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Abstract

Spreading dynamics analysis is an important and interesting topic since it has many
applications such as rumor or disease controlling, viral marketing and information
recommending. Many state-of-the-art researches focus on predicting infection scale or
threshold. Few researchers pay attention to the predicting of infection nodes from a
snapshot. With developing of precision marketing, recommending and, controlling,
how to predict infection nodes precisely from snapshot becomes a key issue in
spreading dynamics analysis. In this paper, a probability based prediction model is
presented so as to estimate the infection nodes from a snapshot of spreading.
Experimental results on synthetic and real networks demonstrate that the model
proposed could predict the infection nodes precisely in the sense of probability.

Introduction 1

Spreading dynamics is an important issue in spreading and controlling [1–3] of 2

rumor [4–7] and disease [8–11], marketing [12], recommending [13–15], source 3

detecting [16,17], and many other interesting topics [18–22]. How to predict the 4

infection probability [23], infected scale [24,25], and even the infected nodes precisely 5

has been gotten much attention in recent years. 6

Researchers have gotten many achievements on macro level of spreading such as 7

phase transition of spreading [26] and basic reproduction number [27]. Up to now, 8

many researches focus on estimating of infection scale. The simplest one is mean-field 9

model, in which, the spreading coverage can be predicted by using differential 10

equations [24]. Besides mean-field model, some more realistic models such as pair 11

approximation [25] and permutation entropy [28] are considered to predict the 12

infection scale or infectious disease outbreaks. The main difference between mean-field 13

and pair approximation is that the former(latter) approximates high-order moments in 14

term of first (second) order ones. In [28], the researchers studied the predictability of a 15
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diverse collection of outbreaks and identified a fundamental entropy barrier for disease 16

time series forecasting through adopting permutation entropy as a model independent 17

measure of predictability. Funk et al [29] presented a stochastic semi-mechanistic 18

model of infectious disease dynamics that was used in real time during the 2013–2016 19

West African Ebola epidemic to fit the simulated trajectories in the Ebola Forecasting 20

Challenge, and to produce forecasts that were compared to following data points. 21

Venkatramanan et al [30] proposed a data-driven agent-based model framework for 22

forecasting the 2014–2015 Ebola epidemic in Liberia, and subsequently used during 23

the Ebola forecasting challenge. The data-driven approach can be refined and adapted 24

for future epidemics, and share the lessons learned over the course of the challenge. 25

Zhang et al [31] proposed a measurement to state the efforts of users on Twitter to get 26

their information spreading. They found that small fraction of users with special 27

performance on participation can gain great influence, while most other users play a 28

role as middleware during the information propagation. 29

Up to now, most researches are focused on macro level of spreading prediction, but 30

few on micro level. However, the detailed infected individuals should be known so as 31

to contain the spread of serious infectious diseases such as SARS [32,33] and 32

H7N7 [34,35]. Besides aspect of macro level of spreading, we should pay attention to 33

some more details besides the general infection coverage so as to achieve fine 34

prediction. Chen et al. did some interesting works on this area [23]. They presented 35

an iterative algorithm to estimate the infection probability of the spreading process 36

and then apply it to mean-field approach to predict the spreading coverage. 37

Combing mean-field or pair approximation models with infection probability 38

estimating strategy [23], the number of infected nodes from a given snapshot of the 39

propagation on network can be predicted, but can not determine which nodes will be 40

infected. In this paper, we present a probability based prediction model to estimate 41

the infection probability of a node, further, to determine the nodes being infected in 42

the future. 43

Materials and methods 44

For a given snapshot, a susceptible node can be infected by a probability in the future. 45

Denoting by Pu(t) the score of node u at time t, we have, 46

Pu(t) = 1−
∏
v∈Γu

(1− µPv(t− 1)), (1)

where Γu is the neighbors of node u and infected probability µ is estimated by IAIP 47

model (Iterative Algorithm for estimating the Infection Probability) [23]. Since an 48

infected node always attempts to infect its susceptible neighbor once time and a 49

recovered node doesn’t infect any of its susceptible neighbor, so, in Eq. (1), for node v, 50

it is reasonable to assume that Pv(t) = 1 for infected node and Pv(t) = 0 for recovered 51

node. For susceptible node u, the probability to be infected at time t is Pu(t). 52

