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Abstract

Assessing directional influences between neurons is instrumental to understand how
brain circuits process information. To this end, Granger causality, a technique originally
developed for time-continuous signals, has been extended to discrete spike trains. A
fundamental assumption of this technique is that the temporal evolution of neuronal
responses must be due only to endogenous interactions between recorded units,
including self-interactions. This assumption is however rarely met in neurophysiological
studies, where the response of each neuron is modulated by other exogenous causes such
as, for example, other unobserved units or slow adaptation processes.

Here, we propose a novel point-process Granger causality technique that is robust
with respect to the two most common exogenous modulations observed in real neuronal
responses: within-trial temporal variations in spiking rate and between-trial variability
in their magnitudes. This novel method works by explicitly including both types of
modulations into the generalized linear model of the neuronal conditional intensity
function (CIF). We then assess the causal influence of neuron i onto neuron j by
measuring the relative reduction of neuron j’s point process likelihood obtained
considering or removing neuron i. CIF’s hyper-parameters are set on a per-neuron basis
by minimizing Akaike’s information criterion.

In simulated data, the proposed method recovered with high accuracy the underlying
ground-truth connectivity pattern. Application of presently available point-process
Granger causality techniques produced instead a significant number of false positive
connections. In real spiking responses recorded from neurons in the monkey pre-motor
cortex (area F5), our method revealed many causal relationships between neurons as
well as the temporal structure of their interactions. Given its robustness our method
can be effectively applied to real neuronal data. Furthermore, its explicit estimate of
the effects of unobserved causes on the recorded neuronal firing patterns can help
decomposing their temporal variations into endogenous and exogenous components.
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Author summary

Modern techniques in Neuroscience allow to investigate the brain at the network level
by studying the flow of information between neurons. To this end, Granger causality
has been extended to point process spike trains. A fundamental assumption of this
technique is that there should be no unobserved causes of temporal variability in the
recorded spike trains. This, however, greatly limits its applicability to real neuronal
recordings as very often not all the sources of variability in neuronal responses can be
concurrently recorded.

We present here a robust point-process Granger causality technique that overcome
this problem by explicitly incorporating unobserved sources of variability into the model
of neuronal spiking responses. In synthetic data sets, our new technique correctly
recovered the underlying ground-truth functional connectivity between simulated units
with a great degree of accuracy. Furthermore, its application to real neuronal recordings
revealed many causal relationships between neurons as well as the temporal structure of
their interactions.

Our results suggest that our novel Granger causality method is robust and it can be
used to study the flow of information in the spiking patterns of simultaneously recorded
neurons even in presence of unobserved causes of temporal variability.

Introduction 1

Modern neurophysiological recording techniques allow to simultaneously probe the 2

activities of tens to hundreds neurons [1–3]. The availability of these high-dimensional 3

data sets allows to address novel and relevant research questions about the brain. A 4

particularly important question is to investigate brain functions at the circuit level, by 5

assessing the flow of information between neurons. To this end, several analytical tools 6

have been proposed in the past, such as cross-correlogram [4], joint peri-stimulus 7

histogram [5] or gravitational cluster [6]. While providing noteworthy insights, these 8

tools have also limitations as (1) they do provide little information about the 9

directionality of discovered interactions and (2) they do not usually consider the 10

point-process nature of neuronal spike trains. To overcome both issues Kim et al. 11

proposed an extension of Granger causality to point processes [7]. 12

Granger causality is an analytical tool originally proposed in the context of 13

econometric time series [8]. A stochastic process x is said to Granger causally influence 14

another process y (henceforth denoted with x→ y) if knowledge of values of x at times 15

before t improves, in a statistically significant manner, the prediction of y at time t 16

beyond inclusion of past values of y itself. Granger causality assumes that all sources of 17

temporal modulations of the processes x and y must be endogenous to the set of 18

considered processes. That is, they must be entirely explained by the processes’ past 19

histories and there should be no common unobserved driver of temporal variability [9]. 20

However, this is often not the case in neurophysiological experiments where many of the 21

causes that produce temporal modulations in neuronal responses are exogenous to the 22

ensemble of recorded neurons. Indeed, the activity of a neuron at each time point 23

results from the integration of signals coming from many, potentially thousands, other 24

neurons, most of which are not concurrently recorded. Furthermore, in many 25

experimental settings, we are interested in the so-called functional connectivity between 26

neurons. That is, the amount and directionality of information flow when the brain 27

state, is perturbed by an event (e.g. sensory stimulation or motor behavior). Under 28

these conditions, neurons exhibit temporal modulations in the statistics of their firing 29

patterns that are due to the interactions with neighboring neurons located in the their 30

