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Abstract—In Bayesian phylogenetics, the coalescent process provides an
informative framework for inferring dynamical changes in the effective
size of a population from a sampled phylogeny (or tree) of its sequences.
Popular coalescent inference methods such as the Bayesian Skyline Plot,
Skyride and Skygrid all model this population size with a discontinuous,
piecewise-constant likelihood but apply a smoothing prior to ensure that
posterior population size estimates transition gradually with time. These
prior distributions implicitly encode extra population size information
that is not available from the observed coalescent tree (data). Here we
present a novel statistic, Ω, to quantify and disaggregate the relative
contributions of the coalescent data and prior assumptions to the resulting
posterior estimate precision. Our statistic also measures the additional
mutual information introduced by such priors. Using Ω we show that,
because it is surprisingly easy to over-parametrise piecewise-constant
population models, common smoothing priors can lead to overconfident
and potentially misleading conclusions, even under robust experimental
designs. We propose Ω as a useful tool for detecting when posterior
estimate precision is overly reliant on prior choices.
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I. INTRODUCTION

The coalescent process models how changes in the effective size of
a target population influence the phylogenetic patterns of sequences
sampled from that population. First derived by Kingman [1] under
the assumption of a constant sized population, the coalescent process
has since been extended to account for temporal variation in the pop-
ulation size [2], structured demographics [3] and multi-loci sampling
[4]. Inference under these models aims to statistically recover the
unknown effective population size (or demographic) history from the
reconstructed phylogeny (or tree) and has provided insights in macro-
and molecular biology [5], [6], [7]. Here we focus on coalescent
processes that describe the genealogies of serially sampled individuals
from deterministically varying populations. These are widely applied
to study the phylodynamics of infections diseases [2] [8].

Early approaches to inferring effective population size from coales-
cent phylogenies used pre-defined parametric models (e.g. exponen-
tial or logistic growth functions) to represent temporal demographic
changes [9], [7]. While these formulations required only a few
variables and led to interpretable estimates, justifying their restrictive
parametric assumptions was often difficult or computationally pro-
hibitive [10]. This motivated the introduction of the classic skyline
plot [11], which, by proposing an independent, piecewise-constant
demographic change at every coalescent event (i.e at branching times
in the phylogeny), maximised flexibility and removed all a-priori
restrictions. However, this flexibility came at the cost of increased
estimate noise and the risk of population size over-fitting [12].

Efforts to redress these issues, within a piecewise-constant frame-
work, subsequently spawned a family of skyline plot-based methods
[12]. Among these, the most popular and commonly-used are the
Bayesian Skyline Plot (BSP) [13], the Skyride [10] and the Skygrid
[14] (we denote the latter two S/S). All three attempted to regulate
the sharp fluctuations of the inferred piecewise-constant demographic

function by enforcing a priori assumptions about the smoothness (i.e.
the level of autocorrelation among piecewise-constant segments) of
real population dynamics. This was seen as a biologically sensible
compromise between noise regulation and model flexibility.

The BSP limited overfitting by predefining fewer piecewise de-
mographic changes than coalescent events and smoothed noise by
asserting a priori that the population size after a change-point was
exponentially distributed around the population size before it. This
method was questioned by [10] for making strong smoothing and
change-point assumptions and motivated development of the Skyride,
which embeds the flexible classic skyline plot within a tunable
Gaussian smoothing field. The Skygrid, which extends the Skyride to
multiple loci and allows arbitrary change-points (the BSP and Skyride
change-times coincide with coalescent events), also uses this prior.
The S/S methods aimed to better tradeoff prior influence with noise
reduction, and while somewhat effective, are still imperfect [15].

As a result, studies continue to address the non-trivial problem of
optimising this tradeoff, either by searching for less-restrictive and
more adaptive priors or by deriving new data-driven skyline change-
point grouping strategies [15], [16]. The evolution of coalescent
model inference thus reflects a desire to understand and fine-tune how
prior assumptions and observed phylogenetic data interact to yield
posterior population size estimates. Surprisingly, and in contrast to
this desire, no study has yet tried to directly and rigorously measure
the relative influence of the priors and data on these estimates.

Here we present a novel coalescent information theoretic ratio, Ω,
to formally quantify and disaggregate the contributions of both priors
and data on the uncertainty around the posterior estimates of skyline-
based methods. Using Ω we illustrate how widely-used smoothing
priors can lead to overconfident population size inferences and
provide guidelines against such pitfalls. Our statistic can help detect
when prior assumptions are inadvertently and overly influencing
demographic estimates and will hopefully serve as a diagnostic tool
that future methods can employ to optimise and validate their prior-
data tradeoffs.

II. PRELIMINARIES

A. Coalescent Inference

We provide an overview of the coalescent process and statistical
inference under skyline plot-based demographic models. The coales-
cent is a stochastic process that describes the ancestral genealogy of
sampled individuals or lineages from a target population [1]. Under
the coalescent, a tree or phylogeny of relationships among these
individuals is reconstructed backwards in time with coalescent events
defined as the points where pairs of lineages merge (i.e. coalesce) into
their ancestral lineage. This tree, T , is rooted at time T into the past,
which is the time to the most recent common ancestor (TMRCA) of
the sample. The tips of T correspond to sampled individuals.

The rate at which coalescent events occur (i.e. the rate of branching
in T ) is determined by and hence informative about the effective size
of the target population. We assume that a total of n ≥ 2 samples
are taken from the target population at ns ≥ 1 distinct sampling
times, which are independent of population size changes [13]. We do
not specify the sample generating process as it does not affect our
analysis by this independence assumption [17]. We let ci be the time
of the ith coalescent event in T with 1 ≤ i ≤ n− 1 and cn−1 = T
(n samples can coalesce n− 1 times before reaching the TMRCA).

We use lt to count the number of lineages in T at time t ≥ 0
into the past; lt then decrements by 1 at every ci and increases at
sampling times. Here t = 0 is the present. The effective population
size or demographic function at t is N(t) so that the coalescent
rate underlying T is

(
lt
2

)
N(t)−1 [1]. While N(t) can be described
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using appropriate parametric formulations [18], it is more common to
represent N(t) by some tractable p-dimensional piecewise-constant
approximation [12]. Thus, we can write N(t) :=

∑p
j=1 Nj1(εj−1 ≤

t < εj), with p ≥ 1 as the number of piecewise-constant segments.
Here Nj is the constant population size of the j th segment which is
delimited by times [εj−1, εj), with ε0 = 0 and εp ≥ T and 1(x) is
an indicator function. The rate of producing coalescent events is then∑p
j=1 N

−1
j

(
lt
2

)
1(εj−1 ≤ t < εj). Note that Kingman’s coalescent

model is obtained by setting p = 1 (constant population of N1).
When reconstructing the phylodynamic history of infectious dis-

eases, it is often of interest to infer N(t) from T [12], which forms
our data generating process. If N = [N1, ..., Np] denotes the vector
of demographic parameters to be estimated then the log-likelihood
`(N) := log P(T |N) can be obtained from [18] [19] as

`(N) =

p∑
j=1

mj logN−1
j −N−1

j ωj + logCj , (1)

with Cj as a constant that depends on the times and lineage counts
of the mj coalescent events that fall within the j th segment duration
[εj−1, εj), and

∑p
j=1 mj = n − 1. Eq. (1) is equivalent to the

standard temporally sampled skyline log-likelihood from [13], except
that we do not restrict N(t) to change only at coalescent times.

In Bayesian phylogenetic inference, skyline-based methods such
as the BSP and S/S combine this likelihood with a prior distribu-
tion P(N), which encodes a priori beliefs about the demographic
function. This yields a population size posterior by Bayes law as:

P(N | T ) ∝ P(T |N)P(N). (2)

Here we assume that the phylogeny, T , is known without error. In
some instances, only sampled sequence data, D, is available and a
distribution over T must be reconstructed from D under a model
of molecular evolution with parameters θ. Eq. (2) is then embed-
ded in the more complex Bayesian expression P(T ,θ,N |D) ∝
P(D | T ,θ,N)P(N | T )P(θ), which involves inferring both the tree
and population size. While we do not consider this extension here
we note that results from this work are still applicable.

