relationships observed in 

this study without further empirical evidence. The largest effect was observed in the myelin-sensitive 

T1w/T2w contrast. In adults, regional variation in cortical T1w/T2w contrast is high correlated with 

quantitative MRI-measures of intracortical myelin and histological maps of cytoarchitecture.90–92 

Myelination in the neonatal cortex is minimal, however, T1w and T2w signal vary as a function of 

position in the neonatal cortex and the transcortical pattern of T1w/T2w ratio observed in this study 

mirrors closely that reported in older cohorts, with high values predominant in primary sensory 

regions.90,93 In addition, we find that genes with expression correlated to mean group differences in 

T1w/T2w are enriched for oligodendrocyte expression across the second half of gestation. This 

mirrors earlier reports, based on microarray data, of correlations between neonatal imaging 

phenotypes and glial gene expression during gestation.94 Using a time-resolved analysis, we found 

several molecular pathways involving genes with spatial and temporal correlation to the potential 

timing of preterm birth. These included neurotrophic and Rho-GTPase signalling pathways, 

associated with oligodendrocyte maturation and myelination;95,96 the MAPK/ERK signaling pathway, 

associated with oligodendrocyte proliferation,97 as well as sphingolipid metabolic pathways. We have 

previously identified risk alleles in preterm born infants in genes involved in lipid metabolism in the 

developing brain and associated with altered patterns of brain development by term-equivalent 

age.98,99 This highlights a potential shared mechanistic pathway by which preterm birth can lead to 

altered development due to coincidental timing with important myelogenic processes in the developing 

cortex. 

 

In conclusion, we show that noninvasive imaging of the neonatal brain is sensitive to the differential 

timing of fetal gene expression across cortical hierarchies. In addition, we find that disruption to this 

developmental programming by preterm birth results in significant cortical alterations that appear to 

reflect the selective vulnerability of developing oligodendrocytes in the mid-fetal cortex. 

 

 

Materials and Methods 

Subjects 

Infants were recruited and imaged at the Evelina Newborn Imaging Centre, St Thomas’ Hospital, 

London, UK for the Developing Human Connectome Project (dHCP). The study was approved by the 

UK Health Research Authority (Research Ethics Committee reference number: 14/LO/1169) and 

written parental consent was obtained for all participants. Neuroimaging and basic demographic data 
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from the dHCP are available to download from: http://www.developingconnectome.org/second-data-

release/ 

 

In total, 442 healthy, term-born infants (gestational age at birth > 37 weeks) scanned between 

February 2015 and November 2018 as part of the dHCP were included.  From this cohort, n=362 

were successfully processed via the dHCP structural processing pipeline24 and included after quality 

control (see below). Of these, diffusion data from n=296 was successfully processed using both DTI 

and NODDI pipelines.100,101 A further four subjects were excluded following a final visual inspection 

due to cropped anatomical images. 

 

Of 107 preterm infants (gestational age at birth < 37 weeks) scanned at term-equivalent age during 

the same period, one was excluded due to incomplete demographic data, n=84 completed structural 

MRI processing and n=67 passed diffusion processing after quality control. A further n=3 were 

removed after final visual inspection. 

 

The final cohort comprised n=292 healthy term-born infants (54% male, mean [S.D] postmenstrual 

age at birth=39.96 [1.10] weeks, mean [S.D.] age at imaging=40.94 [1.56] weeks) and n=64 preterm 

infants scanned at term-equivalent age (59% male; born 32.00 [3.88] weeks and imaged at 40.57 

[2.25] weeks). 

