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Highlights  
 
Caution is needed when implementing the generalized Louvain community detection code. 

We recommend optimizing multilayer network parameters using test-retest reliability. 

Scan duration was a much stronger determinant of reliability than scan condition. 

Minimal data need for movie condition is 20 min and for other conditions 30 min. 

Combining different conditions improved test-retest reliability of dynamic estimates. 
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Abstract 

Multilayer network models have been proposed as an effective means to capture the dynamic 

configuration of distributed neural circuits and quantitatively describe how communities vary over 

time. However, test-retest reliabilities for multilayer network measures are yet to be fully 

quantified. Here, we systematically evaluated the impact of code implementation, network 

parameter selections, scan duration, and task condition on test-retest reliability of key multilayer 

network measures (i.e., flexibility, integration, recruitment). We found that each of these factors 

impacted reliability, although to differing degrees. The choice of parameters is a longstanding 

difficulty of multilayer modularity-maximization algorithms. As suggested by prior work, we 

found that optimal parameter selection was a key determinant of reliability. However, due to 

changes in implementation of the multilayer community detection algorithm, our findings revealed 

a more complex story than previously appreciated, as the parameter landscape of reliability was 

found to be dependent on the implementation of the software.  

Consistent with findings from the static functional connectivity literature, scan duration 

was found to be a much stronger determinant of reliability than scan condition. We found that both 

passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks can be highly 

reliable when the parameters are optimized and scan duration is sufficient, although reliability in 

the movie watching condition was significantly higher than in the other three tasks. Accordingly, 

the minimal data requirement for achieving reliable measures for the movie watching condition 

was 20 min, which is less than the 30 min needed for the other three tasks. Collectively, our results 

quantified test-retest reliability for multilayer network measures and support the utility of movie 

fMRI as a reliable context in which to investigate time-invariant network dynamics. Our practice 

of using test-retest reliability to optimize free parameters of multilayer modularity-maximization 

algorithms has the potential to enhance our ability to use these measures for the study of individual 

differences in cognitive traits. 
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1. Introduction 

Following early seminal contributions (Watts and Strogatz 1998, Barabasi and Albert 1999), 

network science has played a pivotal role in revealing the structure and interactions of complex 

systems, such as social and transportation networks. More recently, this methodological approach 

has been applied to neuroscience, helping to further characterize the architecture of the human 

brain and launch the field of network neuroscience (Bullmore and Sporns 2009, Bassett and Sporns 

2017). Accordingly, various tools have been developed to understand the brain as a complex 

network, highlighting variations in brain organization across development (Gu et al. 2015), aging 

(Voss et al. 2013), and clinical populations (Bassett et al. 2018). In many studies, brain networks 

are constructed from anatomic or functional neuroimaging data as a single network or static 

representation (Rubinov and Sporns 2010, Sporns 2013). As the human brain is intrinsically 

organized into functionally specialized modules, a common approach for analyzing brain networks 

is to investigate community structure, which identifies areas in the brain that are densely connected 

internally (Sporns and Betzel 2016). While this construction is useful, a growing literature suggests 

the brain, particularly its functional interactions, varies over time, thus necessitating the need to 

characterize these dynamic changes (Lurie et al. 2019) 

Multilayer network models have been proposed as an effective means of capturing the 

temporal dependence between distributed neural circuits and of quantitatively describing how 

communities vary over time (Mucha et al. 2010, Kivela et al. 2014). Multilayer network models 

can be used to optimize the partitioning of nodes into modules by maximizing a multilayer 

modularity quality function that compares edge weights in an observed network to expected edge 

weights in a null network. In this approach, two parameters are essential: the intra-layer coupling 

parameter, which tunes the number of communities within a layer, and the inter-layer coupling 
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parameter, which tunes the temporal dependence of communities detected across layers. Dynamic 

network measures derived from multilayer modularity include but are not limited to flexibility, 

recruitment, and integration. Flexibility quantifies how frequently a region changes its community 

membership over time (Bassett et al. 2011); recruitment can be defined as the probability that a 

region is assigned to its relevant cognitive system, such as that determined by an a priori atlas 

(e.g., visual, sensorimotor, and limbic systems); and integration can be defined as the probability 

that a region is not assigned to its relevant cognitive system  (Bassett et al. 2015).   

Initial applications of this approach have provided key insights into the brain network 

dynamics that underlie learning (Bassett et al. 2011, Bassett et al. 2015). Accordingly, there has 

been increased enthusiasm to utilize these methods in the neuroimaging field (Table 1). 