B. Information and Estimation Theory

We review and extend some concepts from information and esti-
mation theory as applied to skyline-based coalescent inference. We
consider a general parametrisation of the effective population size
ψ = [ψ1, . . . , ψp], where ψi = φ(Ni) for all i ∈ {1, ..., p} and φ (·)
is a differentiable function. Popular skyline-based methods usually
choose the identity function (e.g. BSP) or the natural logarithm (e.g.
S/S) for φ. Eq. (1) and Eq. (2) are then reformulated with `(ψ) =
log P(T |ψ) as the log-likelihood and P(ψ) as the demographic prior.
The Bayesian posterior, P(ψ | T ) combines this likelihood and prior,
and hence is influenced by both the coalescent data and prior beliefs.
We can formalise these influences using information theory.

The expected Fisher information, I(ψ), is a p × p matrix with
(i, j)th element I(ψ)ij := −ET [∇ij`(ψ)] [20]. The expectation is
taken over the coalescent tree branches and ∇ij := ∂2

/∂ψi∂ψj . As
observed in [17], I(ψ) quantifies how precisely we can estimate the
demographic parameters, ψ, from the coalescent data, T . Precision is
defined as the inverse of variance [20]. The BSP and S/S parametri-
sations yield I(N) = [m1N

−2
1 , . . . , mpN

−2
p ] Ip and I(logN) =

[m1, . . . , mp] Ip , with Ip as a p × p identity matrix [17]. These
matrices provide several useful insights that we will exploit in later
sections [17]. First, I(ψ) is orthogonal (diagonal), meaning that the
coalescent process over the j th segment [εj−1, εj) can be treated
as deriving from an independent Kingman coalescent with constant
population size Nj [18]. Second, the number of coalescent events in

that segment, mj , controls the Fisher information available about Nj .
Last, working under logNj removes any dependence of this Fisher
information component on the unknown parameter Nj .

The prior distribution, P (ψ), that is placed on the demographic
parameters can alter and impact both estimate bias and precision. We
can gauge prior-induced bias by comparing the maximum likelihood
estimate (MLE), ψ̂ = arg maxψ{log P(T |ψ)} with the maximum a
posteriori estimate (MAP), ψ̃ = arg maxψ{log P(T |ψ)+log P(ψ)}
[21]. The difference ψ̃ − ψ̂ measures this bias. We can account for
prior-induced precision by computing Fisher-type matrices for the
prior and posterior as P(ψ)ij = −∇ij log P(ψ) and J (ψ)ij =
−ET [∇ij log P(ψ | T )] [22] [23]. Combining these gives

J (ψ) = I(ψ) + P(ψ). (3)

Eq. (3) shows how the posterior Fisher information matrix, J (ψ),
relates to the standard Fisher information I(ψ) and the prior second
derivative P(ψ). We make the common regularity assumptions (see
[23] for details) that ensure J (ψ) is positive definite and that all
Fisher matrices exist. These assumptions are valid for exponential
families such as the piecewise-constant coalescent [20][17]. Eq. (3)
will prove fundamental to resolving the relative impact of the prior
and data on the best precision achievable using P(N | T ). We also
define expectations on these matrices with respect to the prior as
J 0, I0 and P0, with J 0 = E0 [J (ψ)] =

∫
J (ψ)P(ψ) dψ, for

example. These matrices are now constants instead of functions of
ψ. Eq. (3) also holds for these matrices [22].

These Fisher information matrices set theoretical upper bounds on
the precision attainable by all possible statistical inference methods.
For any unbiased estimate of ψ, ψ̄, the Cramer-Rao bound (CRB)
states that ET

[
(ψ̄ −ψ)(ψ̄ −ψ)ᵀ |ψ

]
= var(ψ̄ |ψ) ≥ I(ψ)−1

with ᵀ indicating transpose. If we relax the unbiased requirement
and include prior (distribution) information then the Bayesian or
posterior Cramer-Rao lower bound (BCRB) controls the best estimate
precision [21]. If ψ̄ is any estimator of ψ then the BCRB states
that E0

[
ET
[
(ψ̄ −ψ)(ψ̄ −ψ)ᵀ |ψ

]]
≥ J−1

0 . This bound is not
dependent on ψ due to the extra expectation over the prior [22].

The CRB describes how precisely we can estimate demographic
parameters using just the coalescent data and is achieved (asymp-
totically) with equality for skyline (piecewise-constant) coalescent
models [17]. The BCRB, instead, defines the precision limit for the
combined contributions of the data and the prior. The CRB is a
frequentist bound that assumes a true fixed ψ, while the BCRB is a
Bayesian bound treats ψ as a random parameter. The expectation over
the prior connects the two formalisms [24]. Given their importance
in delimiting precision, the J (ψ) and I(ψ) Fisher matrices will
be central to our analysis, which focuses on resolving the individual
contributions of the data versus prior assumptions.

III. RESULTS

A. The Coalescent Information Ratio, Ω

We propose and derive the coalescent information ratio, Ω, as
a statistic for evaluating the relative contributions of the prior and
data to the posterior estimates obtained as solutions to Bayesian
skyline inference problems (see Preliminaries). Consider such a
problem in which the n-tip phylogeny T is used to estimate the
p-element demographic parameter vector ψ. Let ψ̂ be the MLE of
ψ given the data T . Asymptotically, the uncertainty around this
MLE can be described with a multivariate Gaussian distribution
with covariance matrix I(ψ)−1. The Fisher information, I(ψ) then
defines a confidence ellipsoid that circumscribes the total uncertainty
from this distribution. In [17] this ellipsoid was found central to
understanding the statistical properties of skyline-based estimates.
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The volume of this ellipsoid is V1 = C det [I(ψ)]−
1
2 , with C

as a p-dependent constant. Decreasing V1 increases the best estimate
precision attainable from the data T [17]. In a Bayesian framework,
the asymptotic posterior distribution of ψ also follows a multivariate
Gaussian distribution with covariance matrix of J (ψ)−1. We can
therefore construct an analogous ellipsoid from J (ψ) with volume
V2 = C det [J (ψ)]−

1
2 that measures the uncertainty around the

MAP estimate ψ̃. This volume includes the effect of both prior and
data on estimate precision. Accordingly, we propose the ratio

Ω :=
V2

V1
=

√
det [I(ψ)]

det [I(ψ) + P(ψ)]
, (4)

as a novel statistic for dissecting the relative impact of data and prior
on posterior estimate precision. A visual example of Ω, as applied to
a later smoothing-prior problem, is provided in Fig. 2.

Further, observe 0 ≤ Ω ≤ 1 and importantly that

Ω2 ≤ 1

2
⇐⇒ det [I(ψ)] ≤ 1

2
det [P(ψ) + I(ψ)] . (5)

At this threshold value P(ψ) contributes at least as much informa-
tion as the data. Moreover, limn→∞ Ω = 1 since the prior contri-
bution becomes negligible with increasing data and Ω is undefined
when ψ is unidentifiable from T (i.e. when I(ψ) is singular [25]).
Consequently, we posit that a smaller Ω implies the prior provides a
greater contribution to estimate precision.

We define Ω as an information ratio due to its close connection
to both the Fisher and mutual information. The mutual information
between ψ and T , I(ψ; T ), measures how much information (in bits
for example) T contains about ψ [26]. This is distinct but related to
I(ψ), which quantifies the precision of estimating ψ from T [27].
Recent work from [23] into the connection between the Fisher and
mutual information has yielded two key approximations to I(ψ; T ).
These can be obtained by substituting either I or J for X in

I(X ) = H(ψ) + E0

[
log
√

det [X (ψ)]− p log
√

2πe
]
. (6)

Here H(ψ) := E0 [− log P(ψ)] is the differential entropy of ψ [26].
These approximations were used in [23] to characterise how much

information, about a stimulus ψ, is encoded by a large population
of neurons. The outputs of those neurons would be equivalent to T
in our notation. For a flat prior or many observations, I(ψ; T ) ≈
I(I) ≈ I(J ), as the prior is contributing little or no information
[27]. For sharper priors, I(ψ; T ) ≈ I(J ) as the prior contribution is
not negligible. In that case, using I(I) can lead to large errors [23].