Magnetic Resonance Imaging 

MRI was performed on a 3T Philips Achieva (Philips, Netherlands) using a dedicated neonatal 

imaging system including a neonatal 32 channel phased array head coil.27 Infants were imaged 

without sedation. T1- and T2-weighted anatomical images were acquired alongside diffusion MRI and 

resting state functional MRI (total acquisition time: 63 minutes). Inversion-recovery T1-weighted and 

T2-weighted images were acquired in sagittal and axial orientations (in-plane resolution: 0.8 ✕ 

0.8mm2, slice thickness: 1.6mm with 0.8mm overlap) with TR=4795ms; TI=1740ms; TE=8.7ms; 

SENSE: 2.27 (axial) and 2.66 (sagittal) for T1-weighted images and TR=12000ms, TE=156ms; 

SENSE: 2.11 (axial), 2.60 (sagittal) for T2-weighted. Diffusion MRI was acquired with a spherically-

optimised set of directions over 4 b-shells (b=0s/mm2: 20 directions;  b=400: 64 directions; b=1000: 88 

directions; b=2600: 128 directions) with a multiband factor acceleration of 4, TR=3800ms; TE=90ms; 

SENSE: 1.2 and acquired resolution of 1.5mm ✕ 1.5mm with 3mm slices (1.5mm overlap).26 

 

T1- and T2-weighted image stacks were motion corrected and reconstructed using the multi-slice 

aligned sensitivity encoding method with integration into a 3D volume using a super-resolution 

scheme.28,102 Multislice dMRI volumes were reconstructed using an extended SENSE technique.103  
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Image processing 

T1- and T2-weighted images were processing using the dHCP structural pipeline 

(https://github.com/BioMedIA/dhcp-structural-pipeline).24 Briefly, T2-weighted images were bias 

corrected (N4),104, brain-extracted (BET)105 and segmented into grey matter, white matter and 

cerebrospinal fluid using DRAW-EM.106 Cortical surfaces of the right and left hemisphere were then 

extracted107 and aligned to a population-specific cortical template93 using spherical inflation and 

multimodal surface matching (MSM) with higher order constraints 

(https://github.com/ecr05/MSM_HOCR).108,109 This method ensures that all surfaces across 

participants have one-to-one vertex correspondence with the dHCP neonatal template. For each 

subject, we extracted the following metrics: cortical thickness (corrected for cortical curvature) and 

T1w/T2w contrast (calculated using rigidly aligned T1-weighted images).  

 

Diffusion-weighted images were preprocessed by first denoising110 and removing Gibbs ringing 

artefacts,111 followed by a slice-to-volume motion and distortion correction with a slice-level outlier 

rejection using a multi-shell spherical harmonic signal representation (SHARD).112 Visual inspection of 

the 4D images ensured motion correction and outlier rejection was successful and that images of poor 

quality were excluded from further analysis. 

 

We fit each subject’s diffusion data with both a diffusion tensor model, fitted to the b=1000s2/mm shell 

and implemented in MRtrix,113 and the NODDI (Neurite Orientation Dispersion and Density Imaging) 

model,101 fit to all shells. NODDI was implemented with the NODDI MATLAB toolbox using the 

invivopreterm tissue type options with the default parameters of intrinsic diffusivity fixed to 1.7 x 10-3 

mm2/s and the starting point for values considered as the fraction of intra-neurite space lowered to 0-

0.3 (instead of 0-1 in the adult brain) to better fit higher water content in the newborn compared to the 

mature adult brain.114 

 

From these models, we derived parametric maps of fractional anisotropy (FA) and mean diffusivity 

(MD) from DTI, as well as maps of orientation dispersion index (ODI), quantifying the angular variation 

of neurite orientation within a voxel and intra-cellular volume fraction (fICVF), indexing the tissue 

volume fraction restricted within neurites. Cortical diffusion maps were projected to the cortical surface 

after co-registration with the corresponding anatomical data. 

 

Images were visually inspected after acquisition and after reconstruction, and following each 

processing pipeline. Any images that failed to successfully complete the processing pipelines or failed 

visual inspection at any stage were removed from further analysis.  

Bulk tissue gene expression data 

Preprocessed, bulk tissue cortical gene expression data were made available as part of the 

PsychENCODE project (available to download at: http://development.psychencode.org/).12 Tissue 
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was collected after obtaining parental or next of kin consent and with approval by the institutional 

review boards at the Yale University School of Medicine, the National Institutes of Health, and at each 

institution from which tissue specimens were obtained.  