Specifically, these measures have been used to link network dynamics to inter-individual 

differences in a broad range of functional domains, including motor learning (Bassett et al. 2011, 

Wymbs et al. 2012, Bassett et al. 2015, Telesford et al. 2016), working memory (Braun et al. 2015), 

attention (Shine et al. 2016), language (Chai et al. 2016), mood (Betzel et al. 2017), creativity 

(Feng et al. 2019, He et al. 2019), and reinforcement learning (Gerraty et al. 2018). Additionally, 

dynamic network reconfiguration has been suggested as a potential biomarker for diseases, such 

as schizophrenia (Braun et al. 2016), temporal lobe epilepsy (He et al. 2018), and depression (Wei 

et al. 2017, Zheng et al. 2018, Shao et al. 2019), and has been used to predict antidepressant 

treatment outcome (Tian et al. 2019). 

Despite these encouraging developments, there remain several open questions. First, it is 

unclear whether there are optimal parameter values for characterizing community structure 

dynamics, and the extent to which parameter choice may affect the reliability of findings. Second, 

the minimum data requirements to obtain reliable estimates for multilayer network-based measures 
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have not been established. Previous studies vary in scan duration from 5 min to 3.45 hours (see 

Table 1). Third, how the choice of task during the scan (e.g., resting state, naturalistic viewing, or 

active tasks) impacts the reliability of dynamic network measurements obtained from multilayer 

modularity maximization has not been directly compared (Telesford et al. 2016). As dynamic brain 

network methods become more widespread, a systematic evaluation of the impact of these 

important factors on the test-retest reliability of multilayer network measures is important and 

timely (Nichols et al. 2017, Poldrack et al. 2017). 

In this investigation, we aim to evaluate the impact of parameter selection, scan duration, 

and task condition on test-retest reliability of dynamic measures obtained from multilayer 

modularity maximization. We first identified the optimal intra-layer and inter-layer coupling 

parameters for the particular multilayer community detection algorithm that we employ, based on 

test-retest reliability. With the optimized parameters, we then evaluated test-retest reliability at 

various scan durations (i.e., 10, 20, 30, 40, 50, and 60 minutes) to determine the minimum data 

requirements for sufficient reliability. Given the growing popularity of naturalistic viewing, we 

examined reliability during Inscapes and movies, as well as resting-state and a flanker task to 

directly quantify the modulatory effect of mental states. Importantly, given recent updates to the 

options used to analyze dynamic community structure (Bazzi et al. 2016), we also evaluated the 

impact of software implementation on dynamic measurements and their test-retest reliability.  

 

2. Material and methods 

2. 1 Datasets  

Our primary analysis included 10 adults who had minimal head motion (median framewise 

displacement within 1.5 interquartile range and ranged 0.04~0.08 mm) from the Healthy Brain 
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Network-Serial Scanning Initiative (HBN-SSI: http://fcon_1000.projects.nitrc.org/indi/hbn_ssi/): 

ages 23-37 years (29.8±5.3), 50% males. HBN-SSI is a project specifically designed for evaluating 

the test-retest reliability of functional connectivity measures during different task states. A detailed 

description of experimental design and data collection can be found in O’Connor et al. (2017). 

Briefly, each participant had 12 scanning sessions collected using the same imaging protocol over 

a 1~2-month period. At each session, a high-resolution structural image and four fMRI scans (i.e., 

resting state, Inscapes, movie, and flanker; 10 min/condition) were collected.  All imaging data 

were collected using a 1.5T Siemens Avanto MRI scanner equipped with a 32- channel head coil 

in a mobile trailer (Medical Coaches, Oneonta, NY). Structural scans were collected for 

registration using a multi-echo MPRAGE sequence (TR=2.73 sec, echo time=1.64 ms, field of 

view=256×256 mm2, voxel size=1.0×1.0 mm3, flip angle=7°). fMRI scans were collected using a 

multiband echo planar imaging (EPI) sequence (multiband factor=3, TR=1.45 sec, echo time=40 

ms, field of view=192×192 mm2, voxel size=2.46×2.46×2.5 mm3, flip angle=55°).   

To test the impact of implementation choices in the multilayer community detection code, 

we created a toy multilayer network dataset and included resting-state fMRI data from 25 healthy 

adults from the Human Connectome Project (HCP) retest dataset 

(https://www.humanconnectome.org/study/hcp-young-adult/data-releases) (see Supplementary 

Methods for details on these datasets). Furthermore, the generalizability of parameters optimized 

on the HBN-SSI dataset was evaluated on the HCP retest dataset. 

