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Abstract  13 

Background. Long-term opioid use has been associated with hypermethylation of the opioid 14 

receptor mu 1 (OPRM1) promoter. Very little is currently known about the early epigenetic 15 

response to therapeutic opioids. Here we examine whether we can detect DNA methylation 16 

changes associated with few days use of prescribed opioids. Genome-wide DNA methylation 17 

was assayed in a cohort of 33 opioid-naïve participants who underwent standard dental surgery 18 

followed by opioid self-administration. Saliva samples were collected before surgery (visit 1), 19 

and at two postsurgery visits at 2.7 ± 1.5 days (visit 2), and 39 ± 10 days (visit 3) after the 20 

discontinuation of opioid analgesics.  21 

Results. The perioperative methylome underwent significant changes over the three visits that 22 

was primarily due to postoperative inflammatory response and cell heterogeneity. To 23 

specifically examine the effect of opioids, we started with a candidate gene approach and 24 

evaluated 10 CpGs located in the OPRM1 promoter. There was significant cross-sectional 25 

variability in opioid use, and for participants who self-administered the prescribed drugs, the 26 

total dosage ranged from 5–210 morphine milligram equivalent (MME). Participants were 27 

categorized by cumulative dosage into three groups: <25 MME, 25–90 MME, ≥90 MME. Using 28 

mixed effects modeling, 4 CpGs had significant positive associations with opioid dose at 2-tailed 29 

p-value < 0.05, and overall, 9 of the 10 OPRM1 promoter CpGs showed the predicted higher 30 

methylation in the higher dose groups relative to the lowest dose group. After adjustment for 31 

age, cellular heterogeneity, and past tobacco use, the promoter mean methylation also had 32 

positive associations with cumulative MME (regression coefficient = 0.0002, 1-tailed p-value = 33 

0.02), and duration of opioid use (regression coefficient = 0.003, 1-tailed p-value = 0.001), but 34 
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this effect was significant only for visit 3. A preliminary epigenome-wide association study 35 

identified a significant CpG in the promoter of the RAS-related signaling gene, RASL10A, that 36 

may be predictive of opioid dosage. 37 

Conclusion. The present study provides evidence that the hypermethylation of the OPRM1 38 

promoter is in response to opioid use, and that epigenetic differences in OPRM1 and other sites 39 

are associated with short-term use of therapeutic opioids. 40 

 41 

Key words:  prescription opioids, DNA methylation, addiction, opioid use disorder, 42 

epigenetics   43 
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Background 44 

Prescription opioids were once considered as a relatively benign treatment for pain 45 

management [1, 2]. However, over the past decade, prescribed analgesics have emerged as a 46 

major socio-environmental factor that has contributed to the opioid epidemic [3, 4]. For many 47 

individuals who develop opioid use disorder (OUD), the initiation phase may begin with 48 

treatment for acute pain or minor surgery, with primary care physicians and dentists 49 

accounting for a large fraction of prescribed opioids [5-11]. Even short-term use (e.g., up to 50 

three days) is a risk factor for some individuals, and the risk for addiction increases 51 

proportionally with dosage and duration of use [8, 9, 12-15]. 52 

Drug addiction is a chronic disease that is triggered by an exposure to an environmental agent. 53 

Following the initial exposure, the addictive substance continues to have a persistent effect, 54 

and this suggests a form of cellular memory. There is strong evidence that epigenetic processes, 55 

including DNA methylation, play a key role in maintaining the long-term effects of the additive 56 

substance [16, 17]. Studies particularly in model organisms have shown that drugs of abuse 57 

trigger intracellular signaling cascades that alter gene transcription; repeated exposure to the 58 

drug then results in remodeling of the epigenome that persists over time; and these epigenetic 59 

processes maintain the long-term changes in steady-state gene expression that underlie 60 

addiction [16, 18-20]. Work in humans generally relies on postmortem tissue from long-term 61 

drug users, and studies have found significant epigenetic differences in brains of former addicts 62 

compared to non-addicts [21, 22]. While the brain is the most relevant tissue in terms of 63 

neuroadaptation and drug seeking behavior, epigenetic markers of addiction have also been 64 

detected in peripheral tissues such as blood and sperm [23-28]. Easily accessible peripheral 65 
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tissues are clearly the practical choice when it comes to defining biomarkers of drug use and/or 66 

predictors of individual risk for addiction. 67 

The µ-opioid receptor gene (OPRM1) encodes the primary target for both endogenous and 68 

exogeneous opioids and plays a central role in mediating the rewarding and therapeutic effects. 69 

The CpG island located in the promoter of this gene is a potential sensor for drug use, and 70 

multiple studies in leukocytes and sperm have found higher DNA methylation among long-term 71 

opioid users compared to control samples [23, 29-33]. Hypermethylation of the promoter 72 

region has also been found among people with alcohol dependence [34]. However, as all these 73 

studies are cross-sectional comparisons between opioid-exposed individuals and controls, there 74 

is no definite way to discern whether the epigenetic differences are the cause, or effect, of drug 75 

use. Since genetic variants both within, and near the OPRM1 gene have also been associated 76 

with susceptibility to addiction and drug sensitivity[35-37], it is plausible that such epigenetic 77 

markers represent genetic effects that preceded drug use. Another lingering question is, if the 78 

epigenetic changes are induced by drug use, does the hypermethylation of the promoter CpGs 79 

occur only after repeated and sustained exposure, or are these indicators of the early 80 

epigenomic, and potentially transcriptomic, responses to drugs? In the case of potent drugs 81 

such as opioids, the initial exposure is a crucial phase in the pathway to drug dependence and 82 

addiction, and it is reasonable to expect that some of the modification to the epigenome occurs 83 

within the first few exposures. 84 

To address these questions, we applied a longitudinal design and collected saliva samples and 85 

self-reports of opioid use from a group of opioid naïve dental patients before oral surgery, and 86 

at two follow-up visits after surgery. We assayed genome-wide DNA methylation and explored 87 
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(1) the methylome during the perioperative period, (2) how demographic variables such as age 88 

and race/ethnicity relate to methylome changes and immune response, and (3) whether we can 89 

discern opioid associated CpGs from the highly heterogeneous methylome data. As the site of 90 

surgery and postsurgery inflammatory response, the saliva presents particular challenges due 91 

to immune-related cellular heterogeneity. To overcome this, we applied in-silico approaches to 92 

deconvolute the underlying cellular heterogeneity and demonstrate the utility of the 93 

methylome-based cell estimates as proxies for the immune changes induced by surgery. For the 94 

effect of opioids, we specifically focused on the OPRM1 promoter CpGs and evaluated whether 95 

the data replicates the CpG hypermethylation. Overall our results show a dose-dependent 96 

increase in methylation at the OPRM1 promoter that can be discerned despite extensive 97 

heterogeneity in the methylome data, and this indicates that the epigenetic response to opioids 98 

occurs within the first few days to weeks following drug exposure. Additionally, we also 99 

performed an epigenome-wide association study (EWAS), and this identified a few CpGs that 100 

may be predictive of opioid dosing. 101 

Results  102 

The number of enrolled participants (N = 41) and timeline of sample collection are shown in Fig. 103 

1. Only 33 patients (19 females) received prescription opioids after an oral procedure. The 104 

baseline characteristics, other diagnosed diseases, casual use of other drugs (specifically 105 

tobacco and marijuana; no participant reported use of cocaine, psychedelics, and other hard 106 

drugs), and prescription opioid self-administration are reported only for these 33 participants 107 

(Table 1). Following the pre-surgery visit (visit 1 or v1), the second visit (visit 2 or v2) occurred 108 

after surgery and within a week of the last opioid dose (average number of days between last 109 
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opioid dose and visit 2 was 2.7 ± 1.5 days). The last sample collection (visit 3 or v3) occurred 110 

between 32–88 days from surgery, and the number of days between the last opioid dose and 111 

visit 3 was 39 ± 10 days. In total, 26 participants provided saliva samples at all three visits, 6 112 

participants provided saliva at two visits, and one provided saliva only at v1 (Table 1). The mean 113 

age was 33.61 ± 13.84 years and ranged from 19 to 61 years (Table 1). Based on self-reported 114 

race/ethnicity, there were 13 Caucasians (mean age = 31.69 ± 14.11 years), 13 African 115 