 

In brief, mRNA data were available for post-mortem human brain tissue collected from n=41 

specimens aged between 8 post-conceptional weeks (pcw) and 40 postnatal years. For each 

specimen, regional dissection of up to 16 cerebral regions was performed, including 11 neocortical 

regions (dorsolateral frontal cortex, DLPFC; ventrolateral frontal cortex, VLPFC; orbitofrontal cortex, 

OFC; medial frontal cortex, MFC; primary motor cortex, M1; primary sensory cortex, S1; inferior 

parietal cortex, IPC; primary auditory cortex, A1C; superior temporal cortex, STC; inferior temporal 

cortex, ITC; primary visual cortex, V1), and five sub-cortical regions (hippocampus, amygdala, 

striatum, thalamus and cerebellar cortex). Detailed anatomical boundaries for each cortical region at 

each stage of development are provided elsewhere.11,12 

 

Regional tissue samples were subject to mRNA-sequencing using an Illumina Genome Analyzer IIx 

(Illumina, San Diego, CA) and mRNA-seq data processed using RSEQtools (v0.5).115 For each 

sample, reads were aligned to the human genome assembly hg38/GRCh38 and filtered to only 

include only uniquely mapped reads, and to exclude mitochondrial reads. Gene expression was 

measured as reads per kilobase of transcript per million mapped reads (RPKM). Finally, conditional 

quantile normalisation was performed to remove GC-content bias and ComBat used to remove 

technical variance due to processing site (Yale or USC).12,116,117 

 

In this study, we included RPKM data from neocortical samples of prenatal specimens aged 12 post-

conceptional weeks onwards (n=16, age range = 12-37 pcw, mean [S.D.] age = 18.4 [7.7] pcw,  50% 

male, mean [S.D.] number of cortical regions sampled = 9.75 [1.6],  mean [S.D.] post-mortem interval 

= 7.1 [12.6] hours, mean [S.D.] RNA integrity number[RIN]118 = 9.26 [0.73]). Prenatal specimens from 

the earliest developmental window (8-9 postconceptional weeks) were excluded as some cortical 

regions (e.g.: M1 and S1) were combined together to account for immature cortical anatomy.11,12 

 

The prenatal gene expression data was initially filtered to only include protein-coding genes (NCBI 

GRCh38.p12, n=18,766 out of a possible 20720). In order to restrict our analysis to focus on genes 

expressed in the developing cortex, we further filtered this list to only contain genes expressed by 

cells in the fetal cortex based on the composite list of prenatal cell markers from five independent 

single-cell RNA studies of the developing fetal cortex (see ‘Genetic markers of cell type’ below). This 

resulted in expression data from a final set of 5287 genes. 

Cortical regions-of-interest 

To facilitate comparison between developmental RNA and MRI data, we created a set of cortical 

regions-of-interest (ROI) labels corresponding to the anatomical dissections used for mRNA analysis 

and aligned to the dHCP imaging data. 
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To achieve this, we used a reference post-mortem MRI dataset acquired as part of the Allen Institute 

BrainSpan Atlas of the Developing Human Brain. Details of tissue processing and MRI acquisition are 

available at: https://help.brain-

map.org/download/attachments/3506181/BrainSpan_MR_DW_DT_Imaging.pdf. In brief, MRI was 

acquired at 3T and 7T (Siemens, Germany) in three post-mortem, whole-brain specimens aged 19, 21 

and 22 pcw. In addition, anatomical annotations corresponding to the regional dissections in Miller et 

al.,9 Kang et al.11 and Li et al.12 were provided on a reconstructed cortical surface from a 19pcw 

prenatal specimen.119 Cortical ROI data were available to download in VTK file format, separately for 

left and right cortical hemispheres (Figure S1). 