Eq. (6) is predicated on (i) regularity assumptions for the distri-
butions used (i.e. that the second derivatives exist), (ii) conditional
dependence of the observed data given ψ and (iii) that the likelihood
is peaked around its most probable value [20], [27], [23]. The
skyline-based inference problems that we consider here automatically
satisfy (i) and (ii) as these models belong to an exponential family.
Stipulation (iii) is satisfied for moderate to large trees (and hence
asymptotically) [20], [17]. Using the above approximations, we find

∆I = I(I + P)− I(I) = E0 [− log Ω] . (7)

Eq. (7) suggests that our ratio directly measures the excess mu-
tual information introduced by the prior, providing a substantive
link between how sharper estimate precision is attained with extra
mutual information. Observe that both sides of Eq. (7) diminish
when P(ψ) � I(ψ). Because the mutual information and its
approximations (see Eq. (6)) are invariant to invertible parameter
transformations [23], our coalescent information ratio does not de-
pend on whether we infer N , its inverse, or its logarithm.

Moreover, we can use normalising transformations to make Ω

valid at even small tree sizes. In [28] several such transformations
for exponentially distributed models like the coalescent are derived.
Among them, the log transform can achieve approximately normal
log-likelihoods for about 7 observations and above (n ≥ 8). Thus,
logN , which is also optimal for experimental design [17], ensures
the validity of Ω on small trees. This is the parametrisation adopted
by the S/S methods [10]. Other (cubic-root) parametrisations under
which Ω would be valid at even smaller n also exist [28].

Eq. (4)–Eq. (7) are not restricted to coalescent inference problems
and are generally applicable to statistical models that involve expo-
nential families [20]. We now specify Ω for skyline-based models,
which all possess piecewise-constant population sizes and orthogonal
I(ψ) matrices [17]. These properties permit the expansion [29]:

det [I(ψ) + P(ψ)] = det [I(ψ)] + det [P(ψ)] +

p−1∑
j=1

γj ,

with γj =
∑

di1 . . . dij det
[
P(ψ)ī1...̄ij

]
,

where dk are the diagonal elements of I(ψ) with 1 ≤ i1 < . . . <
ij ≤ p, and P(ψ)ī1...̄ij is the sub-matrix formed by deleting the
(i1, . . . , ij)

th rows and columns of P(ψ) [29].
This allows us to formulate a prior signal-to-noise ratio

r =

p∏
j=1

d−1
j

(
det [P(ψ)] +

p−1∑
k=1

γk

)
=⇒ Ω =

√
1

1 + r
, (8)

which quantifies the relative excess Fisher information (the ‘signal’)
that is introduced by the prior. This ratio signifies when the prior
contribution overwhelms that of the data i.e. r > 1 ⇐⇒ Ω2 < 1

2
.

Having derived theoretically meaningful metrics for resolving prior-
data precision contributions, we next investigate their ramifications.

B. The Kingman Conjugate Prior

Kingman’s coalescent process [1], which describes the phylogeny
of a constant sized population N1, is the foundation of all skyline
model formulations. Specifically, a p-dimensional skyline model is
analogous to having p Kingman coalescent models, the j th of which
is valid over [εj−1, εj) and describes the genealogy under population
size Nj . Here we use Kingman’s coalescent to validate and clarify the
utility of Ω as a measure of relative data-prior precision contributions.

We assume an n-tip Kingman coalescent tree, T and initially work
with the inverse parametrisation, N−1

1 . We scale T at t by
(
lt
2

)
as

in [18] so that
(lci−1

2

)
(ci − ci−1) ∼ exp(N−1

1 ) for 1 ≤ i ≤ n − 1

with c0 = 0. If y defines the space of N−1
1 values, and has prior

distribution P(y), then, by [19], [18], its posterior is

P(y | T ) =
Ayn−1e−yT̄P(y)∫∞

0
Ayn−1e−yT̄P(y) dy

with A =

n∏
i=2

(
i

2

)
,

where A is a constant and T̄ is the scaled TMRCA of T .
The likelihood function embedded within P(y | T ) is propor-

tional to a shape-rate parametrised gamma distribution, with known
shape n. The conjugate prior for N−1

1 is also gamma [30] i.e.
N−1

1 ∼ Gam
(
m0, T̄0

)
with m = n − 1 counting the coales-

cent events in T . The posterior distribution is then N−1
1 | T ∼

Gam
(
m+m0, T̄ + T̄0

)
[31]. Transforming back to N1, this implies

that N1 | T ∼ Gam−1
(
m+m0, T̄ + T̄0

)
. This is an inverse gamma

distribution with mean T̄+T̄0
m+m0−1

. If x describes the space of possible
N1 values and Γ(s) :=

∫∞
0
zs−1e−z dz then

P(x | T ) =
(T̄ + T̄0)

(m+m0)

Γ(m+m0)
x−(m+m0+1)e−

T̄+T̄0
x .

We can interpret the parameters of the gamma posterior distribution
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as involving a prior contribution of m0− 1 coalescent events from a
virtual tree, T0, with scaled TMRCA T̄0. This is then combined with
the actual data, which contributes m coalescent events from T , with
scaled TMRCA of T̄ [31]. This offers a very clear breakdown of how
our posterior estimate precision is derived from prior and likelihood
contributions, and suggests that if T0 has more tips than T then we
are depending more on the prior than the data. We now calculate Ω
to determine if we can formalise this intuition.

The Fisher information values of N−1
1 are I(N−1

1 ) = mN2
1 and

J (N−1
1 ) = (m + m0 − 1)N2

1 . The information ratio and mutual
information difference, ∆I, which hold for all parametrisations, then
follow from Eq. (4), Eq. (7) and Eq. (8) as

Ω2 =
1

1 + r
≈ 1− r, ∆I =

1

2
log(1 + r) ≈ 1

2
r, (9)

with r = m0−1
m

, as the signal-to-noise ratio. The approximations
shown are valid when r � 1. Interestingly, when m0 − 1 = m so
that r = 1, we get Ω2 = 1/2 (see Eq. (5)). This exactly quantifies the
relative impact of real and virtual observations described previously.
At this point we are being equally informed by both the conjugate
prior and the likelihood. Prior over-reliance can be defined by the
threshold condition of r > 1 =⇒ Ω2 < 1/2.

The expression of ∆I confirms our interpretation of r as an
effective signal-to-noise ratio controlling the extra mutual information
introduced by the conjugate prior. This can be seen by comparison
with the standard Shannon mutual information expressions from
information theory [26]. At small r, where the data dominates, we
find that the prior linearly detracts from Ω2 and linearly increases
∆I. We also observe that T̄0, the gamma prior shape parameter, has
no effect on estimate precision or mutual information.

Fig. 1: Effect of conjugate prior on Kingman coalescent esti-
mation. We examine the relative impact on estimate precision of
a conjugate Kingman prior that contributes m0 − 1 = 5 virtual
observations. We work in logN1 for convenience. We compare this
prior to posteriors, which are obtained under observed trees with
m = 10 (red) and m = 100 (yellow) coalescent events. The true
value is in black. The prior contribution decays as Ω2 increases.

Our ratio Ω therefore provides a systematic decomposition of the
estimate precision and generalises the virtual observation idea to any
prior distribution. In essence, the prior is contributing an effective
sample size, which for the conjugate Kingman prior is m0 − 1. We
summarise these points in Fig. 1, which shows the conjugate prior
and two posteriors together with their corresponding Ω2 values.

C. Skyline Smoothing Priors

We specialise Ω for the BSP [13] and S/S coalescent inference
methods [10], [14]. These popular skyline-based approaches couple
a piecewise-constant demographic likelihood with a smoothing prior
to produce population size estimates that change more continuously
with time. The smoothing prior achieves this by assuming infor-
mative relationships between Nj and its neighbouring parameters
(Nj−1, Nj+1). Such a priori correlation implicitly introduces ad-
ditional demographic information that is not available from the data
T . While these priors can embody sensible biological assumptions,
we show that they can also engender overconfident statements or
obscure parameter non-identifiability. We propose Ω as a simple but
meaningful analytic for diagnosing these problems.