local network as well as more distant units in projecting brain regions. Finally, the 31
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magnitude of neuronal responses often exhibits a physiological, potentially correlated, 32

trial-by-trial variability, that brings the system further away from the conditions 33

assumed by Granger causality. 34

In this paper, we show that, in the presence of exogenously temporally modulated 35

and trial-by-trial variable spike trains the point-process Granger causality technique 36

proposed by Kim et al. [7] might recover inaccurate patterns of connectivity. We then 37

propose two novel methods that address this issue. The first method, called G-ETM, is 38

designed to extend point-process Granger causality to spike trains whose magnitudes 39

are modulated by exogenous causes. The second method, called G-ETMV, is 40

computationally more demanding but it recovers the correct pattens of functional 41

connectivity between a set of interconnected neurons exhibiting both trial-by-trial 42

variability and exogenous temporal modulations in their firing patterns. We show the 43

effectiveness of our new Granger causality techniques by means of quantitative 44

computer simulations and application to real spike trains recorded from the monkey 45

pre-motor cortex (area F5). 46

Results 47

Throughout this section we will denote as endogenous, temporal modulations in 48

neuronal responses that are due to interactions between the recorded neurons (including 49

self-interactions) and as exogenous, temporal modulations that are due to unobserved 50

causes. 51

Standard point-process Granger causality fails with spike trains 52

exhibiting exogenous temporal modulations 53

To show how standard point-process Granger causality can produce incorrect patterns 54

of connectivity in the presence of spike trains exhibiting exogenous temporal 55

modulations, we applied Kim et al.’s Granger method to 40 simulated trials (Fig. 1 A) 56

of a simple system consisting of two units. The two units were not functionally 57

connected as their spike trains were generated by means of two independent Poisson 58

processes (Fig. 1 B). Furthermore, within each trial, they underwent an exogenous 59

bell-shaped modulation of their firing rates. Responses like these might be recorded, for 60

example, in motor areas during the execution or preparation of actions (see for Example 61

Fig. 2 in [10]). In these cases one obvious question that arises is whether the two units 62

represent subsequent stages of cortical processing, and their responses are thus causally 63

related, or if they are independently driven by an external, unobserved source. 64

This relevant question represents a natural application of the Granger causality 65

framework. Application of Kim et al.’s method to the spikes trains in Fig. 1 A revealed 66

many causal connections that, although statistically significant, were not actually 67

present in our system (compare the ground-truth connectivity in Fig. 1 B with the 68

recovered connectivity in Fig. 1 C). To see why this happened we have to consider the 69

estimates of the interaction functions (the γ terms in Eq. 2, Fig. 1 D). In the Granger 70

framework, interaction functions describe how the past history of all neurons at different 71

time lags modulate, at each time point, the activity of a given neuron. In our example, 72

their ground-truth values are identically zero for all neurons and time lags as there is no 73

mutual or self interaction at any time lag between the two simulated units. However, 74

not only their estimated values are different from zero at several time lags, but, in many 75

cases, these differences are also statistically significant (red dots in Fig. 1 D). This 76

happened because, the GLM fitting process assigned the variance produced by the 77

temporal modulations of the spike trains to the only available free parameters. That is, 78

those related to interactions between neurons (the γ terms in Eq. 2). For the specific 79
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Figure 1. Standard Granger causality fails with spike trains exhibiting
exogenous temporal modulations. (A) Spike trains of two units simulated by
means of two independent Poisson processes. In the top panels, each row represent a
trial (a total of 40 trials were generated) and each vertical line a spike. The bottom
panels show the average firing rate across trials. On each trial, each neuron underwent a
bell-shaped modulation of its firing rate centered around t = 1 s and with a temporal
width of 200 ms. (B) Ground-truth connectivity of the two units. In this representation
a green square represents a significant causal connection from the source to the target
unit, while a black square signifies no causal connection between them. Since the two
units are independent the ground-truth connectivity matrix contains, in this case, only
black squares. (C) Connectivity recovered by the point process Granger causality
technique proposed by Kim et al. [7]. The recovered connectivity matrix contains three
fictitious connections: 1 → 1, 1 → 2 and 2 → 1. (D) Ground-truth values (black
curves) and estimates (blue curves) of the interaction functions for the significant
functional connections. Red dots mark values that are significantly different from 0 at
p < 0.05.

data set of Fig. 1 A, inclusion of fictitious causal influences 1→ 1, 2→ 2 and 2→ 1 80

could indeed explain a significant fraction of this variance. This result is not only 81

incorrect but also not robust. Different data sets, generated according to the same CIFs 82

as those in Fig. 1, will, in general, produce different fictitious patterns of causal 83

connectivity. 84

Extending point-process Granger causality to spike trains 85

exhibiting exogenous temporal modulations 86

To overcome this problem we propose here G-ETM (Granger causality with Exogenous 87