Americans (mean age = 39.92 ± 13.91), and the remaining 7 were of “other” racial/ethnic group 116 

(mostly Hispanic/Latino; mean age = 25.43 ± 8.02). The African American group was slightly 117 

older but there was no statistically significant difference in age between the groups (p-value = 118 

0.06). Sex distribution was not significantly different between the race/ethnic groups. Individual 119 

level information, including comorbidities, is provided as Additional file 1: Table S1. 120 

Postoperative opioid dosing data was based on self-reported pill counts converted to morphine 121 

milligram equivalent (MME). With the exception of one individual who used no opioids (and we 122 

considered this individual to represent a dose of 0 MME with 0 days of use), all patients started 123 

opioid treatment generally within 24 hours of surgery, and continued use for an average of 6 ± 124 

4 days for up to 17 days (Additional file 1: Table S1).  As expected, cumulative dosage correlated 125 

with length of use (r = 0.67, p-value < 0.0001). For the 32 participants that self-administered 126 

opioids, the total cumulative dosage over the course of treatment ranged from 5–210 MME. 127 

Based on the quantile distribution of the cumulative MME, participants were classified into 128 

three groups: <25 MME (those below the 25
th

 percentile or quartile 1 for opioid dosage) , 25–90 129 

MME (those within the interquartile range), and ≥90 MME (those above the 75
th

 percentile or 130 

quartile 3) (Table 1). Opioid dosage showed no significant association with age, sex, and self-131 
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reported race/ethnicity. There was no significant association between opioid dosage and the 132 

presence or absence of other comorbidities. Dosage was also not associated with past 133 

marijuana use. However, the group that reported using tobacco within the past 12 months had 134 

significantly higher self-administered opioid dosage (mean of 95.63 ± 57.78 MME among 135 

tobacco users, and 49.55 ± 36.19 MME among non-users; p-value = 0.008).  136 

Table 1. Participant characteristics and postoperative opioid use 137 

Variables
a
  

Sex  

Female 19 

Male 14 

Age (years) 33.61 ± 13.84 

Self-reported race/ethnicity  

African-American 13 

Caucasian 13 

Other
b
 7 

Tobacco in past 12 months
c
  

Yes 11 

No 22 

Marijuana in past 12 months
c
  

Yes 10 

No 23 

Other disease diagnosis
c
  

Yes 17 

No 16 

Prescribed opioid medication  

Hydrocodone 5mg 19 

Oxycodone 5mg 12 

Oxycodone 10mg 1 

Oxycodone 5mg and Codeine 30mg 1 

Length of opioid use in days (mean ± sd)  6 ± 4 

MME
d
 (mean ± sd) 64.91 ± 48.88 

<25 MME (<Q1) 10 

25–90 MME (Q1–Q3) 13 

≥90 MME (≥Q3) 10 

Surgery to visit 2 in days (mean ± sd) 8.0 ± 4.1 

Surgery to visit 3 in days (mean ± sd) 43.9 ± 10.9 

Number of completed visits  

Three visits (v1, v2, and v3) 26 participants 
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Two visits (v1 and v2) 5 participants 
e
 

Two visits (v2 and v3) 1 participant 

Only v1 1 participant 
a
 Mean and standard deviation (sd) for continuous variables and counts for categorical variables 138 

b
 Other= Hispanic/Latino, Asian, Middle-eastern, and Native American 139 

c
 Self-reported data on other drug use and diagnosis of other diseases (diseases listed in Additional file 1: Table S1)  140 

d
 Opioid dose converted to morphine milligram equivalent (MME) according to medication type; Q1 is the first 141 

quartile (25%) and Q3 is the third quartile (75%) 142 
e
 Methylome data for one participant with v1 and v2 samples were excluded during the methylome data check 143 

(see methods) 144 

 145 

Global shift in postoperative methylome 146 

For an overview of the methylome and the variance structure, we started with a principal 147 

component analysis (PCA) using the full set of high quality probes (736,432 probes passed QC 148 

criteria). The top PC (PC1) captured a vast portion of the variance at 63.5%, and following that, 149 

PC2 and PC3 captured only 2.5% and 1.6% of variance, respectively (PCs for each methylome 150 

data in Additional file 1: Table S2). PC1 was not significantly associated with the demographic 151 

variables (sex, age, self-reported race/ethnicity), or with comorbidities and past use of 152 

marijuana or tobacco. Instead, visit was the most significant explanatory variable for PC1 (F2,86= 153 

5.94, p-value = 0.004), and the pattern indicated a significant change in the methylome with the 154 

strongest contrast between v3 and v2 (Tukey-Kramer post hoc p-value = 0.003) (Fig. 2a). To 155 

deduce whether the longitudinal variance capture by PC1 could be explained by the length of 156 

time from surgery or opioid self-administration, we performed bivariate analyses between PC1 157 

and the following variables: opioid dose, days from surgery to sample collection, and days from 158 

last opioid self-administration to sample collection. This analysis was done for the three visits 159 

separately, and at v2, PC1 had a modest but significant correlation with days from surgery to v2 160 

(r = 0.40, p-value = 0.03, n = 31 participants with methylome data at v2; Fig. 2b). Similarly, at v3, 161 
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PC1 was correlated with days from surgery to v3 (r = 0.41, p-value = 0.04, n = 27 participants 162 

with methylome data at v3). PC1 was not correlated with opioid dose or the number of days 163 

from the last opioid use. From this, we can infer that the longitudinal shift in the methylome is 164 

primarily due to surgery.  165 

To profile the CpGs that changed longitudinally over the three visits we performed a mixed 166 

effects ANOVA with visit as a fixed variable and the person ID as random effect (Fig. 2c). The p-167 

values for visit showed a significant deviation from the null hypothesis (Fig. 2d histogram). 168 

However, only 2 intergenic CpGs (cg05639411 and cg24904009) were above the genome-wide 169 

significant threshold of 5.0e-8 (Fig. 2c) and overall, the pattern indicated a modest shift in the 170 

methylome across several CpGs. At a genome-wide suggestive threshold of p-value = 1.5e-5, 171 

there were 1701 CpGs that underwent change over the visits (Additional file 1: Table S3). The 172 

majority of these CpGs (>65%) decreased in methylation between v1 and v2, and regained 173 

methylation by v3 such that these sites showed significantly higher levels of methylation at v3 174 

compared to both v1 and v2 (Fig. 2e). Similarly, for the ~35% of CpGs that gained methylation 175 

between v1 and v2, these sites generally declined in methylation by v3 resulting in significantly 176 

lower methylation compared to both v1 and v2 (Fig. 2e). Gene set enrichment analysis (GSEA) 177 

of the 1133 annotated genes represented by the CpGs conveyed mostly an innate immune 178 

inflammatory response (Additional file 1: Table S4). The most overrepresented pathway was 179 

natural killer cell mediated cytotoxicity (KEGG ID hsa04650; normalized enrichment score = -180 

1.93, FDR = 0.03), and the most overrepresented function was for genes involved in cellular 181 

defense response (GO ID 0006968; normalized enrichment score = -1.83 p = 0.001, FDR = 0.3), 182 

and these immunity-related categories were enriched among the CpGs that decreased in 183 
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methylation at v2. The opioid receptors were not represented in the list of visit associated 184 

CpGs. Based on these observations, a possible explanation for the shift in the methylome is that 185 

it is the result of surgery-induced immune response and changes in the oral cell composition. 186 

Opioid use, if it had an impact, is likely to exert a weaker signal, and given the limited sample 187 

size,more suitable for a focused candidate gene study. 188 

Deconvolution of cellular heterogeneity 189 

To decompose cell types from the composite DNA methylation signal, we applied a reference-190 

free approach [38]. The bootstrapping method described in Houseman et al. [38] determined K 191 

= 4 cell types (Additional file 1: Table S2). Cell 1, which represented the most abundant cell 192 

type, showed an increase at v2 right after surgery followed by a decline by v3 (Table 2). Aside 193 

from cell 1, no other cell showed significant change over the visits (Table 2). To deduce what 194 

cell types are represented by the 4 groups, we also estimated blood leukocyte proportions 195 

(mainly lymphocytes and granulocytes/neutrophils) using a reference-based approach [39], and 196 

compared correlations between the 4 cell types to the reference-based cell estimates (Table 2; 197 