 

2.2 Imaging preprocessing 

Functional images were preprocessed using the Configurable Pipeline for the Analysis of 

Connectomes (C-PAC 1.3: http://fcp-indi.github.io/) with the following steps: (1) realignment to 
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the mean EPI image to correct for motion; (2) nuisance signal regression: regressed out linear and 

quadratic trends, signals of five principal components derived from white matter and cerebrospinal 

fluid (Behzadi et al. 2007), global signal (Yang et al. 2014), and 24 common motion parameters 

(Friston et al. 1996); and (3) spatial normalization of functional data to Montreal Neurological 

Institute (MNI) space by combining boundary based registration (BBR) (Greve and Fischl 2009) 

and Advanced Normalization Tools (ANTs) (Avants et al. 2011).  

 

2.3 Network construction 

We defined nodes in the network using the functional parcellation from the CC200 atlas (Craddock 

et al. 2012) generated by a spatially constrained spectral clustering method. This functional 

parcellation consists of 200 ROIs covering the whole brain, each of which is homogeneous in its 

estimated functional connectivity. This commonly chosen atlas was previously used for studying 

static functional connectivity in the same dataset (O'Connor et al. 2017) and for evaluating 

reproducibility and reliability of state-based temporal dynamic methods (Yang et al. 2014). After 

preprocessing, we extracted mean signals from each ROI and then applied a sliding window to the 

time series. The window length (~100 s, 68 TRs, no overlap) was selected based on a previous 

multilayer network study (Telesford et al. 2016), which demonstrated that the number of 

communities stabilizes at a window length of ~100 s and inter-region variance of flexibility peaks 

at a window size of 75~120 s.  Using a window length of ~100 s also allowed us to capture low 

frequency fluctuations with a low cutoff at 0.01 Hz.  

For each window or layer, edges were estimated using wavelet coherence using the wavelet 

coherence toolbox (Grinsted et al., 2004: http://grinsted.github.io/wavelet-coherence/). As the 

most commonly used edge estimation for multilayer network analyses (Table 1), wavelet 
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coherence  is robust to outliers (Achard et al. 2006) and has advantages in terms of its utility for 

estimating correlations between fMRI time series, which display slowly decaying positive 

autocorrelations or long memory (Zhang et al. 2016, Telesford et al. 2017). Specifically, 

magnitude-squared coherence !"#  between a given pair of regions (x, y) is a function of the 

frequency ($) and defined by the equation: 

!"#($) =
()"#($)(

*

)""($))##($)
	,	

 

where )"#($) is the cross-spectral density between region x and region y. The variables )""($) 

and )##($)	are the autospectral densities of signals from region x and region y, respectively. The 

mean of !"#($) over the frequency band of interest, in our case 0.01-0.10 Hz, is the edge weight 

between region x and region y. The range of wavelet coherence is bounded between 0 and 1. For 

each subject, we obtained a 200×200×6 (region×region×window) coherence matrix per task per 

session, which is coupled into a multilayer network by linking a node to itself in the preceding and 

the following windows or layers (Mucha et al. 2010, Bassett et al. 2011). 

 

2.4 Dynamic community detection algorithm 

A popular method for investigating community structure is to optimize the partitioning of nodes 

into modules such that a particularly chosen modularity quality function is maximized. Here, we 

used a Louvain-like locally greedy algorithm (Blondel et al. 2008) to maximize the multilayer 

modularity and partition brain regions into communities across layers (Mucha et al. 2010, Bassett 

et al. 2013a). This algorithm simultaneously assigns brain regions in all layers to communities so 

that community labels are consistent across layers, which avoids the common community 

matching problem. The multilayer modularity quality function (Q) is defined as: 
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. =
1
212{45678 − :8;678<=8> + =67@78>} B=4C68, C7><D

678>

 

where µ is the total edge weight; δFG is the Kronecker’s δ-function that equals 1 when H = I and 0 

otherwise. The element 5678 gives the strength of the edge between nodes i and j in layer J, and the 

element ;678 is the corresponding edge expected in a null model. Here, we used the commonly 

used Newman-Girvan null model in which the element ;678  is defined as  

;678 =
K68K78
2L8

	,	

where L8 =
M
*
∑ 567867  is the total edge weight in layer J. The variables K68 and K78 are the intra-

layer strengths of node i and node j in layer J, respectively. In the quality function, C68 represents 

the community assignment of node i in layer J, and C7> represents the community assignment of 

node j in layer r. Finally, =4C68, C7>< = 1 if C68 = C7> and =4C68, C7>< = 0 if C68 ≠ C7>.  

When optimizing multilayer modularity, we must choose values for two parameters g and 

w. The parameter :8 is the intra-layer coupling parameter for layer J, which defines how much 

weight we assign to the null network and controls the size of communities detected within layer J. 

The parameter @78> is inter-layer coupling parameter which defines the weight of the inter-slice 

edges that link node j to itself between layer J and layer r. It controls the number of communities 

formed across layers. Here, these two parameters are assumed to be constant (:8=g and @78>=w) 

across layers following previous work (Table 1). The choice of these two parameters is critical for 

multilayer modularity optimization, as they have a large impact on the detected community 

structure, as well as on the dynamic measures derived therefrom (Bassett et al. 2013a, Mattar et al. 