We first define a uniquely objective (i.e. uninformative) reference
skyline priors, P∗(ψ). Finding objective priors for multivariate sta-
tistical models is generally non-trivial, but [32] states that if I(ψ)
has form [f1(ψ1)g1(ψ−1), . . . , fp(ψ1)gp(ψ−p)] Ip then P∗(ψ) ∝∏p
j=1

√
fj(ψj). Here fj and gj represent some functions and ψ−j

symbolises the vector ψ excluding ψj . Following this, we obtain

P∗(ψ = N) = Z−1
1

p∏
j=1

N−1
j and P∗(ψ = logN) = Z−1

2 ,

with Z1, Z2 as normalisation constants. Given its optimal properties
[17], we only consider ψ = logN , and drop explicit notational
references to it. Under this parametrisation, I and its expectation
with respect to the prior are equal, i.e. E0 [I] = I0. In addition, the
reference prior in this case is P∗ = 0p, with 0p as a matrix of zeros.
This yields Ω = 1 by Eq. (4). A uniform prior over log-population
space is hence uniquely objective for skyline inference.

Other prior distributions, which are termed subjective, necessarily
introduce extra information and contribute to posterior estimate
precision. This contribution will be reflected by an Ω < 1. The two
most widely-used, subjective, skyline plot smoothing priors are:

(i) the Sequential Markov Prior (SMP) used in the BSP [13], and
(ii) the Gaussian Markov Random Field (GMRF) prior employed in

the S/S methods [10] [14].
As the SMP and GMRF both propose nearest neighbour autocorrela-
tions among elements of ψ, tridiagonal posterior Fisher information
matrices result. We denote these J SMP and J GMRF, respectively.

The SMP is defined as: P(N) = 1/N1

∏m
j=2

1/Nj−1 e
Nj/Nj−1 [13].

It assumes that Nj ∼ exp(N−1
j−1) with a prior mean of Nj−1.

An objective prior is used for N1. To adapt this for logN , we
define lj = elogNj+1−logNj = Nj+1/Nj for j ∈ {1, . . . , p − 1}.
In Appendix A we show how this expression yields Eq. (A.1) and
hence the transformed prior P(logN) =

∏p−1
j=1 lje

−lj . We then
take relevant derivatives to obtain J SMP, which for the minimally
representative p = 3 case is written as:

J SMP =


m1 + N2

N1
−N2
N1

0

−N2
N1

m2 + N2
N1

+ N3
N2

−N3
N2

0 −N3
N2

m3 + N3
N2

 . (10)

The p > 3 matrices simply extend the pattern in Eq. (10).
An issue with the SMP is its dependence on the unknown ‘true’

demographic parameter values. Consequently, we cannot evaluate
(or control) a priori how much information is contributed by this
smoothing prior. Exponentially growing populations could feature
Nj+1/Nj > mj , for example, which would result in prior over-
reliance. Conversely, rapidly declining populations would be more
data-dependent. This likely reflects the asymmetry in using sequential
exponential distributions. The only control we have on smoothing
implicitly emerges from choosing the number of segments, p.
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The possibility of strong or inflexible prior assumptions under
the BSP motivated the development of the GMRF for the S/S
methods [10]. The GMRF works directly with logN and models
the autocorrelation between neighbouring segments with multivariate
Gaussian distributions. The GMRF prior is defined as P(logN) =

Z−1τ
p−2

2 e−
τ
2

∑p−1
j=1 δ

−1
j (logNj+1−logNj)

2

[10]. In this model, Z is a
normalisation constant, τ a smoothing parameter, to which a gamma
prior is often applied, and the δj values adjust for the duration of the
piecewise-constant skyline segments. Usually either (i) δj is chosen
based on the inter-coalescent midpoints in T or (ii) a uniform GMRF
is assumed with δj = 1 for every j ∈ {1, . . . , m− 1}.

Similarly, we calculate J GMRF for the p = 3 case, which is:

J GMRF =


m1 + τ

δ1
− τ
δ1

0

− τ
δ1

m2 + τ
δ1

+ τ
δ2

− τ
δ2

0 − τ
δ2

m3 + τ
δ2

 . (11)

Appendix A provides the general derivation for any p ≥ 3. As τ is
arbitrary and the δj depend only on T , the GMRF is insensitive to
the unknown parameter values. This property makes it more desirable
than the SMP and gives us some control (via τ ) of the level of
smoothing introduced. Nevertheless, the next section demonstrates
that this model still tends to over-smooth demographic estimates.

We diagonalise J GMRF and J SMP to obtain matrices of form
J = SQSᵀ. Here S is an orthogonal transformation matrix (i.e.
|det [S]| = 1) and Q = [λ1, . . . , λp] Ip with λj as the j th eigenvalue
of J . Since det[J ] = det[Q], we can use Eq. (4) to find that
Ω =

∏p
j=1

√
mj/λj . This equality reveals that λj acts as a prior

perturbed version of mj . When objective reference priors are used
we recover mj = λj and Ω = 1. We can use the S matrix to
gain insight into how the GMRF and SMP encode population size
correlations. The principal components of our posterior demographic
estimates (which are obtained from P(logN | T )) are the vectors
forming the axes of the uncertainty ellipsoid described by J .

These principal component vectors take the form {e1, . . . , ep} =
{(logN1, 0, . . . , 0)ᵀ, . . . (0, 0, . . . , logNp)

ᵀ} when we apply the
reference prior P∗(logN). Thus, as we would expect, our uncertainty
ellipses are centred on the parameters we wish to infer. However,
if we use the GMRF prior these axes are instead transformed
to {Se1, . . . , Sep}. These new axes are linear combinations of
logN and elucidate how smoothing priors share information (i.e.
introduce autocorrelations) about logN across its elements. These
geometrical changes hint at how smoothing priors influence the
statistical properties of our coalescent inference problem.

Lastly, we provide a visualisation of Ω and an example of S. We
consider the p = 2 case, where the posterior Fisher information and
Ω for both the GMRF and SMP take the form:

J =

[
m1 + a −a
−a m2 + a

]
=⇒ Ω2 =

1

1 + a m1m2
m1+m2

, (12)

with a = τ/δ1 for the GMRF and a = N2/N1 for the SMP. The
signal-to-noise ratio is r = a m1m2

m1+m2
(see Eq. (9)) and performance

clearly depends on how the m coalescent events in T are apportioned
between the two population size segments.

We can lower bound the contribution of these priors to Ω under
any (m1, m2) settings by using the robust coalescent design from
[17]. This design stipulates that we define our skyline segments such
that m1 = m2 = m/2 in order to optimise estimate precision under
T . At this robust point we also find that max{mj} Ω2 (or min{mj} r)
is attained. Fig. 2 gives the uncertainty ellipses for this robust p = 2
model at a = m/4. Moreover, at m1 = m2 = m/2, for any r, we can

-0.8 -0.4 0 0.4 0.8

x1 − logN1

-0.8

-0.4

0

0.4

0.8

x
2
−
lo
g
N

2

Ω = 1
√

2

Fig. 2: Uncertainty ellipses for SMP and GMRF. We show the
improvement in asymptotic precision rendered by use of a smoothing
prior for a p = 2 segment skyline inference problem. The prior
informed ellipse (red) is smaller in volume and has skewed principal
axes relative to the purely data informed one (blue). All ellipses
represent 99% confidence. The covariance that smoothing introduces
controls this skew. Here Ω2 = 1/2, m = 40 and a = 10. We posit
that larger a values lead to over-reliance on the smoothing prior.

calculate the diagonalisable transformation for J to get:

Q =

[
m
2

0

0 m
2

+ 2a

]
, S =

[
cos(π

4
) − sin(π

4
)

sin(π
4

) cos(π
4

)

]
. (13)

Applying S, we find that the axes of our uncertainty ellipse change
from {

(
logN1

0

)
,
(

0
logN2

)
} to {

(
logN1−logN2

0

)
,
(

0
logN1+logN2

)
}.