Additional file 1: Table S2). Cell 1 had a strong positive correlation with granulocytes, and cell 4 198 

had a strong positive correlation with lymphocytes indicating that cells 1 and 4 are chiefly 199 

representative of the leukocyte population in saliva, and serves as a proxy for the increase in 200 

granulocyte proportions after surgery. Cells 2 and 3 had only modest correlations with 201 

leukocyte estimates (|r| of 0.4–0.5) and may be more representative of the epithelial cells.  202 

The cell estimates were not associated with opioid dose. To evaluate if the baseline 203 

characteristics were related to cellular composition, we tested associations with age, sex, and 204 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

race/ethnicity. Cell 1 had a significant negative correlation with age (r = -0.48, p-value = 0.006) 205 

only at v2 that suggests an age-dependent immune response in the days immediately after 206 

surgery (Fig. 3a). Cell 3 had the strongest association with age at all three visits (Fig. 3b). Cells 2 207 

and 3 showed extensive cross-sectional variability without longitudinal change, and both were 208 

significantly associated with race/ethnicity at all three visits, indicating that these could serve as 209 

proxies for the cellular composition differences between populations (Fig. 3c, 3d). Cell 4 was 210 

not associated with any of the baseline variables, and sex was not a factor for any of the cell 211 

types.  212 

Table 2. Reference-free and reference-based estimates of cellular proportions 213 

 Cell proportions by visit (mean ± SD) 
Pearson r with reference-

based estimates 

Cell types Visit 1 Visit 2 Visit 3 Visit p-val Lymphocytes Granulocytes 

 Reference-free estimates   

Cell 1 0.60 ± 0.28 0.74 ± 0.23 0.47 ± 0.32 
F2,86 = 6.6, 

0.002 
-0.96 0.95 

Cell 2 0.13 ± 0.13 0.10 ± 0.10 0.17 ± 0.15 ns 0.51 -0.47 

Cell 3 0.21 ± 0.20 0.12 ± 0.18 0.22 ± 0.19 ns 0.43 -0.40 

Cell 4 0.07 ± 0.18 0.03 ± 0.08 0.14 ± 0.23 
F2,86 = 2.7, 

0.07 
0.77 -0.81 

 Reference-based estimates   

Granulocytes 0.71 ± 0.14 0.77 ± 0.10 0.64 ± 0.18 
F2,86  = 6.1, 

0.003 
  

Lymphocytes 0.27 ± 0.12 0.21 ± 0.09 0.33 ± 0.15 
F2,86  = 6.6, 

0.002 
  

 214 

Effect of opioid dose on OPRM1 promoter methylation 215 

To examine if higher opioid dose is related to higher promoter methylation, we started with a 216 

candidate gene approach and focused on the CpGs located in the OPRM1 promoter. In total, 10 217 

promoter CpGs were targeted by the Illumina probes and these encompassed the CpG island 218 

described by Nielsen et al. and replicated by Chorbov et al. [29, 30] (Fig. 4a; Table 3; individual 219 
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level β-values in Additional file 1: Table S2). We first applied a mixed regression model with 220 

opioid dosage group and visit as fixed categorical variables, and each participant ID as random 221 

intercept. With the exception of the last CpG, the regression estimates for all the OPRM1 222 

promoter CpGs were positive, with higher methylation levels for the two higher dosage groups 223 

(i.e., 25-90 MME and ≥ 90 MME) relative to the lowest dosage group (<25 MME) (Table 3). At a 224 

nominal p-value of 0.05, 4 CpGs were significantly associated with opioid dosage groups. The 225 

ANOVA plots for these CpGs showed that the difference between dosage groups was 226 

pronounced at v3 (for CpG1, CpG2, CpG6) and v2 (for CpG7) but not at v1 (Fig. 4a). As tobacco 227 

use was associated with higher self-administered dosage of opioids, we considered it as a 228 

potential contributing factor. However, including past tobacco use in the regression model did 229 

not alter the results, and this indicated that the higher methylation at the OPRM1 CpGs is a 230 

specific effect of opioids.  231 

To check whether the association with opioid dosage can be robustly detected, we summarized 232 

the overall methylation pattern in the promoter by taking the mean DNA methylation β-values 233 

for the nine CpGs that were positively associated with opioid dosage (CpG1 to CpG9). We 234 

applied a linear regression model and tested whether higher mean methylation was associated 235 

with either higher MME or longer length of opioid use. This analysis was done for the three 236 

visits separately and adjusted for age, tobacco use, and cellular heterogeneity. Both MME and 237 

length of opioid use were associated with higher mean methylation, but this effect was 238 

significant only at v3, further indicating that the hypermethylation of the OPRM1 receptor is 239 

more likely a response rather than a predisposing factor (Fig. 4b; Table 4). Our results are 240 

consistent with the opioid associated hypermethylation and indicates that even a relatively 241 
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short-term opioid use may induce an increase in methylation that is proportional to dosage at 242 

the OPRM1 promoter.  243 

 244 

Table 3. Dose dependent methylation of individual OPRM1 promoter CpGs 245 

  
<25 MME vs. 

25–90 MME
1
 

<25 MME vs. 

≥90 MME
1
 

Dosage anova
2
 

CpG ProbeID Coef t-val Coef t-val F2,29 p 

CpG1 cg22370006 0.041 2.66 0.023 1.39 3.53 0.04 

CpG2 cg14262937 0.051 2.77 0.014 0.69 4.20 0.02 

CpG3 cg06649410 0.047 1.65 0.010 0.31 1.56 0.23 

CpG4 cg23143142 0.018 1.56 0.000 -0.04 1.71 0.20 

CpG5 cg23706388 0.010 0.76 0.006 0.38 0.29 0.75 

CpG6 cg05215925 0.019 2.73 0.012 1.59 3.74 0.04 

CpG7 cg14348757 0.042 2.78 0.019 1.16 3.92 0.03 

CpG8 cg12838303 0.026 2.08 0.022 1.64 2.38 0.11 

CpG9 cg22719623 0.006 0.52 0.004 0.33 0.14 0.87 

CpG10 cg15085086 -0.029 -0.94 -0.040 -1.19 0.78 0.47 
1
Regression estimates for higher dose groups (25–90 MME and ≥90 MME) relative to lowest dose group (<25 246 

MME) based on linear mixed effects model: lmer(CpG ~ dose + visit + (1|ID)) 247 
2 

Two-tailed p-values for the main effect of dosage groups  248 
 249 

Table 4. Mean methylation in the OPRM1 promoter and association with opioid dose and 250 

days of use 251 

 MME dosage effect Visit 3
2
 Days of opioid use effect Visit 3

2
 

 Coef t-val 
p (1-

tailed) 
Coef t-val p (1-tailed) 

Promoter 

methylation 
1
 

0.0002 2.16 0.02 0.003 3.40 0.001 

1
OPRM1 promoter methylation summarize by averaging the β-values for CpG1 to CpG9 252 

2
Linear regression at visit 3, one-tailed p-value to test hypermethylation with higher cumulative MME or longer 253 

duration of use 254 

Preliminary epigenome-wide association study for opioid dose 255 

Since the candidate gene approach indicated that the short-term use of prescribed opioids can 256 

have an impact on CpG methylation, we expanded the analysis to an EWAS using the same 257 

mixed model to test association with opioid dosage. A CpG (cg08105965) located in the 258 
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promoter CpG island of the GTPase signaling gene, RASL10A (RAS like family 10 member A), was 259 

genome-wide significant (p-value of 5.0e-8; Fig. 5a). Unlike the pattern for the OPRM1 260 

promoter, the lowest dose group had significantly lower methylation level at both visits 1 and 261 