Obviously, the initial condition is, 53

Pu(0) =

{
0 if node u is susceptible or recovered
1 if node u is infected

, (2)

In Eq. (1), the score Pu(t) for susceptible node u will be converged to a unique steady 54

state denoted by Pu(tc) , where tc is the convergence time. The final score Pu = Pu(tc) 55

is the probability to be infected of susceptible node while spreading achieves steady 56

state. 57

Fig. 1 is a toy network with 24 nodes. The snapshot includes 5 recovered nodes 58

and 1 infected node, as shown in Fig. 1(a). A certain spreading simulation result, 59
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average result on 10000 simulations, and result of probability prediction model from 60

snapshot are shown in Figs. 1(b), (c) and (d) respectively. From this toy network, it 61

can be seen that the result obtained by the probability prediction model is coincident 62

with that by the average over 10000 simulations very well, that is, nodes 7, 8, and 19 63

have high probability to be infected, nodes 2 and 9 have middle probability to be 64

infected, while other nodes have relatively low probability to be infected, as shown in 65

Fig. 1(c) and (d). At the same time, Figs. 1(b) and (c) reflect the correlation between 66

a certain spreading simulation and average over 10000 simulations. In order to 67

describe how well a certain spreading simulation relative to average over 10000 68

simulations and result obtained by probability prediction model relative to the result 69

of average over 10000 simulations, we use predictability χ and Pearson correlation ρ to 70

evaluate our model. These two metrics can be calculated by: 71

χ =
1

N

N∑
l=1

cosin(−→p l
r,
−→p r), (3)

72

ρ = Pearson(−→p r,
−→p e), (4)

where −→p r = 1
N

∑N
l=1

−→p l
r,

−→p l
r is the vector of infected frequency of nodes on the lth 73

simulation and −→p e is the vector of infected probability of nodes obtained by 74

probability prediction model. The element −→p l
r(u) of

−→p l
r is determined by: 75

−→p l
r(u) =

{
1
Ql

if node u is infected in the lth simulation from snapshot

0 otherwise
, (5)

where Ql is the number of infected nodes of the lth simulation from snapshot. 76

Results and Discussion 77

To simulate the spreading process on networks, we employ the 78

Susceptible-Infected-Removed (SIR) model [36]. In a network, we randomly select one 79

node as the initial spreader. The information from this node will infect each of this 80

node’s susceptible neighbors with probability µ, namely the infection probability. 81

After infecting neighbors, the node will immediately become recovered (i.e., the 82

recovering probability is 1). The new infected nodes in next step will infect their 83

neighbors as the initial node. If it is not specially stated, we take the snapshot after 84

five steps of spreading from the initial node as the known information. 85

We test our method on synthetic and real networks. Synthetic networks are 86

Wattes-Strogatz (WS) networks [37], Barabási-Albert (BA) networks [38] and 87

Given-Newman (GN) community networks [39]. Each synthetic network has 4000 88

nodes and each GN community network has 40 communities. We will discuss our 89

model on three aspects: (1) the effect of infected probability µ, (2) the effect of 90

structure of networks, and (3) the effect of stage of snapshot. 91

The effect of infected probability 92

Fig. 2 shows the predictability χ and correlation ρ under different infected probability 93

µ on WS, BA and GN networks. Generally, the predictability and correlation get 94

larger with µ getting larger. For very large µ, e.g., µ = 0.3, the predictability and 95

correlation approach to 1 since most of nodes will be infected. From Fig. 2, it can be 96

seen that there exists a transition point, in detail, the transition point at µ = 0.15 for 97

