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ABSTRACT:	12 
During	outbreaks	of	emerging	infections,	the	lack	of	effective	drugs	and	vaccines	increases	13 
reliance	on	non-pharmacologic	public	health	interventions	and	behavior	change	to	limit	human-14 
to-human	transmission.	Interventions	that	increase	the	speed	with	which	infected	individuals	15 
remove	themselves	from	the	susceptible	population	are	paramount,	particularly	isolation	and	16 
hospitalization.	Ebola	virus	disease	(EVD),	Severe	Acute	Respiratory	Syndrome	(SARS),	and	17 
Middle	East	Respiratory	Syndrome	(MERS)	are	zoonotic	viruses	that	have	caused	significant	18 
recent	outbreaks	with	sustained	human-to-human	transmission.	This	investigation	quantified	19 
changing	mean	removal	rates	(MRR)	and	days	from	symptom	onset	to	hospitalization	(DSOH)	of	20 
infected	individuals	from	the	population	in	seven	different	outbreaks	of	EVD,	SARS,	and	MERS,	21 
to	test	for	statistically	significant	differences	in	these	metrics	between	outbreaks.	We	found	22 
that	epidemic	week	and	viral	serial	interval	were	correlated	with	the	speed	with	which	23 
populations	developed	and	maintained	health	behaviors	in	each	outbreak.	24 
	25 
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INTRODUCTION:	29 
One	of	the	most	important	factors	in	assessing	the	danger	posed	by	an	epidemic	of	infectious	30 
disease	is	pathogen	transmissibility.	Widespread	public	anxiety	during	the	2013-2016	West	31 
African	Ebola	epidemic,	while	driven	by	an	extremely	high	fatality	rate	during	the	early	stages,	32 
was	fueled	in	part	by	the	speed	with	which	Ebola	Virus	Disease	(EVD)	spread	throughout	the	33 
populations	of	Liberia,	Sierra	Leone,	and	Guinea.1–3	Similarly,	concerns	over	annual	influenza	34 
epidemics	in	the	United	States	center	on	densely	inhabited	areas	with	multiple	opportunities	35 
for	viral	transmission	due	to	physical	proximity	between	susceptible	individuals.4	Regardless	of	36 
geographic	setting,	understanding	how	to	slow	and	control	pathogen	dissemination	is	a	high	37 
priority	in	forecasting	and	preventing	epidemics	of	infectious	disease.	38 
	39 
Epidemic	modelers	frequently	employ	compartmental	models	of	disease	outbreaks,	such	as	40 
Susceptible-Infected-Recovered	(SIR)	models	as	in	Keeling	and	Rohani,5	Susceptible-Infected-41 
Susceptible	(SIS)	models	as	in	Gray	et	al,6	and	Susceptible-Exposed-Infected-Recovered	(SEIR)	42 
models	as	in	LeGrand	et	al.7	Accurately	estimating	and	modeling	the	number	of	infected	and	43 
susceptible	individuals	in	at-risk	populations	is	of	crucial	importance	in	these	models.	Such	44 
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estimation	is	complicated,	however,	by	efforts	to	isolate	infected	individuals	in	hospitals	or	45 
other	settings	to	decrease	contact	with	the	susceptible	population.	While	the	isolation	of	46 
infected	individuals	is	beneficial	and	should	be	encouraged,	it	challenges	data	analysts	because	47 
it	is	time-varying	and	reflects	dynamic	and	often	unpredictable	human	behavior.	Moreover,	the	48 
rate	at	which	infected	individuals	are	removed	from	the	population	typically	accelerates	49 
throughout	an	epidemic	as	awareness	of	the	infectious	threat	increases,8	a	process	Drake	et	al	50 
referred	to	as	“societal	learning.”9	Obtaining	accurate	estimates	of	this	time-varying	removal	of	51 
infected	persons,	while	difficult,	improves	the	quality	of	compartmental	models	for	epidemics	52 
of	infectious	disease.9,10	To	our	knowledge,	however,	no	work	has	directly	compared	the	rate	of	53 
behavioral	adaption	across	multiple	epidemics,	societies,	and	geographic	settings.	54 