Temporal Modulations): a novel model that extends the computation of Granger 88

causality to spike trains exhibiting exogenous temporal modulations. To this end, we 89

exploited the organization of neurophysiological experiments into trials and the 90

consistency, across trials, of temporal changes in firing rates to divide, for each neuron i, 91

the duration T of each trial into Ni non-overlapping windows. Within each window, we 92

model the CIF of a given neuron i as the sum of a baseline rate of activity and the sum 93

of the influences of all other neurons in the ensemble (including neuron i itself). Having 94

one additional parameter for each interval allows us to explicitly take into account 95

transient changes in the CIF of neurons due to exogenous, unobserved factors. 96

Application of G-ETM to the spike trains of Fig. 1 produced the correct pattern of 97

causal connectivity (Fig. 2 A). Furthermore, our technique produced also an estimate of 98

the exogenous temporal modulations of the two simulated units that correctly captured 99

their ground-truth values (Fig. 2 B). This happened because we now explicitly model 100
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Figure 2. Application of our G-ETM Granger causality method to the
spike trains of Fig. 1. (A) ground-truth (upper panel) and recovered (bottom panel)
connectivity matrices. (B) Estimated (blue curves) and ground truth (black curves)
interaction functions. (C) Estimates of the exogenous components of firing patterns.
That is, changes in firing rates that are not due to interactions with other neurons.
Symbols are as in Fig. 1.

exogenous temporal changes of firing rates by means of the terms γk,q in Eq. 4. 101

Therefore, the GLM fitting process no longer needs to generate fictitious connections to 102

explain the variance that they produce. 103

Figure 3. Application of G-ETM to a complex system. (A) Ground-truth
connectivity pattern. (B) Connectivity pattern estimated by applying Kim et al.’s
method [7]. (C) Connectivity pattern estimated by means of our G-ETM method. (D)
Estimated (blue curves) and ground-truth (black curves) interaction functions of the
significant causal connections. (E) Estimates of the exogenous components of firing
patterns. Symbols are as in Figs. 1 and 2.

We next evaluated G-ETMon a more complex system composed of 9 units 104

subdivided into two disjoint (i.e. not interacting) subsets: units 1-3 and 4-9 (Fig. 3 A) 105

respectively. Within each simulated 3 s trial, units’ firing patterns were determined by 106

(1) influences from other units in the same subset and (2) bell-like exogenous 107

stimulation that for each unit peaked at a different time in the interval between t = 1 s 108

and t = 2 s. This example is meant to model the case of simultaneous recordings from 109

two areas during occurrence of an experimental event. In this setting, the question 110

arises of whether there is any functional connectivity between the two recorded areas 111

and, if so, what is its directionality. In our simulated network, there was no direct 112

PLOS 5/16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.27.920868doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920868
http://creativecommons.org/licenses/by/4.0/


connectivity between the two areas (i.e. the two subset of units). Application of Kim et 113

al.’s method provided an inaccurate estimate of the local pattern of the connectivity 114

both within and between the two subsets of units (Fig. 3 B). In particular, it produced 115

several additional false-positive connections suggesting an incorrect pattern of inter-area 116

connectivity. In an experimental setting, this pattern of result would provide support 117

for the incorrect conclusion of a functional connectivity between the two areas. On the 118

contrary, G-ETM recovered the correct pattern of causal connectivity both within and 119

between the two subsets of units (Fig. 3 C). Furthermore, it also provided an accurate 120

estimate of the interaction functions between units (Fig. 3 D). It is worth noting that 121

temporal changes in the units’ firing rates were almost entirely due to exogenous 122

stimulation (Fig. 3 E). This means, that our method was sensitive enough to detect 123

influences between units, even when, as is often the case for real neurons, they produced 124

only minimal changes in their firing rates. 125

To provide a more general and thorough validation of G-ETM we performed a series 126

of Montecarlo simulations (Fig. 4). To this end, we simulated 40 trials of a network 127

consisting of 4 neurons and 6 connections whose placement (i.e. connected nodes and 128

directionality of the connection), type (i.e. excitatory or inhibitory) and strength were 129

randomly determined (but did not change across trials). In addition to mutual and self 130

influences the spike rates of the 4 neurons underwent also an exogenous bell-shaped 131

modulation. For each neuron the modulation peaked always at the same time that was 132

however different across neurons and distributed in the interval t = 1 s and t = 2 s. We 133

then estimated causal connectivity by applying both Kim et al.’s and our method and 134

compared these two connectivity patterns with the known ground-truth connectivity 135