Sums and differences of log-populations are now the parameters that
can be most naturally estimated under the SMP and GMRF.

D. The Dangers of Smoothing

Having defined ratios for measuring the contribution of smoothing
priors to estimate precision, we now use them to explore and expose
the conditions under which prior over-reliance is likely to occur in
practice. We assume that skyline segments are chosen to satisfy the
robust design mj = m/p for 1 ≤ j ≤ p [17]. We previously proved
that robust designs, at p = 2, minimise dependence on the prior
(maximise Ω). While this is not the case for p > 2, in Fig. B.1 of
the Appendix we illustrate that the maximal Ω point is generally well
approximated by this robust setting. The Ω values computed here are
therefore conservative for most {mj} settings. Other experimental
designs rely more on the prior.

As in Eq. (5), we use the Ω2 = 1/2 threshold to diagnose when
the data T (likelihood) and prior are equally influencing demographic
posterior estimate precision. At Ω2 = 1/2 the total Fisher information
doubles since det[J ] = 2 det[I]. We previously uncovered the
importance of this threshold in the Kingman conjugate prior problem,
where it signified an equality between the number of pseudo and real
samples contributed by the prior and data, respectively. As Ω2 = 1

1+r

(see Eq. (8)), this setting os also meaningful because it achieves a
unit signal-to-noise ratio for any skyline-based model.

We first reconsider the p = 2 case of Eq. (12). Here Ω2 = 1/2
suggests a = m/4, which implies that we are overly-reliant on
smoothing when a is larger than 1/4 of the total observed coalescent
events. This occurs when N2 ≥ m/4N1 or τ ≥ m/4 δ1, for the SMP
and GMRF respectively. The improved precision due to the prior at
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this m/4 threshold is shown in Fig. 2. The relative ellipse area (and
hence Ω) will shrink further as we deviate from robust designs.

As p increases, smoothing becomes more influential and can
promote misleading conclusions. For the p > 2 cases, we will only
examine the GMRF, since the SMP has the undesirable property of
dependence on the unknown Nj values. To better expose the impact
of the smoothing parameter τ , we will assume a uniform GMRF
({δj} = 1) so that J GMRF then only depends on {mj} and τ . We
compute r and hence Ω, at various p. For example we find that

r | p=3 = (27/m2) τ2 + (12/m) τ ;

r | p=4 = (256/m3) τ3 + (160/m2) τ2 + (24/m) τ,

under the robust design. Interestingly, the order of the polynomial
dependence of r (and hence Ω) on τ increases with p. We find that
this trend holds for any {mj} design. We will use the term robust
Ω for when Ω is calculated under a robust design.

Fig. 3 plots the robust Ω against τ and p for the uniform GMRF.
A key feature of Fig. 3 is the steep p-dependent decay of Ω relative
to the Ω2 = 1/2 threshold, which exposes how easily we can be
unduly reliant on the prior, as p increases. Given a phylogeny T ,
increasing the complexity of a skyline-based model enhances the
dependence of our posterior estimate precision on the smoothing
prior. This pattern is intuitive as fewer coalescent events now inform
each demographic parameter [17]. However, Ω decays with surprising
speed. For example, at p = 20 (the lowest curve in Fig. 3) we get
Ω < 0.1 for τ = 1 and m = 100. Usually, τ has a gamma-prior
with mean of 1 [10]. We show the corresponding mutual information
increases due to these GMRF priors in Fig. B.2 of the Appendix.

0 0.01 0.02 0.03 0.04 0.05

τm
−1

0

0.2

0.4

0.6

0.8

1

Ω

Ω
2 = 1

2

Increasing p for fixed m

Fig. 3: The impact of smoothing priors increases with skyline
complexity. For the GMRF, we find that for a fixed τ/m, Ω signifi-
cantly depends on the complexity, p, of our skyline. The coloured Ω
curves are (along the arrow) for p = [2, 4, 5, 10, 20] at m = 100
with mj = m/p (robust design point [17]). The dashed Ω2 = 1/2 line
depicts the threshold below which the prior contributes more than
the data to posterior precision (asymptotically). For a given tree and
τ , the larger the number of demographic parameters we choose to
estimate, the stronger the influence of the prior on those estimates.

While Fig. 3 might seem specific to the uniform GMRF, it is
broadly applicable to the BSP and S/S methods. We now outline the
implications of Fig. 3 for each of these skyline-based approaches.

(1) Bayesian Skyline Plot: This method uses the SMP, which
depends on the unknown Nj values. However, the results of Fig. 3
are valid if we set τ to min{1≤j≤p−1} Nj+1/Nj , which results in the
smallest non-data contribution to Eq. (10). This follows as J GMRF

and J SMP have similar forms. While this choice underestimates the

impact of the SMP, it still cautions against high-p skylines and
confirms known BSP issues related to poor estimation precision when
skylines are too complex, or the data are not sufficiently informative
[12]. However, strong use of BSP grouping parameter [13], which
sets p < m, could alleviate some of these problems.

(2) Skyride: When this method uses the uniform GMRF, all
results are exactly applicable. In its full implementation, the Skyride
employs a time-aware GMRF that sets δj based on T and estimates τ
from the data [10]. However, even with these adjustments, the GMRF
can over-smooth, and fail to recover population size changes [12],
[15]. Our results provide a theoretical grounding for this observation.
The Skyride constrains p = m and then smooths this noisy piecewise
model. Consequently, it constructs a skyline which is too complex by
our measures (the lowest curve in Fig. 3 is at p = m/5). By rescaling
the smoothing parameter to min{1≤j≤p−1} τ/δj , the Ω curves in
Fig. 3 upper bound the true Ω values of the time-aware GMRF.

(3) Skygrid: This method uses a scaled GMRF. For a tree with
TMRCA T , the Skygrid assumes new population size segments every
T/p time units [14]. As a result, every δj = T/p and the time-aware
GMRF becomes uniform with rescaled smoothing parameter τ/p.
Therefore, the conclusions of Fig. 3 hold exactly for the Skygrid,
provided the horizontal axis is scaled by p. This setup reduces the
rate of decay but the Ω curves still caution strongly against using
skylines with p ≈ m. Unfortunately, as its default formulation sets
p to 1 less than the number of sampled taxa (or lineages) [14], the
Skygrid is also be vulnerable to prior over-reliance.

The popular skyline-based coalescent inference methods therefore
all tend to over-smooth, resulting in population size estimates that can
be overconfident or misleading. This issue can be even more severe
than Fig. 3 suggests since in current practice p is often close to m
and non-robust designs are generally employed. Further, skylines are
only statistically identifiable if every segment has at least 1 coalescent
event [17], [33]. Consequently, if p > m is set, smoothing priors can
even mask identifiability problems. We recommend that m

p
≥ κ > 1

must be guaranteed and in the next section derive a model rejection
guideline for finding κ and diagnosing prior over-reliance.

E. Prior Informed Model Rejection

We previously demonstrated how commonly-used smoothing priors
can dominate the posterior estimate precision when coalescent infer-
ence involves complex, highly parametrised (large-p) skyline models.
Since data is more influential than the prior when Ω2 > 1/2, we
can use this threshold to define a simple p-rejection policy to guard
against prior over-reliance. Assume that the J matrix resulting from
our prior of interest is symmetric and positive definite. This holds
for the GMRF and SMP. The standard arithmetic-geometric mean
inequality, det [J ] ≤ (1/p tr [J ])p, then applies with tr denoting the
matrix trace. Since tr [J ] = m+tr [P] we can expand this inequality
and substitute in Eq. (4) to get Ω2 ≥ (1/p (m+ tr [P]))−p

∏p
j=1 mj .

Since this inequality applies to all {mj}, we can maximise its right
hand side to get a tighter lower bound on Ω2. This bound, termed
ω2, is achieved at the robust design mj = m/p and is given by

ω2 =

(
m

m+ tr [P]

)p
=⇒ p∗ = arg max

p≥1
ω2 ≥ b. (14)

We define b ≥ 1/2 as a conservative model rejection criteria with
ω2 ≥ b implying that Ω2 ≥ b. If p∗ is the largest p satisfying these
inequalities (see Eq. (14), arg indicates argument), then any skyline
with more than p∗ segments is likely to be overly-dependent on the
prior and should be rejected under the current tree data.