	55 
Many	factors	can	affect	how	quickly	effective	isolation	practices	are	implemented,	such	as	56 
access	to	health	care,	local	public	health	funding,	international	aid,	and	the	efficacy	of	57 
information	campaigns.11	Local	health	care	practices	and	non-formal	healthcare	systems	also	58 
provide	care	to	patients	during	epidemics	and	can	play	a	part	in	quarantining	infected	59 
individuals.12	Previous	work	in	Liberia	has	shown	that	a	combination	of	these	approaches	60 
through	simultaneous	community	engagement	and	clinical	intervention	is	more	effective	than	61 
any	single	intervention,	with	both	health	care	access	and	utilization	increasing	hand-in-hand	to	62 
decrease	EVD	transmission	during	the	2013-2016	Ebola	epidemic.13	While	infection	prevention	63 
often	includes	vaccination,	progress	to	develop	effective	vaccines	for	emerging	infections	is	64 
slow	and	not	necessarily	more	effective	than	isolation	of	infected	individuals.14	Ring	vaccination	65 
with	the	rVSV-ZEBOV-GP	Ebola	vaccine15	in	the	Democratic	Republic	of	the	Congo	is	66 
promising,16	but	previous	work	has	suggested	that	ring	vaccination	may	only	provide	a	marginal	67 
benefit	to	rigorous	contact	tracing	and	patient	isolation.17				68 
	69 
The	focus	of	this	paper	is	the	identification	of	key	similarities	and	differences	in	the	behavioral	70 
response	to	outbreaks	of	three	emerging	zoonotic	infections.	We	sought	to	determine	how	the	71 
mean	removal	rate	of	infected	individuals	changed	over	the	course	of	each	outbreak	as	72 
measured	by	epidemic	week	and	viral	serial	interval.	Individuals	often	experience	zoonotic	and	73 
emerging	infections	as	innately	more	frightening	than	“familiar”	diseases,	leading	to	rapid	74 
behavioral	adaptations	due	to	high	perceived	risk.18	Behavior	modification,	while	crucial	for	75 
epidemic	containment,19–21	is	context	dependent	and	difficult	to	predict	due	to	social	network,	76 
socioeconomic,	and	behavioral	differences	between	populations.22	Thus,	we	chose	seven	77 
different	outbreaks	of	disease	that	stoked	significant	local	and	international	fear	due	to	the	risk	78 
of	global	pandemic:	the	2013-2016	Liberian	Ebola	epidemic,	subsets	of	the	2013-2016	Liberian	79 
outbreak	from	Lofa	and	Montserrado	Counties,23	the	2003	Hong	Kong	SARS	epidemic,24–26	the	80 
2014	Saudi	Arabia	MERS	outbreaks	in	Riyadh	and	Jeddah,27	and	the	2015	South	Korea	MERS	81 
outbreak.28	We	examined	whether	epidemic	week	and	serial	interval	successfully	predicted	82 
days	from	disease	onset	to	hospitalization	(DSOH)	and	mean	removal	rate	(MRR)	throughout	83 
each	epidemic.		84 
	85 
MATERIALS	AND	METHODS:	86 
DATA:		87 
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We	obtained	patient-level	data	for	Ebola	and	MERS,	and	daily	aggregated	data	for	SARS.	We	88 
added	new	columns	to	each	epidemic	dataset	to	track	the	number	of	days	from	symptom	onset	89 
to	hospitalization	(calculated	as	hospitalization	date	-	date	of	symptom	onset;	abbreviated	90 
DSOH)	and	the	mean	removal	rate	(calculated	as	1	/	DSOH;	abbreviated	MRR).	In	calculating	91 
MRR,	we	considered	only	positive	DSOH	values	in	order	to	focus	on	community	transmission	92 
rather	than	nosocomial	transmission.	Additionally,	we	converted	symptom	onset	dates	to	93 
weekly	onset	dates	by	replacing	each	date	with	that	of	the	closest	previous	Sunday.	94 
	95 
BINNED	DATA:	96 
We	compiled	data	for	each	outbreak	location	binned	by	epidemic	week,	to	produce	comparable	97 
data	for	regression	analysis.	Epidemic	weeks	came	from	weekly	onset	dates	described	above.	98 