(Fig. 4 A). We iterated this procedure 100 times randomly determining the network 136

structure at each run. Consistent with the intuition provided by Figs. 1 and 3 137

application of Kim et al’s method produced false positives (i.e. deeming a connection 138

significant when it is not present in the network) in 42 % of the cases, which exceeds by 139

almost 10-fold the set statistical threshold of p < 0.05 (Fig. 4 B). On the contrary, 140

G-ETM not only provided a comparably good estimate of the connectivity pattern 141

(85 % vs. 88 % correct for our and Kim et al.’s methods respectively) but also produced 142

a percentage of false positives compatible with the selected statistical threshold (4.2 %, 143

Fig. 4 B). These results further show that G-ETM provides an accurate estimate of the 144

causal influences in a network of neurons in the presence of exogenous temporal 145

modulations of their firing rates. 146

Figure 4. Montecarlo validation of G-ETM (A) Pictorial exemplification of our
procedure (see main text for further details). In brief, we first randomly generated a
connectivity pattern in a network of 4 neurons. We then applied Kim et al.’s and
G-ETM Granger techniques to a data set consisting of 40 simulated trials for each
neuron. Finally, we compared ground-truth connectivity with that estimated by the two
methods. (B) We repeated this procedure for 100 runs to estimate the percentage of
correct and false positive connections recovered by the two methods. Statistically
significant differences are marked by an asterisk.
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Application to real spike train data 147

In a further step we applied G-ETM to real spike-train data. To this end, we 148

simultaneously recorded the response of 12 neurons from the monkey pre-motor cortex 149

(area F5) during the preparation of goal-directed motor acts. The task of the monkey 150

was to attend to a briefly flashed cue indicating a to-be-executed action and to withhold 151

movement execution until a subsequent go signal occurring on randomly between 0.8 152

and 1.2s after cue onset. Fig. S1 shows the responses of the 12 recorded neurons during 153

this motor preparation period. In each panel, t = 0 marks cue presentation. 154

We collected data from a total of 57 trials and analyzed neuronal responses recorded 155

in the interval from 0.5 s before until 1 s after cue presentation. Consistent with 156

previous studies of monkey pre-motor cortex [11], the responses of neurons in area F5 157

were significantly modulated by the preparation of a motor act, exhibiting both phasic 158

and transient modulations in their firing rates (Fig. S1). We applied G-ETM to these 159

spike trains. The results of our analysis revealed a complex pattern of Granger 160

connectivity with both self- and mutual interactions between the recorded neurons 161

(Fig. 5A). Application of Kim et al.’s method recovered a different pattern of 162

connectivity exhibiting a higher number of mutual influences between neurons 163

(off-diagonal elements in Fig. 5B). Although in this case, we do no have the 164

ground-truth connectivity pattern, quantitative simulations reported in Figs. 3 and 4 165

strongly suggest that these additional causal connections are likely false positives. 166

Interestingly, examination of the recovered interaction functions (Fig. 5C) suggests 167

that both self- and mutual interactions are time-dependent with a general trend of 168

being inhibitory at shorter time scales and excitatory at longer time scales. Finally, 169

examination of the recovered exogenous components of the firing patterns (Fig. 5D) 170

shows that for some units (e.g. units 6 or 11) their temporal modulations could be only 171

partially explained by exogenous influences and the remaining part was explained by 172

self- or mutual interactions with other units. This result suggests that, in addition to 173

recovering patterns of causal connectivity, G-ETM can be also effectively used to 174

decompose the firing pattern of recorded units into exogenous (i.e. due to unobserved 175

units) and endogenous (i.e. due to observed units) components. 176

Figure 5. Application of G-ETM to real spike trains. (A) Connectivity pattern
estimated by our G-ETM method. (B) Connectivity pattern estimated by applying Kim
et al.’s method [7]. (C) Estimated interaction functions of the significant causal
connections. (D) Estimates of the non-stationary components of firing patterns.
Symbols are as in Figs. 4.
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Accounting for trial-by-trial variability 177