3, indicating that the difference preceded opioid use (Fig. 5b). In addition to the RASL10A 262 

promoter CpG,  5 other CpG sites were associated with opioid dosage at the suggestive 263 

threshold (p-value of 1.0e-5; Fig. 5c–g). For most of these, the methylation differences were 264 

apparent at v1 and preceded opioid use. For these top CpGs, adjusting for past tobacco use did 265 

not alter the results, and none of these sites were significantly associated with tobacco use. To 266 

explore if any of the CpGs that were above the suggestive threshold have been previously 267 

implicated in opioid use or dependence, we  referred to recent human EWAS for opioid 268 

dependence [24], and methadone treatment dosage [28]. Based on comparison of probe IDs 269 

and genes, none of the CpGs we report here have been previously linked to opioid related 270 

traits. 271 

While this is preliminary results from a small study cohort and is yet to be replicated, we 272 

provide the list of 64 CpGs that were associated with opioid dosage at a nominal uncorrected p-273 

value of 1.0e-4, along with the gene ontology IDs and KEGG pathways for the corresponding 274 

genes in Additional file 1: Table S5.  275 

Discussion 276 

Here we report results from a longitudinal study of DNA methylation in a cohort of opioid naïve 277 

dental patients who received prescription opioids following oral surgery. To summarize the 278 

main result, we found increased methylation at the OPRM1 promoter associated with higher 279 
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cumulative opioid dose. This replicates the hypermethylated profile among long-term opioid 280 

users and alcohol dependent individuals [23, 29-34]. The pattern of methylation we observed 281 

indicates that the increase in methylation is more likely the response to, rather than the cause 282 

of, opioid use [20]. The present study provides evidence that such epigenetic modifications are 283 

induced within the early days of drug use and may represent early epigenomic responses to an 284 

addictive substance. 285 

A peculiar challenge we faced was that the site of sample collection was also the site of surgery. 286 

Saliva has a highly heterogeneous cellular makeup and is estimated to constitute about ~45% 287 

epithelial cells, and about ~55% leukocytes from circulating blood [40]. The main goal of the 288 

study was to detect the effect of short-term and comparatively low-dose opioids, while 289 

accounting for the larger perturbation caused by surgery. Although we do not have details on 290 

the severity of the oral surgery, most were third molar extractions and were relatively minor 291 

and non-invasive. Nonetheless, the patients would have experienced an injury-induced 292 

inflammatory response that can result in changes in numbers of circulating immune cells [41], 293 

and consequently, changes in oral cell composition. As DNA methylation is highly cell-type 294 

specific, the heterogeneity in cells will be a major source of “noise” in the methylome data [39, 295 

42-44]. The longitudinal variability in DNA methylation that was captured by the top PC can 296 

therefore be attributed to cell composition rather than opioid use. We could deduce this by the 297 

significant correlation between PC1 and the number of days from surgery to the follow-up 298 

visits. We were able to partly resolve the cell heterogeneity by applying reference-free and 299 

reference-based estimates of cell proportions. The reference-free method estimated four major 300 

cell types. Although saliva is highly heterogeneous, and certainly has more than just 4 types of 301 
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cells [40], the classification into 4 broad groups likely reflects the limitation in the in-silico 302 

approach to resolve finer differences between cellular subtypes. Cell 1 most likely represented 303 

the granulocyte population (chiefly neutrophils), which constitutes the most abundant 304 

leukocyte subtype in circulating blood, and is responsible for innate immunity and acute 305 

inflammatory response. Consistent with the known increase in granulocyte-to-lymphocyte ratio 306 

in the few days following surgery [45], we also found an increase in cell 1 and in relative 307 

abundance of granulocytes compared to lymphocytes at visit 2. This was followed by a 308 

compensatory decrease in granulocyte proportions by visit 3. Cell 2 and cell 3 are presumed to 309 

represent a portion of the epithelial cell population, and these showed no significant within-310 

individual changes over the visits. However, these cells exhibited significant association with 311 

age and self-reported race/ethnicity. Although cell type decomposition was not the primary 312 

objective of the study, our analyses demonstrated that the saliva methylome can be highly 313 

informative of individual differences in perioperative immune profiles. 314 

For the effect of postsurgical opioid use, we first focused on the OPRM1 promoter region as an 315 

epigenetic sensor of opioid dose. The CpG-rich promoter harbors a CpG island and several 316 

studies in different populations have demonstrated higher DNA methylation at this site among 317 

opioid users and methadone-maintained heroin addicts [23, 29-33]. The increased methylation 318 

of the OPRM1 promoter is not only limited to OUD but has also been detected among 319 

individuals with alcohol dependence, suggesting that the hypermethylation is generally 320 

associated with substance use disorder and addiction [34]. A question has been whether such 321 

epigenetic differences are the result of drug use or the cause of increased vulnerability to 322 

addiction [20]. To address this, we interrogated 10 CpGs in a 550 bp region that encompassed 323 
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the promoter CpG island investigated by Nielson et al. and Chorbov et al. (the CpG island is 324 

depicted in Fig. 4) [29, 30]. With the exception of the last CpG, the remaining 9 CpGs showed 325 

higher methylation in the two higher-dose groups relative to the low-dose group, and four of 326 

these CpGs were significantly associated with dosage at nominal alpha of 0.05. Comparison of 327 

mean methylation differences between the dosage groups across the three visits indicated that 328 

higher methylation in the higher dose groups is more apparent at the postsurgery visits, 329 

particularly visit 3. The positive association between the mean promoter methylation and 330 

cumulative MME, and mean promoter methylation and days of opioid use, were also significant 331 

only at visit 3. The heightened inflammatory state at visit 2, which occurred within a few days of 332 

surgery, may have been the reason why the more subtle effect of opioids was not significant at 333 

visit 2, and the positive association emerged only at visit 3. 334 

The OPRM1 locus presents a prime site for gene x environment interaction, a critical aspect of 335 

addiction since the addictive substance is an environmental agent that has a long-lasting 336 

biological effect. The OPRM1 gene has been the subject of several candidate gene studies for 337 

addiction. Much attention has been paid to the missense SNP that alters the OPRM1 protein 338 

function, although its impact on addiction traits and OUD is somewhat ambiguous [46, 47]. 339 

Several studies have also identified non-coding variants in the OPRM1 locus that alters DNA 340 

methylation and gene expression [33, 35, 48]. At least one genome-wide association study has 341 

also identified a genome-wide significant association between a SNP upstream of OPRM1 and 342 

methadone-maintenance dosing [37]. These studies collectively provide evidence that common 343 

genetic variants in the proximal region of OPRM1 affect DNA methylation and gene expression, 344 

and could have a downstream impact on opioid response that could potentially influence 345 
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vulnerability to addiction. Our present work was carried out in a small sample size and our 346 

primary goal was to track the within-individual trajectory across visits. If there were genetically 347 

modulated small cross-sectional differences at baseline, this sample size would be 348 

underpowered to detect the differences, and the significant association with opioid dose that 349 

we found may have been the result of opioid-induced augmentation of differential methylation 350 

at the postoperative visits.  351 

The hypermethylation of the OPRM1 promoter is likely only a small part of a larger network of 352 

genes involved in the cellular response to drug exposure. We therefore followed up with a 353 

preliminary EWAS exploration to identify other CpGs that may be associated with opioid self-354 

administration. To our surprise, despite the small sample size, one CpG, located in the promoter 355 

region of RASL10A, a Ras-related GTPase signaling gene, was genome-wide significant. Perhaps 356 

this is due to the power of the longitudinal design in capturing differentially methylated sites 357 

that are significantly different between dosage groups at more than one visit. For instance, the 358 

differential methylation of cg08105965 at RASL10A is apparent at both visits 1 and 3.  Although 359 

RASL10A has not been previously implicated in opioid response or addiction, it is notable that 360 

the OPRM1 protein is a G-protein coupled receptor, and its activation results in cellular 361 

signaling cascades that also involve Ras GTPase activity [49-51]. In addition to the RASL10A CpG, 362 

five other CpGs were at or above the suggestive threshold, including sites located in AFF1, 363 

VSNL1, ANXA2, and PAIP2. To our knowledge, DNA methylation at these genes have not been 364 

previously linked to opioid use or dependence. However, one recent study of gene expression 365 

in the rat model has shown an upregulation of RASL10A and VSNL1 in the brain following acute 366 

morphine treatment [52]. Similar to RASL10A, VSNL1 (visinin-like 1) also codes for an 367 
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intracellular signaling molecule with high expression in the brain [53]. The list of CpGs that were 368 

associated with opioid dosage at a nominal uncorrected p-value < 0.0001 included few other 369 

cellular signaling genes (e.g., ANXA2, RET, ADRB1 ). Taken together, the EWAS results hint that 370 

epigenetic modulation of genes involved in intracellular signal transduction may play a role 371 

during the early phase of opioid use.  372 

We must emphasize that the small sample size and the heterogeneity in methylome signal, 373 

partly due to cell composition and partly due to the heterogenous population group, are major 374 

limitations, and the EWAS results await replication in an independent cohort. The CpGs 375 

identified by the present EWAS were differentially methylated even at v1, prior to opioid use, 376 

and this suggests that there may be genetic variants underlying these epigenetic differences. 377 