Alternatively, we recommend that skylines using a smoothing prior
(with matrix P) should have at least κ = m/p∗ events per segment
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to avoid prior reliance. The p ≥ 1 condition in Eq. (14) ensures
skyline identifiability [17] and generally p∗ > 2 (i.e. κ > 1). The
dependence of ω2 on tr[P] means that additions to the diagonals of
P necessarily increase the precision contribution from the prior. This
insight supports our previous analysis, which used τ from the uniform
GMRF to bound the performance of the SMP and time-aware GMRF.
In the Appendix (see Eq. (7)) we derive analogous rejection bounds
based on the excess mutual information, ∆I (see Eq. (7)). There we
find that p acts like an information-theoretic bandwidth, controlling
the prior-contributed mutual information.

Eq. (14) can be computed and is valid for any smoothing prior of
interest. In the case of the uniform GMRF where tr [P] = 2τ(p−1),
we get ω2 =

(
m

m+2τ(p−1)

)p
. Note that ω2 = 1 here whenever p = 1

or τ = 0, as expected (i.e there is no smoothing at these values).
In Fig. C.1 of the Appendix, we confirm that ω2 is a good lower
bound of Ω2. We enumerate ω2 across τ and p, for an observed tree
with m = 100, to get Fig. 4, which recommends using no more
than p∗ = 19 segments (κ ≈ 5.3). In Fig. C.2 we plot p∗ curves for
various m and τ , defining boundaries beyond which skyline estimates
will be overly-dependent on the GMRF.
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Need ≥ 5.3

events per

segment

Need ≤ 19 segments at m = 100

Fig. 4: Bounding skyline complexity using the prior-data tradeoff.
For the GMRF with uniform smoothing, we show how the maximum
number of recommended skyline segments, p∗ (red), decreases with
prior contribution (level of smoothing i.e. increasing τ/m). Hence the
minimum recommended number of coalescent events per segment,
m/p∗ (blue), rises. Here we use the ω2 ≥ b = 1/2 boundary. At
larger b the p∗ at a given τ/m decreases. The p∗ measure provides a
model rejection tool, suggesting that models with p > p∗ should not
be used, as they would risk being overly informed by the prior.

In the Appendix we further analyse Eq. (14) for the uniform GMRF
to discover that Ω2 is bounded by curves with exponents linear in τ
and quadratic in p (see Eq. (C.2)). This explains how the influence
of smoothing increases with skyline complexity and yields a simple
transformation τ → τ/2p(p−1), which can negate prior over-reliance.
For comparison, the Skyride implements τ → τ/p. The marked
improvement, relative to Fig. 3, is striking in Fig. B.3. Other revealing
prior-specific insights can be obtained from Eq. (14), reaffirming its
importance as a model rejection statistic.

Our model rejection tool of Eq. (14) can serve as a useful diagnos-
tic for skyline over-parametrisation, and as a precaution against prior
over-reliance. However, we do not propose p∗ as the sole measure of
optimal skyline complexity. Our reason is that it does not guarantee
any absolute estimate precision. Furthermore, it only focuses on the
information from the prior relative to the data, and when the prior
contribution is negligible, p∗ can be unbounded. Choosing an optimal
p is an open problem that is still under active study [16].

F. Case Study: Egyptian HCV

We validate the practical utility of Ω, as a diagnostic of prior
over-dependence, on the well-studied Egyptian HCV-4 dataset, which
consists of 63 sampled sequences [7]. Previous analyses reconstructed
a demographic trend involving periods of constant population size
separated by a phase of exponential growth from this dataset. We
used the software MASTER [34] to simulate 100 coalescent trees,
each with m + 1 = n = 63 tips, according to this demographic
function [7]. We then inferred logN from every tree using skyline
models with time-aware GMRF smoothing priors, as in [10], [14].

We varied the relative contributions of the data and GMRF to
the posterior log-population estimates by changing either the skyline
dimension, p, or the smoothing parameter τ . Since m was fixed
and robust designs applied, varying mj effectively changes p. We
analysed every tree over all combinations of mj ∈ {1, 4, 8} and a
range of τ between 10−5 and 1. For comparison, we also generated
purely data-informed estimates of logN , across the same range of
mj group sizes, by replacing the subjective GMRF with a uniform,
objective prior. Each tree was additionally analysed with a time-aware
Skyride, which means that mj = 1 and τ is estimated from the data.

For every simulated tree we computed Ω (via Eq. (4)) and two
ancillary statistics based on the 95% highest posterior density (HPD)
intervals of the logN estimates. These are the median HPD ratio
q0.5 and the relative HPD product Hτ,m, which are formulated as:

q0.5 = medj

{
Hjτ,m :=

Hjτ,m

H
j
m

}
and Hτ,m =

∏m
j=1 H

j
τ,m,

with med as the median value of a set. Here Hj
τ,m is the 95% HPD

interval of logNj under a GMRF with smoothing parameter τ and
Hj
m is the equivalent HPD with the uniform prior.
The 95% HPD interval is closely connected to the inverse of the

Fisher information matrices that define Ω and, further, describes the
most visually conspicuous representation of the uncertainty present
in skyline-plot estimates. Comparing Ω to these ancillary statistics,
which evaluate the median and total 95% uncertainty of a skyline plot,
allows us to contextualise Ω against more relatable (though different)
and obvious visualisations of posterior performance. We present these
comparisons in Fig. D.1 of the Appendix.

There we find that all statistics monotonically decay with τ i.e. as
the time-aware GMRF becomes more informative. The sharpness of
this decay is highly sensitive to mj . Larger mj means that the more
coalescent data is informing each estimated parameter and implies
smaller p. The reduced decay with mj supports our assertion that p
acts as an exponent controlling prior over-reliance (see Fig. 3). The
gentler decay of q0.5 (relative to Ω and Hτ,m), which largely does not
account for p, confirms that we could be misled in our understanding
of the impact of smoothing if we neglected skyline dimension.

In contrast Ω and Hτ,m, which both measure, in some sense, the
relative volumes of uncertainty across the entire skyline-plot due to
the data alone and the data and prior, fall more significantly and
consistently. At mj = 1 (p = m), which is the most common setting
in the S/S methods, both statistics are markedly below 1

2
and posterior

estimates are expected to almost always be too dependent on the prior.
This high-p behaviour to also indicative of model over-fitting. Our
metric Ω therefore relates sensibly to visible proxies of uncertainty.

Having empirically confirmed Ω as a credible measure of relative
uncertainty, we explore the behaviour of our proposed model rejection
approximation, ω, which can be used to practically guard against prior
over-reliance by defining a maximum viable p∗. We compute ω2 for
the HCV trees in Fig. 5 and observe that, as above, it decreases
with both p and τ . Each dark red line in Fig. 5 depicts the posterior
median τ estimated from each HCV tree. Practical analyses of this
dataset with the S/S methods would use these τ values with p = m.
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However, Fig. 5 shows that p∗ < m (i.e. mj > 1) is necessary to
achieve ω2 ≥ 1/2. This raises questions about the validity of using
the S/S methods with default settings.
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Fig. 5: Model rejection statistics for the HCV dataset The metric
ω2 is calculated for each tree under a time-aware GMRF at various
(mj , τ) settings. The box-plots summarise the resulting ω2 over 100
HCV trees. The solid lines link the median values across boxes for
a given mj and hence p value (mj = m/p). Vertical dark red lines
highlight the τ that would be estimated by S/S approaches from these
trees. We reject skyline settings achieving ω2 < 1/2.

Fig. 5 confirms that the allowable p∗ and hence minimum mj

inflates with τ . We demonstrate the qualitative difference between
skyline-based estimates either side of the p∗ criteria for a single HCV
tree in Fig. 6. In panel A we present the Skyride estimate which uses
mj = 1 and implements a p > p∗, at one of its estimated τ values.
We compare this to an equivalent skyline at mj = 4, which achieves
p < p∗ at this same τ (see Fig. 5) in panel B. In each panel, we
overlay the corresponding skyline obtained with an objective uniform
prior, to visualise the uncertainty available from the data alone.