 

To generate a set of dHCP-compatible cortical labels, we reconstructed the cortical surface of the 3T 

22pcw reference image. First, manually creating a brain mask to remove non-brain tissue, then 

smoothing using a mean filter of 3mm width. We performed automated tissue segmentation on the 

smoothed image using the dHCP structural pipeline, manually correcting tissue segmentations on a 

slice-by-slice basis for accuracy prior to cortical surface reconstruction. Using dHCP tools, the fetal 

cortical surface was extracted and cortical labels manually transferred onto it based on the reference 

labels provided by Huang et al.119 and anatomical descriptions in Li et al.12  Finally, the fetal surface 

was inflated to a sphere and co-registered to the earliest timepoint (36 weeks gestational age) of the 

dHCP cortical surface atlas using multimodal surface matching (MSM).93,109  

 

This resulted in a set of 11 cortical ROI, each associated with regional bulk tissue mRNA data 

sampled across gestation and co-registered with dHCP neuroimaging data to allow correspondent 

sampling of cortical imaging metrics in the neonatal brain (Fig S1). 

Cortical imaging metric analysis 

For every subject, mean values of each imaging metric (thickness, T1w/T2w contrast, FA, MD, fICVF, 

ODI) were calculated within each cortical ROI. Metric values were averaged across hemispheres and 

outlier values identified and removed using a median absolute deviation (MAD) of > 3.5. 

 

For all healthy term-born infants, regional metrics were Z-transformed and averaged across subjects 

to produce a group average region ✕ metric matrix representing the relative variation of each imaging 

metric across cortical regions. We performed hierarchical cluster analysis of regions using average 

linkage based on the cosine distance between imaging metrics. The optimal number of clusters (from 

between 2 and 7) was chosen based on the maximum silhouette score.50 Regional clustering was 

repeated with 10,000 bootstrapped samples, selecting n subjects with replacement before calculating 

the average matrix and clustering. 
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We compared the clustering solution to two null models. To test if intra-cluster cohesion of the four-

cluster solution was significantly greater than expected by chance, we built a null distribution by first 

permuting the regional cluster assignments 10,000 times before calculating the silhouette score of the 

resulting clusters. To test the null hypothesis that all regional metrics were drawn from the same 

distribution rather than from separate clusters, we drew eleven samples (one per cortical ROI) from a 

single multivariate normal distribution with mean 0 and covariance specified by the group average 

region ✕ metric matrix. We then repeated the clustering and calculated how well pairwise distances 

between the original metric profiles are preserved by the null clustering solution via the cophenetic 

correlation. We repeated sampling 10,000 times to build a null cophenetic correlation distribution. 

 

We projected the group average data to two dimensions using Principal Component Analysis (PCA) 

via eigendecomposition of the data covariance matrix. This results in a set of 𝐿 eigenvectors, 𝑊!,  that 

map the original 𝑛×𝑝 data matrix, 𝑋 onto a set of orthogonal axes as: 𝑇! = 𝑋𝑊!. As generally 𝐿 < 𝑝, 

the truncated 𝑛×𝐿 matrix, 𝑇!, forms a low-dimensional representation of the original data. We can then 

project each subject’s region ✕ metric matrix, 𝑋!, onto a common set of axes as 𝑇!!  =  𝑋!𝑊!, where 𝑇!! 

represents the 𝐿 component scores for each subject, 𝑠. 

 

All analysis was performed in Python (3.7.3) using Scipy (1.3.0)120 and Scikit-Learn (0.21.2).121 

Modelling gene expression trajectories 

For each gene, we modelled the relationship between gene expression and specimen age using 

mixed-effects models. Using RPKM data described above, each gene’s expression data were first 

Winsorised to set very small or large outlying values to the 5th and 95th centile values, respectively, 

to stabilise against extreme values before log2-transformation.  