We have so far assumed that the stimulus-evoked responses of neurons are stereotyped 178

and do not change across trials. However, while maintaining the same overall shape, the 179

magnitude of neuronal firing patterns can often exhibit considerable variability across 180

trials. It has been shown that these trial-by-trial variations can produce spurious 181

patterns of Granger causality and this problem becomes even more severe when these 182

variations are correlated across neurons [12,13]. Fig. 6 shows an example of such 183

problems in a very simple system composed of two simulated units. In this example, on 184

each trial p, the activity of unit i was generated by means of an inhomogeneous Poisson 185

process with firing probability Ai,p · λi(t), where the factor Ai,p sets the overall 186

magnitude of the response λi(t) in trial p. The processes λ1 and λ2 were independent 187

and both underwent a bell-shaped temporal modulation of their firing rates centered at 188

t = 1 (Fig. 6 B). We set A1,p = A2,p,∀p to correlate the trial-by-trial variability of the 189

two units (Fig. 6 C). Application of G-ETM recovered in this case an incorrect pattern 190

of causal connectivity. This happened because, trial-by-trial changes in response 191

magnitude produced additional variance in the data that could not be accounted for by 192

the exogenous components of our G-ETM model (see the mismatch between the blue 193

and black curves in Fig. 6 E). Therefore, the GLM fitting process attempted to explain 194

this additional variance by means of the other available free parameters. That is, those 195

related to interactions between neurons. Indeed, for this specific realization of spike 196

trains, inclusion of fictitious causal influences 1→ 2, 2→ 1 and 2→ 2 significantly 197

improved the percentage of explained variance (Fig. 6 F) thus producing an incorrect 198

pattern of Granger connectivity. 199

To take into account correlated trial-by-trial variability in the magnitude of neuronal 200

responses we extended our G-ETM model. To this end, we further augmented it with a 201

set of Ai,p additional parameters that model the response magnitude of neuron i in trial 202

p (see Methods section for further details). Application of this new model (G-ETMV: 203

Granger causality with Exogenous Temporal Modulations and trial-by-trial Variability) 204

to the spike patterns in Fig. 6 B did not only recover the correct pattern of connectivity 205

(compare Fig. 6 A and Fig. 6 G) but it also provided a faithful estimate of the response 206

magnitudes Ai,p across trial and neurons (Fig. 6 C). Furthermore, it also provided a 207

more precise estimate of the exogenous temporal modulations of neuronal responses 208

(Fig. 6 H). Taken together, results in Fig. 6 further support the notion that, in Granger 209

causality, the presence of unaccounted variance (in this case trial-by-trial variability) 210

can produce spurious patterns of functional connectivity. 211

We next validated our G-ETMV method by means of a series of Montecarlo 212

simulations. These simulations had the same structure as those in Fig. 4 with the 213

notable difference that, to produce correlated trial-by-trial variability the firing rates of 214

all neurons were multiplied, on each trial, by the same factor randomly selected in the 215

interval [.5, 1.5). Consistent with the intuition provided by Figs. 6 application of our 216

G-ETM method produced a false positive in 14 % of the cases; a value that is 217

significantly above the set statistical threshold of p < 0.05 (Fig. 6). On the contrary, 218

G-ETMV not only provided a significantly better estimate of the connectivity patterns 219

(97 % vs. 92 % correct for the G-ETM and G-ETMV models respectively) but also 220

maintained the percentage of false positives compatible with the set statistical threshold 221

(6 %, Fig. 6). These results show that G-ETMV is an effective technique to estimate 222

causal influences between neurons that exhibit exogenous temporal modulations in their 223

firing rates whose magnitude is variable across trials and correlated across units. 224
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Figure 6. Trial-by-trial variability and Granger causality. The panel exemplify
how trial-by-trial variability can affect Granger causality measures even when
non-stationarity in firing rates is taken into account and how G-ETMV can successfully
address this issue. (A) Ground-truth connectivity of our simple 2-neuron system (i.e. no
connectivity). (B) Spike trains of the two independent units undergoing non-stationary
changes in their firing rates and correlated trial-by-trial variability of response
magnitudes. The red curves in the bottom panel represent the firing rate of the single
trials, while the thick black line represents the average firing rate. (C) Ground-truth
trial-by-trial variability of the responses of the two neurons. The black curve represents,
for each trial, the overall level of activation of the two units. (D) In the presence of
correlated trial-by-trial variability our G-ETM method recovers an incorrect
connectivity pattern. (E-F) Ground-truth values (black curves) and estimates (blue
curves) of the exogenous components of the firing rates (panel E) and of the interaction
functions for the significant causal connections (panel F) recovered by G-ETM. (G-H)
The correct patterns of connectivity (panel G) and exogenous components (panel H) are
instead recovered by our G-ETMV method. (H) G-ETMV also provides a faithful
estimate of the trial-by-trial response variability of both neurons.