We	also	binned	the	same	data	by	serial	interval,	using	12	days	as	the	estimated	serial	interval	99 
for	Ebola,23	8	days	for	SARS,24	and	7	days	for	MERS;27	this	was	calculated	as	epidemic	100 
week/(serial	interval/7).	Each	dataset	included,	per	week,	the	number	of	new	cases,	the	101 
cumulative	number	of	cases,	mean	DSOH	and	associated	standard	deviation,	and	MRR	and	102 
associated	standard	deviation.	We	removed	epidemic	weeks	from	the	beginning	of	each	103 
outbreak	so	that	the	first	three	epidemic	weeks	had	greater	than	0	cases	of	disease	each	in	104 
order	to	focus	on	population-level	behavioral	adaptation	to	large-scale	disease	outbreaks	105 
instead	of	adaptations	to	individual	disease	events	early	in	an	epidemic.	We	performed	all	106 
regression	analyses	using	this	binned	data.	107 
	108 
REGRESSION	ANALYSES:	109 
Initial	regression	analyses	fit	linear	models	to	predict	DSOH	and	MRR	(Table	1,	Eqs.	1-2).	As	110 
before,	data	for	DSOH	excluded	negative	values	(individuals	who	become	symptomatic	after	111 
being	hospitalized	for	other	reasons)	to	focus	on	community	disease	transmission	and	behavior	112 
change	instead	of	nosocomial	infection.	113 
	114 
Outlying	points	in	115 
the	Liberian	Ebola	116 
epidemic	skewed	117 
our	initial	linear	118 
regression	models.	119 
We	compared	120 
manual	removal	of	121 
outliers,	quantile	122 
regression,	and	123 
robust	linear	124 
regression	to	find	125 
the	most	appropriate	method	for	handling	such	points.	The	three	methods	produced	almost	126 
identical	results.	We	used	robust	regression	to	re-fit	all	initial	linear	regression	models	to	avoid	127 
the	influence	of	outliers	(Table	1,	Eqs.	3-4).	In	addition,	we	performed	robust	linear	regressions	128 
of	MRR	with	an	interaction	term	accounting	for	outbreak	location	(Table	1,	Eq.	5-6)	to	examine	129 
predicted	mean	change	in	the	MRR	in	each	epidemic.	We	used	the	Bonferroni	correction29	for	130 
multiple	comparisons	to	compute	confidence	intervals,	utilizing	a	99%	confidence	interval	in	131 
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our	model	comparisons.	The	size	of	the	smaller	epidemics	(MERS	and	SARS)	played	a	large	part	132 
in	determining	confidence	interval	size	and	significance.	All	data	management,	modeling,	and	133 
visualization	was	performed	in	R.30	134 
	135 
RESULTS:	136 
DAYS	TO	HOSPITALIZATION	(DSOH)	AND	MEAN	REMOVAL	RATE	(MRR):	137 
DSOH	consistently	declined	over	time	in	each	epidemic.	Robust	regressions	for	DSOH	and	MRR	138 
(Table	1,	Eqs.	3	and	4)	showed	negative	and	positive	slopes,	respectively,	which	corroborated	139 
the	observations	made	on	non-binned	data	(Fig.	1).	140 
	141 
From	robust	142 
regression	analyses	143 
accounting	for	144 
outbreak	location	145 
(Table	1,	Eqs.	5	and	6),	146 
we	calculated	the	147 
mean	change	in	the	148 
MRR	for	each	149 
outbreak	location	150 
using	the	151 
interactionMeans	152 
function	from	the	R	153 
package	phia	for	post-154 
hoc	interaction	155 
analysis.	This	analysis	156 
showed	that	the	mean	157 
change	in	the	MRR	of	158 
the	Hong	Kong	SARS	159 
epidemic	was	160 
approximately	five	161 
times	(per	serial	162 
interval)	to	seven	163 
times	(per	epidemic	164 
week)	more	than	the	165 
mean	change	in	the	166 
MRR	of	the	Liberian	167 
Ebola	epidemic	(Fig.	168 
2).	The	mean	change	169 
of	the	MRR	in	the	170 
Ebola	epidemic	in	Lofa	171 
County,	Liberia,	was	172 
significantly	higher	than	the	mean	change	of	the	MRR	for	the	overall	Liberian	epidemic	and	the	173 
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outbreak	in	Montserrado	County,	Liberia,	regardless	of	predictor	(epidemic	week	or	serial	174 