 

We initially compared two models, modelling regional gene expression as either a linear or nonlinear 

function of age with fixed effects of sex and RNA integrity number. We accounted for sample-specific 

variation by including in the model a random intercept for each specimen, such that: 

 

𝑦 ∼ 𝑓(𝑣)  + 𝑋𝛽 + 𝑍𝑏 

 

Where 𝑓(⋅) is a nonlinear function of predictor 𝑣, 𝑋 is an 𝑚-observation ×𝑝 design matrix modelling 𝑝 

linear, fixed effects and 𝑍 is an 𝑚 ×(𝑛 ⋅ 𝑟) design matrix modelling 𝑟 random effects across 𝑛 

specimens. In this case, age was included as either a nonlinear predictor, 𝑓(𝑣), or as a fixed linear 

effect alongside sex and RIN. We specified a relatively smooth nonlinear function of age using a 

natural cubic spline with four knots evenly spaced across the age span. To estimate region-specific 

trajectories, we calculated a second nonlinear model, additionally including separate smooth functions 

for each cortical region. Models were compared using AIC and BIC. 
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We calculated age-corrected RPKM values for each gene in all cortical samples using the residuals of 

the best-fit nonlinear mixed model (Fig S4) to test the spatial association between gene expression 

and the principal imaging gradient using non-parametric correlation (Kendall’s 𝜏). 

 

Modelling was performed in R (3.6.1) using nlme122 and mgcv123 packages. 

Genetic markers of cell type 

Genetic markers of cortical cell types were collated from five independent single-cell RNA studies of 

the fetal cortex.10,12,51–53 Using single-cell RNA-seq, each study identified sets of genes differentially 

expressed across cell clusters or types. Cell types were independently defined in each study and a list 

of all cell types included in this study (n=87) are shown in Table S2. Where applicable, for a given cell 

type, differentially-expressed genes were included as cell type markers if they were found to be 

expressed in at least 50% all cells surveyed.12,52,53 Across all five studies, each cell type was manually 

assigned to one of 11 cell classes based on text descriptions from each study (astrocyte, endothelial 

cell, microglia, neuron:excitatory, neuron:inhibitory, neuron:unclassified, oligodendrocyte, 

oligodendrocyte precursor cell [OPC], pericyte, intermediate progenitor cell, radial glia) and classified 

as either a precursor or mature cell type (Table S2). For each cell class, omnibus gene lists were 

created by collating identified gene markers for all cell types within a class. Unique gene lists were 

created by excluding any genes identified as a marker of more than one cell class. 

Cell type embedding 

Using the region-specific, nonlinear model specified above, expression trajectories for every gene 

were estimated for each region at 50 evenly spaced points across the full observation window (12pcw 

- 37pcw). For each cell type identified in the fetal cortex (see above), expression trajectories for all 

cell-type gene markers were normalised to unit length, concatenated over regions and averaged to 

capture both temporal and spatial variation in average gene expression across cell types. Similarity 

between cell-type gene expression trajectories were then visualised by embedding into a two-

dimensional space using Uniform Manifold and Approximation Projection (UMAP) based on Euclidean 

distance.55 

Enrichment analyses 

We performed over-representation analysis (ORA) of each list of gene markers for each of 10 cell 

classes (excluding neuron:unclassified), calculating the hypergeometric statistic: 

 

𝑝 =  1 −
!
!

!!!
!!!
!
!

!

!!!

 

 

Where 𝑝 is the probability of finding 𝑥 or more genes from a cell-class-specific gene list 𝐾 in a set of 

randomly selected genes, 𝑁 drawn from a background set, 𝑀. We calculated enrichment ratios as the 
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proportion of cell-class-specific genes in the gene list of interest, compared to the proportion in the full 

background set. The background gene set was defined as the full list of protein-coding genes included 

in the analysis (n=5287). We corrected for multiple comparisons across cell classes using False 

Discovery Rate (FDR). 