However, such potential effects of genetic variation is not addressed in the present study due 378 

to the lack of genotype data. Another weakness that we should note is that the main variable of 379 

interest, therapeutic opioid dosing, was based on patient self-reports rather than objective 380 

measures of drug use [54]. A future strategy would be to use existing technologies such as 381 

wearable devices that can provide additional means of tracking the physiological responses to 382 

opioids [55]. The present study also does not address whether these epigenetic changes linger 383 

or diminish over time in the absence of continued drug use. A more comprehensive longitudinal 384 

epigenomic study of the early effects of prescription opioids that also integrates genetic effects, 385 

and with a longer follow-up period would be the next phase of study.  386 

Regarding the potential for epigenetic persistence, we must point out that any peripheral tissue 387 

serves only as a proxy for the possible epigenetic changes in the brain. A distinction is that 388 

blood and epithelium are mitotically active tissues and cells are renewed within a few days to a 389 
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few weeks, with the exception of long-lived memory T-cells. For methylation signals to persist, 390 

it will require either continued presence of the perturbation (i.e., continued exposure to 391 

opioids), or methylation changes in mitotically active stem cells that can be faithfully 392 

transmitted to daughter cells. The brain, on the other hand, is mitotically inactive and consists 393 

of mostly terminally differentiated cells that last a lifetime. If the relatively modest dose and 394 

short-term use of prescription opioids has a similar impact in brain cells, the effects may not 395 

readily decay and may be long lasting in the central nervous system.  396 

Conclusion 397 

In conclusion, our study replicates the hypermethylation of the OPRM1 promoter with opioid 398 

use. Previous studies reported on the effects of chronic opioid use; here we provide evidence 399 

that the epigenetic restructuring begins within the initial stage of opioid exposure. The present 400 

findings on the acute effects of prescription opioids, as well as the CpGs that may be predictive 401 

of opioid dosing, require further replication with a well-powered and more comprehensive 402 

study in a larger cohort. 403 

Methods 404 

Participants 405 

Eligible participants were scheduled for tooth extractions, mostly third molar extractions, at an 406 

oral and maxillofacial surgery clinic that were typically followed by postoperative prescriptions 407 

of hydrocodone/acetaminophen (7.5/325 mg q4-6h prn pain) or oxycodone/acetaminophen 408 

(5mg/325mg q6h prn pain). For inclusion in the study, individuals were required to be 18 years 409 

of age or older, opioid naïve, able to consent, able to understand and speak English, and willing 410 
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to provide saliva samples. Individuals were excluded if they reported previous use of opioids, 411 

had current substance use dependence, were pregnant, were incarcerated, had other causes of 412 

pain, were unable to consent, or had a developmental disability that prevented participation. 413 

The study received approval by the university Institutional Review Board. Eligible participants 414 

were provided a summary of the consent form by the study coordinator and allowed to read 415 

and ask questions before enrollment. All participants provided written informed consent.  416 

Forty-one individuals consented to the study and provided contact information and responded 417 

to a demographic questionnaire. The enrolled participants also provided information on 418 

existing diagnosed diseases, and were assessed for casual substance use within the past 12 419 

months (tobacco, marijuana, cocaine, psychedelics, other hard drugs; details in Additional file 1: 420 

Table S1). The clinical staff provided routine opioid medication and recovery instructions for all 421 

participants right after surgery. The opioids prescribed to participants were Hydrocodone, 422 

Oxycodone, and Codeine in doses that varied between 5mg to 30mg (Table 1).  The study 423 

coordinator also provided opioid medication logs to participants to record self-administration 424 

including the date, time, individual dose per opioid pill, and number of opioid pills taken. For 425 

the 33 participants who received opioid medication, only one participant (person ID 142) 426 

reported no opioid usage.  427 

Sample processing and DNA methylation assay  428 

Saliva was collected using the Oragene DNA sample collection kit (OGR 500) by DNA Genotek 429 

(http://www.dnagenotek.com). The first set of samples was collected before surgery. The 430 

second saliva sample was collected a few days after opioid discontinuation, and the third was 431 

collected on a follow-up visit (Fig. 1; Table 1). DNA was purified using the DNA Genotek PrepIT 432 
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L2P kit according to manufacturer’s instruction. Genome-wide DNA methylation was assayed 433 

on the Illumina Infinium Human MethylationEPIC BeadChips following the manufacturer's 434 

standard protocol at the HudsonAlpha Genomic Services Lab (https://gsl.hudsonalpha.org).  435 

Data processing  436 

Raw intensity IDAT files were loaded to R and all quality checks, data preprocessing, and 437 

normalization were carried out using the R package, minfi (v.1.31) [56]. Methylation levels were 438 

estimated as β-values (ratio of methylated by unmethylated probes) and quantile normalized. 439 

The initial QC involved comparison between the log median intensities of methylated and 440 

unmethylated channels, and the density plots for β-values (Additional file 2: Fig. S1a). All 441 

samples passed these checks. Sex estimated from the DNA methylation data also matched the 442 

self-reported sex. To retain only high-quality data, probes with detection p-value > 0.01 (14,676 443 

probes) were excluded. Probes that target CpGs on the sex chromosomes were also removed 444 

(18,605 probes). Finally, a total of 96,146 probes that overlapped annotated SNPs and/or were 445 

flagged for poor mapping quality (MASK.general list from [57]) were also filtered out. A total of 446 

736,432 high quality probes were retained and used for downstream analysis.  447 

As further QC, we performed unsupervised hierarchical clustering using the full set of high-448 

quality probes (Additional file 2: Fig. S1b). While samples longitudinally collected from the same 449 

individual tended to cluster together, there were also several samples that did not cluster with 450 

self. To check for possible errors in sample labeling, we repeated the cluster analysis using a 451 

subset of 30,435 probes that had been filtered out due to overlap with common SNPs. While 452 

these were deemed poor-quality probes and unfit for differential methylation analysis, in terms 453 
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of sample identity check, these probes can serve as proxy genotype markers that can help verify 454 

if samples came from the same person. Using this set, almost all samples collected from the 455 

same participant clustered with self, and for the most part, the clusters also aligned with self-456 

reported race/ethnicity groups (Additional file 2: Fig. S1c). Only one of the 33 participant who 457 

received prescription opioids (person ID 108) did not pair with self and data from this person 458 

were excluded from all downstream analysis. 459 

Estimation of cellular proportions 460 

To infer the relative proportions of the major cell types, we first implemented a reference-free 461 

deconvolution of the methylome data using the R package RefFreeEWAS (v2.2) [58]. The 462 

RefFreeEWAS algorithm applies a non-negative matrix factorization to decompose a matrix Y = 463 

MΩ, where M represents an m x K matrix with m as CpG specific methylation for an unknown 464 

number of K cell types, and Ω as the cell-type proportion constrained to sum to a value ≤ 1. For 465 

computational efficiency, the K cell types has to be first specified, and as described in 466 

Houseman et al. [58], we set the K to vary from 2 to 10 cell types and decomposed the Y = MΩ. 467 

Following this, we applied bootstrapping to estimate the optimal K value. For this estimation, 468 

we applied 10 iterations with replacement every 1000 times. The optimal K = 4 was selected 469 

based on the minimum value of the average of bootstrapped deviances for each putative cell 470 

type. While this method provides the relative proportions of cell types, the identity of the four 471 

cells are unknown. Since a significant proportion of saliva consists of leukocytes, we also 472 

applied a reference-based approach to estimate the relative proportions of lymphocytes and 473 

neutrophils [39, 42, 43]. To infer the putative identities of cells, we performed Pearson 474 

correlations between the K cells and the proportions of leukocyte types.  475 
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Statistical analyses 476 

For the global analysis, PCA was done on the full set of 736,432 probes using the prcomp 477 

function in R. In order to evaluate which variable had the most significant association with PC1, 478 

we examined the association between PC1 and the following variables: sex, age, self-reported 479 

race/ethnicity, presence or absence of other diseases, tobacco or marijuana usage in the past 480 