interval)	(Fig.	2).	The	three	MERS	outbreaks	(Riyadh,	Jeddah,	and	South	Korea)	did	not	differ	175 
significantly	from	one	another	and	had	limited	precision	(Fig.	2).	176 
	177 
We	found	that	178 
predicting	mean	179 
change	of	the	MRR	180 
by	epidemic	week	181 
(Table	1,	Eq.	5)	led	182 
to	higher	mean	183 
estimates	and	184 
wider	confidence	185 
intervals	in	the	186 
MERS	and	SARS	187 
outbreaks;	188 
conversely,	189 
predicting	with	190 
serial	interval	191 
(Table	1,	Eq.	6)	192 
lowered	mean	193 
estimates	and	194 
narrowed	the	195 
associated	confidence	intervals	(Fig.	2).	We	identified	little	difference	in	the	mean	change	of	196 
the	MRR	for	the	Ebola	outbreak	depending	on	predictor	(Fig.	2).	This	indicates	that,	at	least	in	197 
the	case	of	MERS	and	SARS,	both	the	passage	of	time	and	the	serial	interval	of	each	virus	may	198 
affect	the	speed	with	which	populations	develop	and	maintain	health	behaviors.	199 
	200 
	201 
DISCUSSION:	202 
The	primary	finding	of	this	study	was	that	removal	of	infected	individuals	from	the	susceptible	203 
population,	measured	as	DSOH	and	MRR,	increases	over	time	and	varies	significantly	based	on	204 
outbreak	duration	and	location.	While	DSOH	improved	(decreased)	in	every	epidemic	over	205 
time,	extreme	disparities	in	starting	values	(approximately	13	days	from	symptom	onset	to	206 
hospitalization	at	the	beginning	of	the	2013-2016	Ebola	outbreak	in	Liberia,	versus	207 
approximately	5	days	in	the	2015	MERS	outbreak	in	South	Korea)	highlight	the	intrinsic	208 
disadvantage	that	low-income	countries	may	experience	due	to	the	interrelated	concerns	of	209 
poverty,	limited	access	to	health	care,	and	low	investment	in	public	health.	DSOH	and	MRR	210 
regressed	against	epidemic	week	differed	across	all	observed	outbreaks,	and	MRR	likewise	211 
differed	markedly	based	on	the	virus	in	question	(Ebola,	MERS,	or	SARS),	the	location,	and	at	212 
times	both.	Both	DSOH	and	MRR	are	useful	measurements	of	public	health	behavior	during	213 
outbreaks,	and	are	useful	tools	to	compare	outbreak	response	effectiveness	in	distinct	214 
geographic,	economic,	and	social	settings.	Of	course,	DSOH	and	MRR	are	intrinsically	and	simply	215 
related	since	one	is	simply	the	reciprocal	of	the	other.	The	main	advantage	of	DSOH	is	that	it	is	216 
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expressed	in	intuitive	units	(days	elapsed),	whereas	MRR	reflects	the	theoretical	“removal	rate”	217 
of	standard	compartmental	models.5	218 
	219 
Figure	2	highlights	differences	in	mean	change	of	the	MRR	due	to	outbreak	type	(Ebola,	MERS,	220 
or	SARS)	and	location.	Mean	change	of	the	MRR	was	similar	when	calculated	using	epidemic	221 
week	versus	serial	interval	for	Ebola,	but	demonstrated	a	lower	estimate	and	lower	standard	222 
error	when	calculated	using	serial	interval	in	all	three	outbreaks	of	MERS	and	the	outbreak	of	223 
SARS	in	Hong	Kong.	This	suggests	that	the	relevance	of	various	predictors	(epidemic	week	224 
versus	serial	interval)	may	vary	based	upon	the	type	and	location	of	an	outbreak,	although	the	225 
comparative	relevance	of	epidemic	type	versus	location	cannot	be	disentangled	with	the	data	226 
available	in	this	study.	We	recommend	similar	analyses	of	MRR	be	conducted	across	a	wide	227 
range	of	geographies	as	outbreaks	of	emerging	pathogens	arise,	providing	important	data	on	228 
the	range	of	MRR,	and	its	expected	rate	of	change,	in	different	settings.		229 
	230 
While	our	findings	demonstrate	large	and	statistically	significant	differences	in	MRR,	it	is	231 
notable	that	the	calculated	rates	of	change	in	the	MRRs	are	within	a	factor	of	ten	(when	232 