At mj = 1, the uniform prior produces a skyline that infers much
more rapid demographic fluctuations through time than that estimated
from applying the GMRF prior. Further, the 95% HPD intervals
from the uniform prior (red) are much wider than those from the
GMRF prior (blue) in the recent period (t < 100 years), highlighting
the marked contribution of the GMRF prior to posterior estimate
precision. While this smoother trajectory might look more reliable
we argue that it is not justified by the data and that the skyline is
over-fitting (κ = m/p = 1 data-points inform each parameter).

In contrast, at mj = 4, both prior distributions yield similar sky-
lines, implying that GMRF smoothing has not substantially inflated
posterior estimate precision. At this setting we have less demographic
fluctuations than mj = 1 because four times more data is used for
each parameter. For the period t > 100 years the 95% HPD interval
of the GMRF estimate is much wider for mj = 1 than mj = 4
and some may argue that the latter case underestimates uncertainty.
However, in this period there are few coalescent events. Maintaining
κ = 1 when there is very little neighbouring information to regulate
the logN estimates strongly suggests that the inflated uncertainty in
panel A is instead symptomatic of over-parametrisation.

It contextualising these results it is important to note that skyline-
plots provide harmonic mean and not point estimates of population
size [11]. Consequently, we are really inferring a sequence of means
from our coalescent data. Fig. 6 shows that over t > 100 years there
are so few events that it is more sensible to estimate a single mean
(panel B), which we are confident in across this period as opposed
to several less certain means (panel A). In general, deciding on how

to balance uncertainty with model complexity is non-trivial and, as
shown in this example, caution is needed to avoid overconfident or
misleading conclusions. We posit that Ω (and ω) can help clarify and
formalise this decision-making.
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Fig. 6: HCV demographic estimates under GMRF and uniform
priors. We analyse demographic estimates under time-aware GMRF
priors (red) and objective uniform priors (blue) for a single tree
generated from the Egyptian HCV dataset. In panel A we present
Skyride estimates, which use mj = 1 and τ = 0.05 and implement
a p > p∗ as computed from Fig. 5. In panel B we re-estimate
population size at mj = 4 which achieves p < p∗ as justified by
our model rejection metric (see Eq. (14)). Solid lines are posterior
medians while semi-transparent blocks are the 95% HPD intervals.

IV. DISCUSSION

Popular approaches to coalescent inference, such as the BSP and
S/S methods, all rely on combining a piecewise-constant population
size likelihood function with prior assumptions that enforce con-
tinuity. This combination, which is meant to maximise descriptive
flexibility without sacrificing the supposed smoothness exhibited by
real population size curves over time, has led to many insights in
phylodynamics [12]. However, it has also spawned several issues re-
lated to over-smoothing and lack of methodological transparency [10]
[15]. In this work we attempted to address these issues by deriving
metrics for diagnosing and clarifying the existing assumptions and
obscurities present in current best practice.

By capitalising on (mutual) information theory and (Fisher) in-
formation geometry we formulated the novel coalescent information
ratio, Ω, which is our main contribution. This ratio describes both
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the proportion of the asymptotic uncertainty around our posterior
estimates that is due solely to the data and the additional mutual
information that the prior introduces. It is simple to compute for
piecewise-constant likelihoods and standard smoothing priors and has
an exact interpretation as the ratio of real coalescent events to the sum
of real and virtual (prior-contributed) ones in a Kingman coalescent
model. As observed in our empirical Egyptian HCV analysis, Ω
also correlates well with standard and visible indicators of estimate
uncertainty such as relative HPDs.

Our ratio is therefore theoretically justified and practically useful.
Using Ω2 = 1/2 as a threshold delimiting when the prior contributes
as much information as the data, we examined widely-used SMP
and GMRF smoothing priors and found that it is deceptively easy to
become overly dependent on prior assumptions as skyline dimension,
p, increases. This central result emerges from the drastic reduction
in the number of coalescent events informing on any population size
parameter as p rises. Per parameter, the BSP and Skyride use only a
few or one event respectively [10], [13], while the Skygrid may have
no events informing on some parameters [14].

These issues can be obscured by current Bayesian implementations,
which would nonetheless produce seemingly reasonable population
size estimates, at least visually, as illustrated in our Egyptian HCV
case study. However, failing to diagnose these issues can be prob-
lematic, not just for prior over-dependence. Low coalescent event
counts, for example, can lead to poor statistical identifiability [25]
which might manifest in spurious MCMC mixing. Consequently, we
proposed a practical p∗ rejection criteria for ensuring that the data is
the main source of inferential information.

This criteria bounds the maximum allowable skyline dimension for
a given dataset (tree) size, only depends on computing the sum of the
diagonals of the prior Fisher matrix and provides insight into how we
can counter the dramatic impact of skyline complexity on prior over-
reliance. When specialised to the GMRF, for example, it revealed
that we could completely and surprisingly negate over-smoothing by
scaling the precision parameter τ with a quadratic of p.

Moreover, this criteria shows that only by increasing the informa-
tion available from the sampled phylogeny (i.e. the data) can we truly
and sensibly allow for more complex piecewise-constant functions
under a given prior. Recent methods, such as the epoch sampling
skyline plot [33], which doubles the Fisher information extracted from
a given phylogeny by accounting for the informativeness of sampling
times, should therefore be able to support higher dimensional skylines
than more standard approaches.

Thus, we have devised and validated a rigorous means of better
understanding, diagnosing and preventing prior over-dependence.
We hope that our statistic, which clarifies and quantifies the often
inscrutable impact of the prior and data, will help researchers make
more active and considered design decisions when adapting popular
skyline-based techniques. While we recommend that data-driven
conclusions are generally the most justifiable we note that in the
context of skyline plots, this is open to interpretation.
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APPENDICES

A. Smoothing Prior Fisher Information Matrices

Here we derive the prior-informed Fisher information matrices
for the SMP and GMRF smoothing priors. We start by finding
the log-population size transformed version of the SMP smoothing
prior. We then calculate its Hessian to get P , and so obtain the
general form of Eq. (10). The SMP is given in [13] as f(N) =
1/N1

∏m
j=2

1/Nj−1 e
Nj/Nj−1 . We define η = ρ(N) := logN so that

its inverse ρ−1(η) = eη . These expressions are in vector form so
η = [η1, . . . , ηp] = [logN1, . . . , logNp]. We want the transformed
prior g(η). Applying the multivariate change of variables formula
gives g(η) = f(eη)|det

[
∆ρ−1

]
|, with ∆ρ−1 = [eη1 , . . . , eηp ] Ip

as the Jacobian of ρ−1. This implies that |det
[
∆ρ−1

]
| = e

∑p
j=1 ηj .

Substituting and expanding gives the SMP log-prior:

log g(η) = ηp − η1 +

p∑
j=2

−eηj−ηj−1 . (A.1)

We can then obtain P = −∇G, with G = log g(η). The diago-
nals of P are: ∂2G/∂η2

j = −eηj−ηj−1−eηj+1−ηj for 2 ≤ j ≤ p−1,
∂2G/∂η2

1 = −eη2−η1 and ∂2G/∂η2
p = −eηp−ηp−1 . The non-zero off-

diagonal terms are: ∂2G/∂ηjηj+1 = eηj+1−ηj and ∂2G/∂ηjηj−1 =
eηj−ηj−1 . The result is a symmetric tridiagonal matrix that has zero
row and column sums. The P matrix is then added to the Fisher
information matrix I = [m1, . . . , mp] Ip (with mj as the number
of coalescent events informing on the j th parameter), to get J SMP.