WS network and at µ = 0.1 for GN network. This can be explained as follows: the 98
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Fig 1. (Color online)A toy network with 24 nodes. (a) The snapshot includes 5
recovered nodes, i.e., 1, 3, 6, 10, 17, and 1 infected node, i.e., node 18, (b) a certain
spreading simulation result from snapshot, only node 19 is infected when spreading
achieves steady state, (c) average result on 10000 simulations from snapshot, and (d)
result of probability prediction model from snapshot. In (c) and (d), the shades of
nodes indicate the probability to be infected when spreading achieves steady state.
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Fig 2. The predictability χ and correlation ρ under different infected probability µ on
(a) BA, (b) WS and (c) GN networks. The distribution of Pearson coefficient in (d)
BA, (e) WS and (f) GN are shown. The network parameters are
N = 4000, ⟨k⟩ = 10, p = 0.1 for WS network, N = 4000, ⟨k⟩ = 10 for BA network, and
N = 4000, ⟨k⟩ = 10, ⟨kin⟩ = 7 for GN network. The error bar in (a-c) and the
distribution of correlation ρ in (d-f) are obtained by the results under 200 snapshots

information almost do not diffusion if µ is small (µ < 0.15 for WS networks and 99

µ < 0.1 for GN network), and the infected nodes are highly random for different 100

simulations. It is noted that in BA network, it almost do not exist transition point. It 101

can be explained as follows: since the heterogenous of its topological structure, 102

regardless the location of initial infected node, the information will easily reach to the 103

node with large degree, eventually, reach to other nodes. Interestingly, if µ is very 104

small (e.g., µ = 0.02), the correlation is getting large in BA network, as shown in Fig. 105

2(a). Actually, for very small µ, just only a few snapshots have infected nodes, the 106

results have no statistical significance. Besides, the distribution of correlation ρ under 107

the results of 200 independent runs are listed in Figs. 2(d-f). From these three 108

subfigures, it can be seen that the distributions of correlation ρ of BA and GN 109

networks are similar, while that of WS network are generally large comparing with BA 110

and GN networks. 111

The effect of structure of networks 112

Fig. 3 shows the predictability and correlation for three types of networks with 113

different structural parameters. For WS network, we study the effect of the rewiring 114

parameter p on predictability and correlation. For BA network, we consider a variant 115

of it in which each new node u connects to the existing node v with probability 116

pu = (ku +B)/
∑

v(kv +B) [40,41]. This modified model allows a selection of the 117

exponent of the power-law scaling in the degree distribution p(k) ∼ k−γ with 118

γ = 3 +B/m in the thermodynamic limit where m is the number of nodes should be 119

connected when a new node is added and B is tunable parameter. With this network, 120

we study the effect of B on predictability and correlation. For GN network, we study 121

the effect of ⟨kin⟩ on predictability and correlation, where ⟨kin⟩ is the average internal 122

degree of nodes in community. For a node u in community C, its internal degree kinu 123

can de written as: 124

kinu =
∑
u,v

δu,v, (6)
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Fig 3. The predictability χ and correlation ρ for three types of networks
with different structural parameters. In (a), B is a tunable parameter while
generating network, (b) p is rewiring probability, and (c) ⟨kin⟩ is average internal
degree.
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Fig 4. The effect of average node degree ⟨k⟩ on predictability χ and correlation ρ.

δu,v = 1 if v is also in community C, otherwise δu,v = 0. For standard BA network, 125

i.e., B = 0, there are a few nodes with extremely large degree, the information can be 126

spread out easily so long as it reaches to a node with large degree. So, it is relatively 127

easy to predict which node will be infected in the future. As the B increases, the 128

network evolves to random, a node getting infected or not will be hard to predict 129

relatively, so the predictability and correlation decrease when B increases, as shown in 130

Fig. 3(a). If rewiring probability p < 0.2, the information is hard to diffusion to other 131

nodes since the WS network is almost regular, so it is hard to predict the infected 132

nodes. When rewiring probability p > 0.2, the network has relatively strong random, 133

the information reaches to other nodes easily, consequently, it is easy to predict the 134

infected nodes, as shown in Fig. 3(b). In GN network, if average internal degree ⟨kin⟩ 135

is larger, the community structure is clearer, correspondingly, the information is hard 136

to escape the community boundary, and the predictability and correlation will getting 137

worse, as shown in Fig. 3(c). 138

Besides the network parameter listed above, the density of network, i.e., average 139

node degree ⟨k⟩, also affects the predictability and correlation, as shown in Fig. 4. 140