12 months, and opioid dose, days from surgery to sample collection, and days from last opioid 481 

dose to sample collection. We used ANOVA for categorical variables, and Pearson correlation 482 

for continuous variables; and these tests were conducted separately for the three visits. We 483 

also performed similar analyses for estimated cell proportions to examine whether the 484 

variables were significantly related to the cell proportions. PC1 and the cell proportions were 485 

also related to visit using ANOVA. Since visit was the most significant explanatory variable for 486 

PC1, we identified the CpGs that showed longitudinal change over the three visits by applying a 487 

mixed-effects ANOVA: aov(β-value ~ visit + Error(ID/visit)). This epigenome-wide analysis was 488 

done for the 26 participants with data from all 3 visits. For the set of genome-wide suggestive 489 

CpGs that changed over the visits (uncorrected p-value ≤ 10
-5

), GSEA was implemented on the 490 

WebGestalt platform (http://www.webgestalt.org) with each CpG ranked by the mean β-value 491 

difference between v2 and v1. 492 

For candidate gene analysis, we surveyed the promoter region of OPRM1. The CpG island that 493 

was interrogated by Nielson et al., and Chorbov et al. is located at 154360587–154360922 bp of 494 

chromosome 6 (GRCh37/hg19) [29, 30]. Within that exact coordinate, our data only had 4 CpG 495 

probes. We therefore considered a slightly wider region (550 bp) and in total, the array data 496 

contained 10 probes that targeted promoter CpGs at chr6:154360344-154360894 bp. To 497 
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evaluate methylation at individual CpGs, we applied a linear mixed-effects model with dosage 498 

group and visit as fixed categorical variables, and person ID as random intercept: lmer(β-value ~ 499 

dosage + visit + (1|ID)). To test if history of tobacco use could account for some of the effects, 500 

we repeated the test with the model: lmer(β-value ~ MME + tobacco-use + visit + (1|ID)). This 501 

was done using the “lmertest” R package, and to get the p-values for the main effect of dosage 502 

groups, the degrees of freedom were computed by the Satterthwaite’s method [59, 60]. 503 

Following the CpG level analysis, we estimated the general methylation trend for the promoter 504 

by averaging the β-values for the 9 CpGs that had a positive regression coefficient with the 505 

dosage groups. We then tested the association between the promoter mean methylation score, 506 

and two opioid-related continuous variables: length of opioid use in days, and cumulative MME. 507 

This analysis was done for the three visits separately, and adjusted for age and cellular 508 

heterogeneity using the equations lm(mean-β ~ MME + tobacco-use + age + cell1 + cell2 + 509 

cell3), and lm(mean-β ~ days-of-use + tobacco-use + age + cell1 + cell2 + cell3).  510 

Following the candidate gene study, we then performed an EWAS for opioid dosage using the 511 

same mixed-effect model: lmer(β-value ~ MME + visit + (1|ID)); and for the CpGs identified by 512 

the EWAS at above the genome-wide suggestive threshold, we checked for the effect of past 513 

tobacco use using the model: lmer(β-value ~ MME + tobacco-use + visit + (1|ID)) . 514 

List of Abbreviations 515 

EWAS: Epigenome-wide association study 516 

FDR: False discovery rate 517 

GO: Gene ontology 518 
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GSEA: Gene Set Enrichment Analysis 519 

KEGG: Kyoto encyclopedia of genes and genomes 520 

MME: Morphine milligram equivalent 521 

OPRM1: Opioid receptor mu 1 522 

OUD: Opioid use disorder 523 

PC: Principal component 524 

PCA: Principal component analysis 525 

QC: Quality control 526 

SNP: Single nucleotide polymorphism 527 

Declarations 528 

Ethics approval and consent to participate: All participants provided written informed consent 529 

and study received IRB approval. 530 

Consent for publication: Not applicable 531 

Availability of Data. The full de-identified raw DNA methylation data will be made available 532 

from the NCBI NIH Gene Expression Omnibus repository upon official publication. 533 

Competing interests: We have no financial or non-financial conflicts of interest.  534 

Funding: Funded by the University of Tennessee Health Science Center CORNET Clinical Awards 535 

Author contributions: JVSS: performed lab work and data analysis and contributed to 536 

manuscript; FISG: contributed to data analysis; JHB: identified suitable patients and facilitated 537 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

participant recruitment at the dental clinic; KJD: contributed to study conception and design; 538 

KM: contributed to study conception, design and data analysis, and wrote the manuscript. All 539 

authors contributed to and approved the final version of the manuscript. 540 

Acknowledgements 541 

We thank the UTHSC Office of Research and the CORNET Awards for supporting this project. 542 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

References 543 

1. Porter J, Jick H: Addiction rare in patients treated with narcotics. N Engl J Med 1980, 544 

302(2):123. 545 

2. Rummans TA, Burton MC, Dawson NL: How Good Intentions Contributed to Bad 546 

Outcomes: The Opioid Crisis. Mayo Clin Proc 2018, 93(3):344-350. 547 

3. Administration SAaMHS: Results from the 2017 National Survey on Drug Use and 548 

Health: 549 

Detailed Tables. 2017. 550 

4. Understanding the Epidemic 551 

[https://www.cdc.gov/drugoverdose/epidemic/index.html] 552 

5. Edlund MJ, Martin BC, Russo JE, DeVries A, Braden JB, Sullivan MD: The role of opioid 553 

prescription in incident opioid abuse and dependence among individuals with chronic 554 

noncancer pain: the role of opioid prescription. Clin J Pain 2014, 30(7):557-564. 555 

6. National Academies of Sciences E, and Medicine.: Pain management and the opioid 556 

epidemic: Balancing societal and individual benefits and risks of prescription opioid 557 

use. Washington, DC: The National Academies Press; 2017. 558 

7. Schroeder AR, Dehghan M, Newman TB, Bentley JP, Park KT: Association of Opioid 559 

Prescriptions From Dental Clinicians for US Adolescents and Young Adults With 560 

Subsequent Opioid Use and Abuse. JAMA Intern Med 2019, 179(2):145-152. 561 

8. Shah A, Hayes CJ, Martin BC: Characteristics of Initial Prescription Episodes and 562 

Likelihood of Long-Term Opioid Use — United States, 2006– 563 

2015. Mmwr-Morbid Mortal W 2017, 66(10):265–269. 564 

9. Denisco RC, Kenna GA, O'Neil MG, Kulich RJ, Moore PA, Kane WT, Mehta NR, Hersh EV, 565 

Katz NP: Prevention of prescription opioid abuse The role of the dentist. J Am Dent 566 

Assoc 2011, 142(7):800-810. 567 

10. Rasubala L, Pernapati L, Velasquez X, Burk J, Ren YF: Impact of a Mandatory 568 

Prescription Drug Monitoring Program on Prescription of Opioid Analgesics by 569 

Dentists. PLoS One 2015, 10(8):e0135957. 570 

11. Tong ST, Hochheimer CJ, Brooks EM, Sabo RT, Jiang V, Day T, Rozman JS, Kashiri PL, Krist 571 

AH: Chronic Opioid Prescribing in Primary Care: Factors and Perspectives. Ann Fam 572 

Med 2019, 17(3):200-206. 573 

12. Alam A, Gomes T, Zheng H, Mamdani MM, Juurlink DN, Bell CM: Long-term analgesic 574 

use after low-risk surgery: a retrospective cohort study. Arch Intern Med 2012, 575 

172(5):425-430. 576 

13. Brummett CM, Waljee JF, Goesling J, Moser S, Lin P, Englesbe MJ, Bohnert ASB, 577 

Kheterpal S, Nallamothu BK: New Persistent Opioid Use After Minor and Major Surgical 578 

Procedures in US Adults. JAMA Surg 2017, 152(6):e170504. 579 

14. Cicero TJ, Ellis MS, Surratt HL, Kurtz SP: The changing face of heroin use in the United 580 

States: a retrospective analysis of the past 50 years. JAMA Psychiatry 2014, 71(7):821-581 

826. 582 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

15. Sun EC, Darnall BD, Baker LC, Mackey S: Incidence of and Risk Factors for Chronic 583 

Opioid Use Among Opioid-Naive Patients in the Postoperative Period. JAMA Intern 584 