calculated	using	epidemic	week)	to	seven	(when	calculated	using	serial	interval)	of	each	other	233 
(Fig.	2),	with	the	mean	change	being	the	lowest	in	the	EVD	outbreak	in	Liberia	and	the	highest	234 
in	the	MERS	outbreak	in	South	Korea.	For	modelers	seeking	to	understand	the	epidemiology	of	235 
emerging	infectious	diseases	with	limited	or	no	data	from	previous	outbreaks,	this	study	236 
provides	a	range	of	acceptable	values	for	the	MRR	based	on	seven	geographically	distinct	237 
outbreaks	of	three	emerging	diseases.	Similarly,	while	large	disparities	in	DSOH	are	obvious	(Fig.	238 
1),	these	data	highlight	that	all	societies	quickly	adapt	to	outbreaks	of	emerging	infections.	239 
Drake	et	al	previously	demonstrated	the	positive	impact	of	behavior	change	in	infectious	240 
outbreaks,	noting	that	doubling	the	rate	of	“societal	learning”	in	a	model	of	the	2003	SARS	241 
outbreak	in	Singapore	approximately	halved	the	estimated	number	of	infected	patients.9	While	242 
there	is	a	theoretical	upper	limit	to	the	speed	with	which	newly-infected	individuals	can	be	243 
removed	from	the	susceptible	population,9	public	health	strategies	aimed	at	fostering	244 
behavioral	adaptations	and	accelerating	isolation	should	form	a	cornerstone	of	interventions	245 
tasked	with	limiting	the	spread	of	highly	contagious	and	deadly	emerging	pathogens.31	246 
	247 
CONCLUSION:	248 
We	have	shown	that	public	health	practices	for	isolating	infected	individuals	from	the	249 
susceptible	population	vary	significantly	by	pathogen	and	location,	but	can	in	some	cases	be	250 
predicted	by	the	timing	and	serial	interval	of	the	epidemic.	This	study	detected	variation	in	251 
DSOH	and	MRR	based	on	epidemic	location	and	outbreak	type,	indicating	that	it	may	be	252 
possible	to	estimate	a	general	range	of	the	rate	of	change	in	these	variables	over	time.	Due	to	253 
location-specific	differences	in	DSOH	and	MRR,	modelers	who	seek	to	develop	forecasts	early	in	254 
an	outbreak	would	benefit	from	estimating	an	expected	range	for	removal	of	infected	255 
individuals	using	data	from	past	outbreaks	of	the	same	pathogen	in	a	similar	setting.	256 
Furthermore,	the	quality	of	these	estimates	will	be	impacted	by	the	metric	chosen,	as	seen	by	257 
the	notable,	but	distinct,	trends	detected	in	DSOH	and	MRR.	As	seen	in	this	study,	utilizing	a	258 
well-chosen	response	variable	with	a	relatively	small	amount	of	data	can	provide	material	for	259 
making	effective	forecasts	about	public	health	behavior.	260 
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	261 
DATA,	CODE,	AND	MATERIALS:	262 
We	studied	seven	outbreaks:	the	2013-2016	Liberian	Ebola	epidemic	on	a	country-wide	level,	263 
subsets	of	the	same	epidemic	in	Lofa	and	Montserrado	Counties,	the	2003	Hong	Kong	SARS	264 
epidemic,	the	2014	Saudi	Arabia	MERS	outbreaks	in	Riyadh	and	Jeddah,	and	the	2015	South	265 
Korea	MERS	outbreak.	The	Ebola	data	was	originally	obtained	by	the	World	Health	Organization	266 
and	provided	by	Christopher	Dye	(dyec@who.int).	The	Hong	Kong	SARS	data	was	provided	by	267 
Gabriel	Leung	(gmleung@hku.hk)	of	Hong	Kong	University.	Please	contact	Christopher	and	268 
Gabriel	for	data	regarding	Ebola	and	SARS,	respectively,	due	to	concerns	regarding	potentially	269 
identifiable	health	information.	Finally,	the	MERS	data	for	Saudi	Arabia	and	South	Korea	were	270 
obtained	from	data	compiled	by	Andrew	Rambaut	(a.rambaut@ed.ac.uk)	of	the	University	of	271 
Edinburgh,	and	is	publicly	available	at	https://github.com/rambaut/MERS-Cases/blob/gh-272 
pages/data/cases.csv.		273 
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