From Fig. 4, it can be seen that the predictability and correlation are small for small 141

average node degree ⟨k⟩. Especially in WS and GN networks, for a large scope of 142

average node degree (⟨k⟩ < 12 in WS and ⟨k⟩ < 8 in GN), the predictability and 143

correlation are extremely small, there exists an obvious transition points, as shown in 144

Fig. 4(a) and (c). 145

The effect of stage of snapshot 146

We further analyze the predictability χ and correlation ρ under different stage of 147

snapshot, as shown in Fig. 5. In Fig. 5, T is the spreading time of snapshot. 148

Generally, it is difficult to estimate the infected rate precisely if just the snapshot in 149

the early stage is given since there is little usable information, so, it is hard to predict 150

the infected nodes. As T increases, more information could be used, the predictability 151

χ and correlation ρ are getting better. In the late stage, many nodes of snapshot are 152
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Fig 5. The predictability χ and correlation ρ under different stage of snapshot.
Smaller T indicates earlier stage and larger T indicates latter stage.
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Fig 6. The correlation between the number of infected nodes NI and the
predictability χ.

infected or recovered, the left nodes are hard to be infected in reality, so the 153

predictability χ and correlation ρ are getting worse, especially in BA network since 154

most of all nodes are recovered. 155

Actually, if we analyze the number of infected nodes of snapshot in Figs. 2-5, we 156

can find an interesting phenomena, as shown in Fig. 6. There is an obviously positive 157

correlation between the number of infected nodes of snapshot and predictability χ. At 158

the same time, it can be seen that the WS network has the strongest positive 159

correlation while BA network has the weakest positive correlation under same number 160

of infected nodes of snapshot. This might be universal, more infected nodes exist in 161

snapshot, the information will be diffused easier, and so, it is more easy to predict the 162

infected nodes in the future, correspondingly, the predictability χ will getting better. 163

Besides synthetic networks, we also analyze the predictability χ and correlation ρ 164

on 11 real networks. The properties and analysis results on these real networks are 165

shown in Table 1. From Table 1, it can be seen that the results are rather good, 166

especial for the case of large NI , this is consistent with the results in Fig. 6. For 167

networks Y2H and power, the predictability χ and correlation ρ are extremely low 168

since NI is very small. Actually, in these cases, there are few infected nodes in 169

snapshot of spreading. Furthermore, the networks are very sparse, so, it is hard to 170

predict the nodes being infected from snapshot in the future. 171

Conclusion 172

Up to now, most of researches mainly focus on the infection scale or threshold when 173

they study the spreading dynamics in complex networks. However, following questions 174

may be more important and interesting: Which nodes will be infected in the future 175
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Table 1. The properties and analysis results on 11 real networks. The infected
probability µ = 0.15.

Networks #Nodes #Edges χ ρ NI

cond-mat 39577 175693 0.7612 0.9430 0.0152
astro-Ph 16046 121251 0.8358 0.9426 0.0575
email 1133 5451 0.7854 0.9860 0.0628

c.elegens 453 2025 0.5577 0.9900 0.1143
ecoli 230 695 0.6110 0.9558 0.0509

internet 22963 48436 0.4525 0.9541 0.0625
PGP 10680 24316 0.6292 0.8074 0.0069
TAP 1373 6833 0.5998 0.5897 0.0101
HEP 7610 15751 0.4396 0.5975 0.0016
Y2H 1846 2203 0.2618 0.3214 0.0016
power 4941 6594 0.2375 0.2762 0.0003

and how to predict these nodes precisely? In this paper, we focused on this topic and 176

presented a probability based prediction model to predict the infection nodes. Three 177

synthetic and eleven real networks are used to evaluate the proposed model. 178

Experimental results demonstrate that the model proposed could predict the infection 179

nodes precisely in the sense of probability. In this paper, we just discuss the prediction 180

model on static networks. The analyzing will get more difficult if the networks are 181

evolving [42–44]. Furthermore, we analyze the effect of structure of networks, but we 182

don’t consider the moving or self-protecting of individuals while disease outbreaks. 183

Actually, as the diseases information makes individuals alert and take measures to 184

prevent the diseases, the effective protection is more striking in small community [45]. 185

We will study these more comprehensive cases deeply in the future. 186
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