Discussion 225

A fundamental goal of Neuroscience is to characterize the brain functional circuits 226

underlying perception, cognition and action. Granger causality addresses this problem 227

by detecting the flow of information between simultaneously recorded physiological 228

signals [14]. In previous work, Kim and co-workers proposed a point-process extension 229

of Granger causality that allowed to investigate functional connectivity directly at the 230

spike train level [7]. As any standard Granger causality techniques also Kim et al.’s 231

technique assumes that input time series are jointly stationary. That is, their temporal 232

modulations must be entirely due to the series’ past histories. This assumption is 233

however rarely met in real neurophysiological experiments. Indeed, neuronal networks 234

are characterized by a high degree of convergence and the activity of a given neuron is 235

the result of the integration of the outputs of many, potentially thousands, projecting 236

units, which is often not technically possible to concurrently record. Furthermore, brain 237

networks often exhibit slow changes in their global state, which makes the magnitude of 238

neuronal responses vary across trials and be correlated between units. 239

Here, we first showed that applying standard point-process Granger causality to 240

spike trains that exhibit exogenous temporal modulations produces a non-negligible 241

number of artefactual causal links between neuronal activities. In an experimental 242

setting, these results would suggest the existence of fictitious connectivity patterns and 243

would induce incorrect conclusions concerning the underlying information flow. To 244

overcome these problems, we proposed here two novel point-process Granger causality 245

techniques: G-ETM and G-ETMV. G-ETM is computationally less demanding and 246

specifically designed for the case of spike trains exhibiting temporal modulations while 247

G-ETMV is more computationally demanding but also handles the case of trial-by-trial, 248

potentially correlated variability in neuronal responses. The choice of which one to use 249

PLOS 9/16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2020.01.27.920868doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920868
http://creativecommons.org/licenses/by/4.0/


Figure 7. Montecarlo validation of G-ETMV. (A) Percentage of correct and
false positive connections estimated by G-ETM and G-ETMV respectively when applied
to spike trains exhibiting both exogenous temporal modulations and trial-by-trial
variability. Montecarlo simulations have the same structure as in Fig. 6 A. (B)
Scatterplot of estimated vs. ground-truth trial-by-trial variability coefficients (i.e. the
terms Ai,p in Eq. 6). The dots cluster around the unitary slope line (red line),
indicating that estimates were close to their ground-truth values.

depends on a trade-off between available computational resources and a-priori 250

hypotheses that the Experimenter has concerning a specific data set. 251

The jointly stationarity assumption gives Granger causality several appealing 252

characteristics [14]. However, at the same time, it greatly limits its potential 253

applications, as very often we are interested in investigating the information flow in 254

brain networks undergoing stimulus-evoked state transitions whose causes are exogenous 255

to the networks themselves. To extend Granger causality to these cases two main, not 256

mutually exclusive, methods have been proposed in the literature. The first method 257

consists in performing some form of pre-processing on the data to render them 258

stationary and then apply Granger causality to this new stationary data set. For 259

example, simple linear trends can be removed by differentiation while more complex 260

non-stationary components can be removed by subtracting the ensemble average or the 261

estimated evoked response from each trial [15, 16]. These techniques are however 262

designed for time-continuous or continuously sampled data and cannot be directly 263

applied to spike trains given their point-process nature. Furthermore, the removal of the 264

ensemble average assumes that each trial is a realization of the same underlying 265

stochastic process, an assumption that is not always met in practice [12]. The second 266

method consists in using time-varying models to fit the data [17,18]. These extensions 267

to Granger analysis can effectively deal with time series exhibiting exogenous temporal 268

modulations. However, they possess no underlying test statistics and thus significance 269

of the estimated parameters and model comparison must be assessed by means of 270

empirical and computation-intensive bootstrapping techniques [17,18]. 271

The Granger causality techniques proposed here overcome both problems. Since they 272

directly model the neurons’ CIF they can be applied to point-process data. 273

Furthermore, they use time- and trial-dependent models of neuronal responses and can 274

thus recover the correct patterns of directed connectivity from spike trains containing 275

exogenous temporal modulations and trial-by-trial variability. Notably, both techniques 276

use generalized linear models to estimate the underlying neuronal CIF. Thus, we could 277

use the rich theoretical framework developed for this class of models and, particularly, 278

the test statistics developed to assess the goodness-of-fit of a given model and the 279

significance of the estimated parameters. This aspect was particularly relevant for 280

Granger causality analysis as this technique is heavily based on model comparison. 281

Finally, both G-ETM and G-ETMV produce an estimate of the effects of both observed 282

and unobserved causes on neuronal responses. Thus, in addition to estimating 283

functional connectivity, they can be also used to decompose the spiking activity of each 284

unit into endogenous (i.e. observed) and exogenous (i.e. unobserved) components. 285
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At the practical level, the results of our Montecarlo simulations stress the 286

importance of carefully checking that the data set under scrutiny meets the assumptions 287

of Granger causality [19]. Indeed, as shown in Figs. 1,3,4 B,6 D and 7 A, applying 288