Med 2016, 176(9):1286-1293. 585 

16. Nestler EJ: Epigenetic mechanisms of drug addiction. Neuropharmacology 2014, 76 Pt 586 

B:259-268. 587 

17. Browne CJ, Godino A, Salery M, Nestler EJ: Epigenetic Mechanisms of Opioid Addiction. 588 

Biological psychiatry 2020, 87(1):22-33. 589 

18. Flagel SB, Chaudhury S, Waselus M, Kelly R, Sewani S, Clinton SM, Thompson RC, 590 

Watson SJ, Jr., Akil H: Genetic background and epigenetic modifications in the core of 591 

the nucleus accumbens predict addiction-like behavior in a rat model. Proceedings of 592 

the National Academy of Sciences of the United States of America 2016, 113(20):E2861-593 

2870. 594 

19. Koo JW, Mazei-Robison MS, LaPlant Q, Egervari G, Braunscheidel KM, Adank DN, 595 

Ferguson D, Feng J, Sun H, Scobie KN et al: Epigenetic basis of opiate suppression of 596 

Bdnf gene expression in the ventral tegmental area. Nature neuroscience 2015, 597 

18(3):415-422. 598 

20. Nielsen DA, Utrankar A, Reyes JA, Simons DD, Kosten TR: Epigenetics of drug abuse: 599 

predisposition or response. Pharmacogenomics 2012, 13(10):1149-1160. 600 

21. Kozlenkov A, Jaffe AE, Timashpolsky A, Apontes P, Rudchenko S, Barbu M, Byne W, Hurd 601 

YL, Horvath S, Dracheva S: DNA Methylation Profiling of Human Prefrontal Cortex 602 

Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of 603 

Hyper- and Hypomethylation and a Younger Epigenetic Age. Genes 2017, 8(6). 604 

22. Egervari G, Landry J, Callens J, Fullard JF, Roussos P, Keller E, Hurd YL: Striatal H3K27 605 

Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers 606 

Holds Promise as Therapeutic Target. Biological psychiatry 2017, 81(7):585-594. 607 

23. Doehring A, Oertel BG, Sittl R, Lotsch J: Chronic opioid use is associated with increased 608 

DNA methylation correlating with increased clinical pain. Pain 2013, 154(1):15-23. 609 

24. Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J: Genomewide Study of 610 

Epigenetic Biomarkers of Opioid Dependence in European- American Women. Sci Rep 611 

2019, 9(1):4660. 612 

25. Bleich S, Lenz B, Ziegenbein M, Beutler S, Frieling H, Kornhuber J, Bonsch D: Epigenetic 613 

DNA hypermethylation of the HERP gene promoter induces down-regulation of its 614 

mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res 2006, 615 

30(4):587-591. 616 

26. Bonsch D, Lenz B, Reulbach U, Kornhuber J, Bleich S: Homocysteine associated genomic 617 

DNA hypermethylation in patients with chronic alcoholism. J Neural Transm (Vienna) 618 

2004, 111(12):1611-1616. 619 

27. Knothe C, Doehring A, Ultsch A, Lotsch J: Methadone induces hypermethylation of 620 

human DNA. Epigenomics 2016, 8(2):167-179. 621 

28. Marie-Claire C, Crettol S, Cagnard N, Bloch V, Mouly S, Laplanche JL, Bellivier F, Lepine 622 

JP, Eap C, Vorspan F: Variability of response to methadone: genome-wide DNA 623 

methylation analysis in two independent cohorts. Epigenomics 2016, 8(2):181-195. 624 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

29. Chorbov VM, Todorov AA, Lynskey MT, Cicero TJ: Elevated levels of DNA methylation at 625 

the OPRM1 promoter in blood and sperm from male opioid addicts. Journal of opioid 626 

management 2011, 7(4):258-264. 627 

30. Nielsen DA, Yuferov V, Hamon S, Jackson C, Ho A, Ott J, Kreek MJ: Increased OPRM1 628 

DNA methylation in lymphocytes of methadone-maintained former heroin addicts. 629 

Neuropsychopharmacology : official publication of the American College of 630 

Neuropsychopharmacology 2009, 34(4):867-873. 631 

31. Ebrahimi G, Asadikaram G, Akbari H, Nematollahi MH, Abolhassani M, Shahabinejad G, 632 

Khodadadnejad L, Hashemi M: Elevated levels of DNA methylation at the OPRM1 633 

promoter region in men with opioid use disorder. The American journal of drug and 634 

alcohol abuse 2018, 44(2):193-199. 635 

32. Nielsen DA, Hamon S, Yuferov V, Jackson C, Ho A, Ott J, Kreek MJ: Ethnic diversity of 636 

DNA methylation in the OPRM1 promoter region in lymphocytes of heroin addicts. 637 

Hum Genet 2010, 127(6):639-649. 638 

33. Yuferov V, Levran O, Proudnikov D, Nielsen DA, Kreek MJ: Search for genetic markers 639 

and functional variants involved in the development of opiate and cocaine addiction 640 

and treatment. Ann N Y Acad Sci 2010, 1187:184-207. 641 

34. Zhang H, Herman AI, Kranzler HR, Anton RF, Simen AA, Gelernter J: Hypermethylation of 642 

OPRM1 promoter region in European Americans with alcohol dependence. J Hum 643 

Genet 2012, 57(10):670-675. 644 

35. Hancock DB, Levy JL, Gaddis NC, Glasheen C, Saccone NL, Page GP, Hulse GK, 645 

Wildenauer D, Kelty EA, Schwab SG et al: Cis-Expression Quantitative Trait Loci 646 

Mapping Reveals Replicable Associations with Heroin Addiction in OPRM1. Biological 647 

psychiatry 2015, 78(7):474-484. 648 

36. LaForge KS, Yuferov V, Kreek MJ: Opioid receptor and peptide gene polymorphisms: 649 

potential implications for addictions. Eur J Pharmacol 2000, 410(2-3):249-268. 650 

37. Smith AH, Jensen KP, Li J, Nunez Y, Farrer LA, Hakonarson H, Cook-Sather SD, Kranzler 651 

HR, Gelernter J: Genome-wide association study of therapeutic opioid dosing identifies 652 

a novel locus upstream of OPRM1. Mol Psychiatry 2017, 22(3):346-352. 653 

38. Houseman EA, Kile ML, Christiani DC, Ince TA, Kelsey KT, Marsit CJ: Reference-free 654 

deconvolution of DNA methylation data and mediation by cell composition effects. 655 

BMC Bioinformatics 2016, 17:259. 656 

39. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, 657 

Wiencke JK, Kelsey KT: DNA methylation arrays as surrogate measures of cell mixture 658 

distribution. BMC Bioinformatics 2012, 13:86. 659 

40. Theda C, Hwang SH, Czajko A, Loke YJ, Leong P, Craig JM: Quantitation of the cellular 660 

content of saliva and buccal swab samples. Sci Rep 2018, 8(1):6944. 661 

41. Ni Choileain N, Redmond HP: Cell response to surgery. Arch Surg 2006, 141(11):1132-662 

1140. 663 

42. Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, Wiencke JK, 664 

Houseman EA: Blood-based profiles of DNA methylation predict the underlying 665 

distribution of cell types: a validation analysis. Epigenetics 2013, 8(8):816-826. 666 

43. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, Soderhall C, 667 

Scheynius A, Kere J: Differential DNA methylation in purified human blood cells: 668 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

implications for cell lineage and studies on disease susceptibility. PLoS One 2012, 669 

7(7):e41361. 670 

44. Jaffe AE, Irizarry RA: Accounting for cellular heterogeneity is critical in epigenome-wide 671 

association studies. Genome Biol 2014, 15(2):R31. 672 

45. Tabuchi T, Shimazaki J, Satani T, Nakachi T, Watanabe Y, Tabuchi T: The perioperative 673 

granulocyte/lymphocyte ratio is a clinically relevant marker of surgical stress in 674 

patients with colorectal cancer. Cytokine 2011, 53(2):243-248. 675 

46. Hancock DB, Markunas CA, Bierut LJ, Johnson EO: Human Genetics of Addiction: New 676 

Insights and Future Directions. Curr Psychiatry Rep 2018, 20(2):8. 677 

47. Kalsi G, Euesden J, Coleman JR, Ducci F, Aliev F, Newhouse SJ, Liu X, Ma X, Wang Y, 678 

Collier DA et al: Genome-Wide Association of Heroin Dependence in Han Chinese. PLoS 679 