 

We additionally performed ORA for Gene Ontology terms using WebGestalt.124  

Weighted Gene Correlation Network Analysis 

We used WGCNA54 to identify co-expression modules within PC+ and PC- gene sets. We performed 

topology analysis using a gene × gene adjacency matrix constructed from the residualised log2-

transformed RPKM data, after accounting for variance due to age, sex and sample effects (see 

Modelling gene expression trajectories, above). A soft threshold was chosen to approximate scale 

free topology in the adjacency matrix (PC+: power=5, r2=0.77; PC-: power=10, r2=0.78),125 before 

transformation into a topological overlap matrix. Hierarchical clustering was used to assign genes to 

modules based on the dynamic tree-cutting method.126 Analysis was performed in R (3.6.1) with the 

WGCNA package.54 

Predicting genetic maturity 

We used gene expression over time to construct a predictive model of genetic maturity using a kernel-

based, regularised regression. In machine learning, kernels provide a method to compute the product 

of two (possibly high-dimensional) vectors as represented in some (unknown) feature space. This 

allows linear algorithms to learn non-linear functions, and is particularly useful in settings where 𝑛<<𝑝, 

as the method can avoid an explicit mapping to the high-dimensional feature space. 

 

Using the n=120 regionally-varying genes (PC+ and PC-), we first calculated regional gene 

expression profiles, corrected for variance due to sex, RIN and specimen ID while retaining variance 

due to age, using previously estimated nonlinear models. We then averaged gene expression across 

cortical regions in each specimen to create a specimen × gene (16 × 120) mean gene expression 

matrix, where each row represents the normalised log2(RPKM) of each gene for a given specimen, 

averaged across cortical regions.  

 

To calculate regional variation in genetic maturity, we implemented a leave-one-out (LOO) model 

using kernel ridge regression (Scikit-Learn; default regularisation parameter, 𝛼=1.0), modelling the 

association between specimen age (in post-conceptional days) and mean cortical gene expression 

data in 15 out of 16 specimens. We then used this model to predict age using the regional gene 

expression profiles of the remaining, left-out specimen, resulting in eleven age predictions, one per 

cortical region. We repeated this process, leaving out a different specimen each time. 
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We calculated a genetic maturity index by subtracting predicted age from each of the eleven predicted 

cortical sample ages. Thus, for a given age, developmentally more mature regions were expected to 

express a gene profile more similar to older specimen’s mean cortical profile, and thus will have an 

‘older’ predicted age compared to developmentally less mature regions, resulting in a positive genetic 

maturity index. In order to estimate a stable genetic maturity index, we repeated the modelling using a 

bootstrapped selection of genes, repeating gene sampling with replacement 5000 times. We also 

repeated the model using all 5287 genes. We calculated the correlation between regional genetic 

maturity and PC1 score for each specimen and tested the significance of this relationship by 

permuting mean gene expression profiles with respect to specimen age 1000 times during model 

training. For further analysis, we used mean expression from gene sets associated with each cell type 

to calculate regional genetic maturity. 

Group comparison of cortical morphology 

We compared regional cortical metrics in term and preterm cohorts using a linear mixed effects 

modelling approach. For each of six metrics, we modelled metric value as a combination of age, sex, 

regional PC1 score and birth group status (term or preterm). We included an interaction term for PC1 

and birth status to test the hypothesis that preterm birth incurs differential effects across cortical 

regions in line with the principal gradient. We also included subject ID as a random effect to account 

for correlated within-subject observations across regions. We fit nested models by Maximum 

Likelihood, comparing model fits with and without the inclusion of birth status using AIC and BIC 

(Table S5).  

 

For each metric, we performed post hoc analysis within each imaging cluster, modelling average 

cluster value as a function of age, sex and birth status. 

Developmental gene enrichment 

In order to test cell class enrichment over time, we split the preterm period (approximately 160 to 260 

post-conceptional days) into 10 age windows. Using nonlinear gene expression trajectories, 

calculated across cortical regions (see ‘Modelling gene expression trajectories’ above), we averaged 

modelled gene expression within each window for every cortical region. Then, in each window, we 

calculated the non-parametric association (Kendall’s 𝜏) between gene expression and the mean 

difference between term and preterm groups in T1w/T2w contrast in each cortical region and recorded 

significantly associated genes (FDR-corrected at p<0.05). Finally, we performed cell-class enrichment 

(see ‘Enrichment Analyses’ above), in each of the 10, time-resolved gene sets.  
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