Granger causality analysis to spike trains that violate the assumptions of a given model 289

produces a number of false positive (i.e. artefactual) connections well above the selected 290

significance level. In these cases, incorrect conclusions might be drawn concerning the 291

underlying connectivity pattern. 292

In summary, we presented here two novel point-process Granger analysis techniques, 293

namely G-ETM and G-ETMV, that can correctly detect directed influences between 294

neurons whose responses exhibit exogenous temporal modulations and correlated 295

trial-by-trial variability. These novel techniques allow to investigate the information flow 296

during stimulus-evoked periods and thus to reveal how neurons interact not only during 297

baseline conditions, but also when their responses are modulated by exogenous 298

stimulation. 299

Materials and methods 300

We first briefly review the point process Granger causality method proposed by Kim 301

and co-workers [7]. 302

A point process is a time series of discrete events that occur in continuous time [20]. 303

Given an observation interval (0, T ], let 0 < ui1 < · · · < uij < · · · < uiJi ≤ T be a set of 304

J i spike times point process observations for i = 1, · · · , Q recorded neurons. Let Ni(t) 305

denote the number of spikes of neuron i in the time interval (0, t] with t ∈ (0, T ]. A point 306

process model of a spike train is completely characterized by its conditional intensity 307

function (CIF) λi, given the past spiking history Hi(t) of all neurons in the ensemble: 308

λi(t|Hi(t)) = lim
∆→0

Pr[Ni(t+ ∆)−Ni(t) = 1|Hi(t)]

∆
(1)

where Hi(t) denotes the spiking history of all the neurons in the ensemble up to time t 309

including neuron i itself. 310

The function λi needs to be estimated from data. To this end, we first computed the 311

history Hi(t) of each neuron i in Mi non overlapping rectangular windows of duration 312

W . We then denoted with Rq,m the spike count of neuron q (1 < q < Q) in the interval 313

m (1 < m < Mi) and used a generalized linear model (GLM) framework to model the 314

logarithm of the CIF as a linear combination of the Rq,m [21, 22]: 315

logλi(t|γi, Hi(t)) = γi,0 +

Q∑
q=1

Mi∑
m=1

γi,q,mRq,m(t) (2)

where γi,0 relate to a baseline level of activity of neuron i and the to-be-estimated 316

interaction function γi,q,m represents the effect of ensemble spiking history Rq,m(t) on 317

the firing probability of neuron i. 318

Casting the estimate of λi into an auto-regressive GLM framework allows an 319

extension of Granger causality to point processes [7]. Indeed, following the definition of 320

Granger causality, one can infer the potential causal connection j → i of neuron j onto 321

neuron i by comparing the deviance of the full model in Eq 2 with that of a reduced 322

model λji that excludes the effects of neuron j onto neuron i: 323

logλji (t|γi, Hi(t)) = γi,0 +

Q∑
q=1,q 6=j

Mi∑
m=1

γi,q,mRq,m(t) (3)
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If both models describe the data well then the difference of their deviances can be 324

asymptotically described by a chi-square distribution and one can then use the 325

theoretical machinery developed for this distribution to infer statistical significance [7]. 326

Accounting for temporally modulated spike trains 327

An assumption of standard Granger causality is that the examined stochastic processes 328

are jointly stationary. That is, their temporal evolution must be entirely due to their 329

past histories. To easily convince ourselves why this is the case, let us look at Eq. 2. In 330

this equation, the CIF is assumed to depend, through the terms Rq,m(t) only on the 331

past history Hi(t) of the neuronal ensemble. If the statistics of the spike trains are 332

jointly stationary so are also the terms Rq,m(t). This ensures that the GLM fitting 333

process will converge to meaningful values for the parameters γ and that the difference 334

of the deviances of models 2 and 3 will asymptotically follow a chi-square distribution. 335

However, in the presence of spike trains exhibiting exogenous temporal modulations, the 336

terms Rq,m(t) will also be, in general, non-stationary and thus the GLM fitting process 337

may converge to non-meaningful values or not converge at all. Furthermore, the model 338

in Eq. 2 will, in general, no longer provide a good description of the data. As a 339

consequence, the deviances of models 2 and 3 might no longer asymptotically follow a 340

chi-square distribution. In this case, the problem of statistically comparing them may 341

even become ill-posed. 342

To overcome this limitation we first need to understand the characteristics of 343

temporal modulations in spike trains. Neurophysiological experiments are usually 344

organized into trials. Within each trial, an experimental event occurs (e.g. a sensory 345

stimulus is presented, a movement is performed, etc.) that produces modulations in 346

neuronal activities. For data analysis purposes, the continuously recorded neuronal 347

spike trains are then off-line segmented into trials centered around the presented 348

experimental event. A common assumption in analyzing neuronal responses is that the 349

modulations produced by the exogenous event has the same time-course and amplitude 350

across trials. Under this assumption we can thus deal with this non-stationarity by 351

explicitly including it in our model. 352

To this end, for each neuron i we subdivide the duration T of each trial into Ni 353

non-overlapping windows of duration T/Ni. Within each window we then model the 354