We now compute J GMRF, which is given in the main text as
Eq. (11). For the GMRF g(η) = Z−1τ

p−2
2 e−

τ
2

∑p−1
j=1 δ

−1
j (ηj+1−ηj)2

[10] and so G = − logZ+m−2
2

log τ− τ
2

∑p−1
j=1

(ηj+1−ηj)2

δj
. Taking

second derivatives we get diagonal terms of the Hessian, ∇G, as:
∂2G/∂η2

j = −τ (1/δj + 1/δj−1) for 2 ≤ j ≤ p− 1, ∂2G/∂η2
1 = −τ/δ1

and ∂2G/∂η2
p = −τ/δp−1. The non-zero off diagonal terms are:

∂2G/∂ηjηj+1 = τ/δj and ∂2G/∂ηjηj−1 = τ/δj−1. The GMRF also
gives a symmetric tridiagonal P with row and column sums of zero.
Adding −∇G to the diagonal I matrix yields J GMRF.

B. Further Smoothing Results

We previously asserted that the Ω computed at the robust point of
mj = m/p [17] generally upper bounds the achievable Ω values at
other mj settings. Here we provide evidence for this assertion. While
strictly arg max{mj} Ω 6= m/p (except for p = 2), we numerically
find that max{mj} Ω ≈ Ω|{mj=m

p
}. We show this for the GMRF

under uniform smoothing in Fig. B.1. This makes sense as while
(for fixed smoothing parameters) arg max{mj} det [I] = m/p and
arg max{mj} det [J ] = m/p, there is no reason to believe that this
also maximises their ratio. The sawtooth Ω curves in Fig. B.1 reflect
changes in the other {mj} values, given a fixed m1.

Hence we used the robust design point in our calculation of the Ω2

curves for the GMRF in Fig. 3. The corresponding additional mutual
information (∆I) curves for this case are provided in Fig. B.2. These
show how larger values of the smoothness parameter, τ , directly lead
to increases in the relative mutual information contribution from the

prior. Observe that ∆I is highly sensitive to the skyline complexity,
p, thus clarifying how estimates from over-parametrised skyline plots
can be dominated by prior information.

Interestingly, we can largely negate the impact of skyline com-
plexity by making τ a function of p. In Section III-D we explained
how the Skyride implicitly implements the scaling τ → τ/p. While
this reduces some of the effect of p, it still leads to decaying curves
that can, for a given τ , be deceptively dependent on smoothing. Here
we propose the key transformation τ → τ/2p(p−1), as a means of
reducing our smoothing in line with our skyline complexity. This
transformation was inspired by the dependence of a lower bound on
Ω2, which we derived in Eq. (C.2) of Section C. Its impact on the
spread of curves from Fig. 3 is given in Fig. B.3.
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Fig. B.1: Robust and Ω optimal designs. For the GMRF smoothing
prior with δi = 1 for all i and τ = 1, we show that the optimal
Ω design point is not always the same as the robust design point,
at which m1

m
= 1

p
. The coloured Ω curves are (along the dashed

arrow) for p = [2, 3, 5, 6, 10] at m = 60, and computed across all
partitions for any given m1 (hence the zig-zagged form). The grey
vertical lines mark the robust point for each Ω curve, and the black
circles give the optimal Ω points. While these lines and circles do
not always match, both generally feature approximately the same Ω
values. We found this to be the case across several m and τ values.

C. Further Model Selection Bounds

In Section III-E we derived lower bounds on Ω2, which led to the
model rejection parameter, p∗. Here we extend and support those
results. In Fig. C.1 we first show that the bound of Eq. (14) is
a good measure of the true Ω2 value, for a skyline with uniform
GMRF smoothing. We used this bound to define a maximum p, p∗,
above which the skyline would be over-parametrised and susceptible
to prior induced overconfidence. We explore p∗ over τ and m for
this GMRF in Fig. C.2 and observe that p∗ becomes more restrictive
with fewer observed data (coalescent events) or increased smoothing.
This supports Ω as a useful measure of prior-data contribution.

Lower bounds on Ω2 imply upper bounds on the excess mutual
information, ∆I (see Eq. (7)). We manipulate Eq. (14) (under a robust
design) to obtain the first inequality in Eq. (C.1), with q = tr[P]/m.

∆I ≤ 1

2
p log (1 + q) ≤ 1

2
pq (C.1)

This expression reveals that p is akin to a signal bandwidth (by com-
parison with standard Shannon-Hartley theory [26]) and is therefore
a key controlling factor in defining how much additional information
the prior will introduce. This supports our proposed p∗ criteria.
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Fig. B.2: Prior mutual information increases with skyline com-
plexity. For the uniform GMRF, we show that under fixed smoothing
(and hence τ/m), the additional mutual information introduced by the
prior, ∆I = E0[− log Ω], significantly increases with the complexity,
p, of our skyline. The coloured Ω curves are (along the grey arrow)
for p = [2, 4, 5, 10, 20] at m = 100 with mj = m/p (robust
design point [17]). The dashed Ω2 = 1/2 threshold is also given for
comparison. Clearly, the more skyline segments we have for a given
tree, the more likely we are being overly informed by our prior.
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Fig. B.3: Negating the impact of skyline complexity. We show how
an appropriate quadratic scaling of the GMRF precision parameter, τ ,
can remove the complexity (p) induced smoothing contribution por-
trayed in Fig. 3 of the main text. This scaling significantly compresses
the coloured Ω curves shown, which are for p = [2, 4, 5, 10, 20] at
m = 100 with mj = m/p (robust design point [17]). The resulting
Ω2 values are now all comfortably above the 1/2 threshold.

Under the logN parametrisation, I and J are symmetric, positive
definite matrices. For such matrices we can apply a theorem from
[23], which states that ∆I ≤ ζ/2, with ζ = tr[I−

1
2 PI−

1
2 ]. At

the robust point, we get ζ = tr[I−1P], which leads to the second
inequality in Eq. (C.1). Thus, our bound is tighter than that in [23],
and hence useful for broader, future mathematical analyses of ∆I.

We can also use the bound of [23] to derive alternate (but slacker)
lower bounds on Ω2. This gives the first inequality in Eq. (C.2).
Applying this to the uniform GMRF gives the second inequality.

Ω2 ≥ e−pq =⇒ Ω2 ≥ e−
2
m
p(p−1)τ (C.2)

Interestingly, Eq. (C.2) shows that the dependence of Ω2 on the
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Fig. C.1: Lower bounds on Ω2. For the GMRF smoothing prior with
δj = 1 for all j and m = 200, we compare the lower bound on Ω2

(red, dashed, see Eq. (14)) with the actual value of Ω2 (cyan) at the
robust design point of mj = m/p. We examine all integer p values that
are factors of m, and find that qualitatively similar comparisons hold
for different τ and m settings. In general the lower bound (denoted
ω2 in the main text) is a good approximation to Ω2.
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Fig. C.2: Maximum p model selection boundary. For the GMRF
smoothing prior with δj = 1 for all j and at the robust point mj =
m/p, we compute the maximum allowed number of skyline segments,
p∗, such that Ω2 ≥ 1/2. These curves increase with m and decrease
with τ , indicating how the prior-data contribution can be used to
define model rejection regions. Skylines with p > p∗ would be overly
informed by the prior and hence should not be used.

precision parameter τ is at most only linear, while the dependence
on complexity p can be quadratic. This provides further theoretical
backing for the use of p∗ to reject models and emphasises how
smoothing can play a deceptively prominent role in the resulting
estimate precision produced under complex skyline plots.

D. Ancillary Uncertainty Statistics

In Section III-F we defined two 95% HPD based ancillary statistics
for characterising the visual uncertainty present in a skyline-plot
demographic estimate. In Fig. D.1 we plot these statistics and Ω2

for various τ and mj values under a time-aware GMRF. We discuss
the implications of Fig. D.1 in the main text.
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Fig. D.1: Trends in HPD-based statistics and Ω2 under various
time-aware GMRF settings. The Ω2 (panel A), median HPD ratio of
logNj (panel B) and HPD product (panel C) statistics are computed
across logNj over various combinations of mj and τ . Box-plots
summarise our results over 100 observed coalescent trees consistent
with the Egyptian HCV dataset. Analyses with mj = 1 are in dark
green, mj = 4 yellow and mj = 8 orange. The solid lines link the
median values across boxes for a given mj value. The dashed line
is positioned at the threshold Ω2 = 1/2.
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