One 2016, 11(12):e0167388. 680 

48. Oertel BG, Doehring A, Roskam B, Kettner M, Hackmann N, Ferreiros N, Schmidt PH, 681 

Lotsch J: Genetic-epigenetic interaction modulates mu-opioid receptor regulation. 682 

Hum Mol Genet 2012, 21(21):4751-4760. 683 

49. Elam C, Hesson L, Vos MD, Eckfeld K, Ellis CA, Bell A, Krex D, Birrer MJ, Latif F, Clark GJ: 684 

RRP22 is a farnesylated, nucleolar, Ras-related protein with tumor suppressor 685 

potential. Cancer Res 2005, 65(8):3117-3125. 686 

50. Belcheva MM, Vogel Z, Ignatova E, Avidor-Reiss T, Zippel R, Levy R, Young EC, Barg J, 687 

Coscia CJ: Opioid modulation of extracellular signal-regulated protein kinase activity is 688 

ras-dependent and involves Gbetagamma subunits. J Neurochem 1998, 70(2):635-645. 689 

51. Bian JM, Wu N, Su RB, Li J: Opioid receptor trafficking and signaling: what happens 690 

after opioid receptor activation? Cell Mol Neurobiol 2012, 32(2):167-184. 691 

52. Valderrama-Carvajal A, Irizar H, Gago B, Jimenez-Urbieta H, Fuxe K, Rodriguez-Oroz MC, 692 

Otaegui D, Rivera A: Transcriptomic integration of D4R and MOR signaling in the rat 693 

caudate putamen. Sci Rep 2018, 8(1):7337. 694 

53. Braunewell KH, Dwary AD, Richter F, Trappe K, Zhao C, Giegling I, Schonrath K, Rujescu 695 

D: Association of VSNL1 with schizophrenia, frontal cortical function, and biological 696 

significance for its gene product as a modulator of cAMP levels and neuronal 697 

morphology. Transl Psychiatry 2011, 1:e22. 698 

54. Ready LB, Sarkis E, Turner JA: Self-reported vs. actual use of medications in chronic 699 

pain patients. Pain 1982, 12(3):285-294. 700 

55. Ferreri F, Bourla A, Mouchabac S, Karila L: e-Addictology: An Overview of New 701 

Technologies for Assessing and Intervening in Addictive Behaviors. Front Psychiatry 702 

2018, 9:51. 703 

56. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry 704 

RA: Minfi: a flexible and comprehensive Bioconductor package for the analysis of 705 

Infinium DNA methylation microarrays. Bioinformatics 2014, 30(10):1363-1369. 706 

57. Zhou W, Laird PW, Shen H: Comprehensive characterization, annotation and 707 

innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 2017, 708 

45(4):e22. 709 

58. Houseman EA, Molitor J, Marsit CJ: Reference-free cell mixture adjustments in analysis 710 

of DNA methylation data. Bioinformatics 2014, 30(10):1431-1439. 711 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

59. Bates D, Machler M, Bolker BM, Walker SC: Fitting Linear Mixed-Effects Models Using 712 

lme4. J Stat Softw 2015, 67(1):1-48. 713 

60. Kuznetsova A, Brockhoff PB, Christensen RHB: lmerTest Package: Tests in Linear Mixed 714 

Effects Models. J Stat Softw 2017, 82(13):1–26. 715 

 716 

  717 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.01.24.919084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.24.919084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

Figure legends 718 

Fig 1. Timeline of sample collection. Saliva samples were collected before surgery and the two 719 

follow-up visits after surgery and end of opioid self-administration. The notations above the 720 

arrows show the range of days between events.  721 

 722 

Figure 2.  Global patterns in DNA methylation across visits 723 

(a) The top principal component (PC1) extracted from the methylome-wide data explained 724 

63.5% of the variance, and the ANOVA plot shows significant differences between the three 725 

visits (F2,86= 5.94, p-value = 0.004). (b) At visit 2, PC1 is correlated with number of days from 726 

surgery to the second visit (r = 0.40, p-value = 0.03, n = 31). (c) The epigenome-wide association 727 

plot depicts the location of each CpG (autosomal chromosomes 1 to 22 on the x-axis) and the –728 

–log10(p-value) for the effect of visit (y-axis). Genome-wide significant threshold was set at p-729 

value = 5 x 10
-8

 (upper red horizontal line); suggestive threshold was set at p-value = 10
-5

 (lower 730 

blue horizontal line). (d) Distribution of p-values for the effect of visit shows a significant 731 

deviation from the null hypothesis. (e) For the CpGs above the suggestive threshold, 732 

comparison of mean differences between visit 1 and visit 2 (x-axis), and visit 3 and visit 2 (y-733 

axis) indicates a reversal in methylation patterns from visit 2 to visit 3, with the majority of sites 734 

showing lower methylation at visit 2, and then increasing in methylation by visit 3. 735 

 736 

Figure 3. Estimated cell type proportions and associated variables 737 
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(a) Cell 1 shows both longitudinal and cross-sectional variability. Proportion of cell 1 is 738 

negatively correlated with age at visit 2 (r = -0.48, p-value = 0.006, n = 31; black squares and 739 

dashed line), but not at visit 1 (r = -0.13, p-value = 0.49, n = 31; red x markers and dotted line), 740 

and only slightly at visit 3 (r = -0.32, p-value = 0.10, n = 27; grey circles and solid line). (b) Cell 3 741 

is associated with cross-sectional variability but no significant longitudinal change. The 742 

estimated proportion has a strong positive correlation with age at all three visits. At visit 1, r = 743 

0.36 (p-value = 0.05); visit 2, r = 0.57 (p-value = 0.0009); visit 3, r = 0.48 (p-value = 0.01). (c) Cell 744 

3 also shows a significantly higher proportion in African Americans at all three visits (F2,28 = 745 

15.66, p-value < 0.0001 at visit 1). (d) Cell 2 is also ethnicity specific and associated with lower 746 

proportion in African Americans at all three visits (F2,28 = 4.77, p-value < 0.02 at visit 1). 747 

 748 

Figure 4. OPRM1 promoter CpG methylation 749 

(a) The OPRM1 promoter and the CpG island (green block) are depicted along with base pair 750 

coordinates (black line; GRCh37/hg19), and location of the 10 CpGs (filled circles). Residual β-751 

values were extracted after fitting participant ID as random intercept, and the plots show the 752 

methylation patterns across the three visits for CpG1, CpG2, CpG6, and CpG7 (panels with 753 

ANOVA line plots; error bars are standard error). The difference between the dosage groups 754 

appears at visit 3 (for CpG1, CpG2, CpG6) and visit 2 (for CpG7). The lowest cumulative dose 755 

group (<25 MME: blue dotted line) has lower average methylation compared to the two higher 756 

cumulative dose groups (25–90 MME: yellow dashed line; ≥90 MME: red solid line). (b) The 757 

promoter mean methylation was taken as the average β-values for CpG1 to CpG9. After fitting a 758 
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regression model with adjustment for age and cell proportions, the leverage plots show a 759 

significantly higher average promoter methylation (y-axes) associated with higher MME (x-axis, 760 

left panel), and longer duration of use (x-axis; right panel). MME is morphine milligram 761 

equivalent. 762 

Figure 5. Epigenome-wide test for prescription opioid dosage. 763 

(a) The epigenome-wide Manhattan plot depicts the location of each CpG (autosomal 764 

chromosomes 1 to 22 on the x-axis) and the –log10(p-value) for the effect of doage (y-axis). 765 

Genome-wide significant threshold was set at p-value = 5 x 10
-8

 (upper red horizontal line); 766 

suggestive threshold was set at p-value = 10
-5

 (lower blue horizontal line). 767 

 For the six CpG sites that were above the genome-wide suggestive threshold, residual β-values 768 

were extracted after fitting participant ID as random intercept, and the plots show the 769 

methylation patterns across the three visits (error bars are standard error) for (b) cg08105965 770 

(RASL10A), (c) cg18500286 (AFF1), (d) cg04718304 (intergenic), (e) cg16719801 (VSNL1), (f) 771 

cg08163714 (ANXA2), and (g) cg25124965 (PAIP2). For most of these, the difference between 772 

the dosage groups appears at visits 1 and 3. 773 

 774 
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