CIF as the sum of the to-be-estimated effect of an exogenous event (the experimental 355

event) and the influences of the other neurons. Our model becomes thus: 356

logλi(t|γi, Hi(t)) = αi,d tT Nie +

Q∑
q=1

Mi∑
m=1

γi,q,mRq,m(t) (4)

where 0 < t < T and the αi,c (with 1 < c < N) are a set of Ni additional parameters 357

(one for each of the intervals in which we have subdivided a trial for neuron i) that 358

explicitly model changes in firing rates due to exogenous effects (i.e. effects not due to 359

interactions with self or other neurons). 360

Model parameters are estimated by means of a GLM fitting process and the 361

potential causal influence of neuron j onto neuron i is assessed, similar to the method 362

proposed by Kim et al. [7], by comparing the deviance of the model in Eq. 4 with that 363

of a reduced model λji that excludes the effects of neuron j onto neuron i: 364

logλji (t|γi, Hi(t)) = αi,d tT Nie +

Q∑
q=1,q 6=j

Mi∑
m=1

γi,q,mRq,m(t) (5)

Notably, the GLM fitting process provides not only an estimate of the interaction 365

functions γi,q but also of the exogenous modulations αi,c of neuronal responses. 366
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To select the values of Mi and Ni we repeated the fitting process using models 367

having different values of Mi and Ni and we then selected the model that minimized 368

Akaike’s information criterion (AIC) [7, 23]. 369

Accounting for trial-by-trial variability 370

We have so far assumed that stimulus-evoked responses are stereotyped and that their 371

trial-by-trial variability is entirely due to a noise process. However, neuronal responses 372

can exhibit considerable task-related variations across trials that cannot be captured by 373

a noise process. Notably, correlated variations of response magnitudes can modulate 374

cross-correlation or spectral coherence measures resulting in spurious patterns of 375

Granger causality [12,15]. To avoid these artifacts we need to explicitly include in our 376

model potential trial-by-trial variations in response magnitudes. To this end, we added 377

to our model a set of parameters Ai,p that represents the amplitude of the 378

non-stationary response component of neuron i in trial p: 379

logλi,p(t|γi, Hi(t)) = Ai,p + αi,d tT Nie +

Q∑
q=1

Mi∑
m=1

γi,q,mRq,m(t) (6)

where λi,p is the CIF of neuron i in trial p. Notably, the fitting process produces also an 380

estimate of the parameters Ai,p whose values can be used to assess the consistency of 381

response magnitudes across trials. Also in this case, the potential causal influence of 382

neuron j onto neuron i is assessed by comparing the deviance, across all trials, of the 383

model in Eq. 6 with that of a reduced model λji,p that excludes the effects of neuron j 384

onto neuron i. 385

Generation of synthetic spike trains 386

For our simulations we set the temporal granularity to 1 ms. For each neuron i and trial 387

p, spike trains were then generated by extracting, for each trial and 1 ms interval, a 388

random number r uniformly distributed between 0 and 1. A spike was assumed to have 389

occurred if r ≤ λi,p(t|γi, Hi(t))∆ (where λi represents the time-dependent firing rate in 390

spikes per second and ∆ = 0.001 s = 1 ms); otherwise, no spike was generated. 391

At each time t, the firing rate λi,p was computed as: 392

λi,p(t) = Ai,p · (λ0
i,p +Bie

(t−τi)
2

τ0 ) ·
Q∑

q=1

Mi∑
m=1

δi,q,mRq,m(t) (7)

where Ai,p models trial-to-trial variations of the activity of neuron i, λ0
i,p is a 393

baseline level of activity, Bie
(t−τi)

2

τ0 is a non-stationary Gaussian-shaped modulation of 394

the spike rate centered, within each trial, at time τi and with τ0 determining its 395

duration. The term
∑∑

... represents the influence of all other neurons including 396

neuron i itself. The network topology as well as the functional interactions between 397

neurons are determined by appropriately setting the parameters δi,q,m. In all our 398

simulations we set τ0 = 200 ms. 399
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Figure S1. Spike trains recorded from the monkey pre-motor cortex (area
F5) and included in our analysis. For each neuron, the upper panel shows the
spike trains. Here, each row represents a trial and vertical lines mark the occurrences of
spikes. The curve in the bottom panel represents the average, across all trials, of the
neuron’s firing rate.
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