2015, Chai et al. 2016). Multilayer modularity approaches were also shown to detect spurious 

group differences in dynamic network measures when these parameters were set inappropriately 
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(Lehmann et al. 2017). Here, we optimized these two parameters based on test-retest reliability. 

Specifically, we computed intra-class correlation coefficients (ICC) for each of the three dynamic 

network measures across a range of g and a range of w for each of the four tasks. Specifically, we 

considered the space spanned by the following ranges: g=[0.95, 1.3] and w=[0.1, 3.0]. We 

determined these ranges by applying the criterion that the number of modules be ≥2 and ≤100. 

As the space for g is much smaller than that for w, a smaller increment of 0.05 was used for g and 

an increment of 0.1 was used for w. After estimating the ICC at each point in this space, we 

identified the parameter value pair that produced the largest ICC. The g and w pair that produced 

the largest ICC the most frequently across the 12 conditions (3 dynamic network measures and 4 

tasks) was chosen as the optimal one.  

 

2.5. Implementation of a generalized Louvain (GenLouvain) algorithm  

Dynamic community detection was performed using a generalized Louvain method for community 

detection implemented in MATLAB (Lucas et al. 2011-2019). In 2016, the code underwent a 

major revision that implemented a new randomization option to the function (Version 2.1). The 

new option, ‘moverandw’, controls how a node is moved to form communities to optimize the 

quality function. When using the default option, ‘move’ (choosing moves that result in maximal 

improvement in modularity), the algorithm exhibits an abrupt change in behavior when the inter-

layer coupling parameter increases (see Bazzi et al. 2016 for more details). The newer option, 

‘moverandw’ (choosing moves at random from all moves that increase the quality where the 

probability of choosing a particular move is proportional to its increase in the quality function), 

mitigates these problems and tends to be better behaved for multilayer modularity with ordinal 

coupling. Thus, the new option was suggested by Bazzi et al. (2016) for multilayer network 
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analysis. Given concerns regarding this abrupt behavior, we tested the impact of these two options 

on dynamic network measures and their test-retest reliabilities before implementing the code. We 

found the new option was superior in the aspects we tested (see Section 3.1 for details). Thus, the 

new option ‘moverandw’ from the latest version of the code available when we started the project 

(Version 2.1.2) was used in the present work.  

When implementing the GenLouvain method, we used fully weighted, unthresholded 

coherence matrices to minimize the known near degeneracy of the modularity landscape (Good et 

al. 2010). After applying this algorithm, the 200 ROIs were assigned to communities that span 

across layers. Due to the roughness of the modularity landscape (Good et al. 2010) and the 

stochastic nature of the algorithm (Blondel et al. 2008), the output of community detection often 

varies across optimizations. Thus, rather than focus on any single optimization, we computed the 

dynamic measures based on 100 optimizations, following the precedent of previous work (Bassett 

et al. 2011, Bassett et al. 2013a, Bassett et al. 2013b, Bassett et al. 2015). Specifically, we first 

calculated network measures (see next section for details) for each run of the community detection 

algorithm, and then we averaged those measures over the 100 optimizations.  

 

2.6 Calculation of dynamic network measures 

For each participant, we computed the following measures to characterize the dynamics of the 

multilayer network based on the dynamic community structure detected in each optimization. 

2.6.1 Flexibility 

For each brain region, the flexibility is calculated as the number of times a brain region changes 

its community assignment across layers, divided by the number of possible changes which is the 

number of layers minus 1 (Bassett et al. 2011). This measure characterizes a region’s stability in 
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community allegiance, and can be used to differentiate brain regions into a highly stable core and 

a highly flexible periphery (Bassett et al. 2013b). Regions with high flexibility are thought to have 

a larger tendency to interact with different networks. Average flexibility across the brain is also 

computed to examine the global flexibility of the system. 

2.6.2 Module allegiance 

The module allegiance matrix is the fraction of layers in which two nodes are assigned to the same 

community (Bassett et al. 2015). For each layer, a co-occurrence matrix (200×200) can be created 

based on the community assignment of each node pair. The element of the co-occurrence matrix 

is 1 if two nodes are assigned to the same community, and 0 otherwise. The module allegiance 

matrix is computed by averaging the co-occurrence matrices across layers, and the value of the 

matrix elements thus ranges from 0 to 1.   

2.6.3 Integration and recruitment 

To quantify the dynamic functional interactions among sets of brain regions located within pre-

defined functional systems (i.e., seven networks defined by Yeo et al. 2011), we compute two 

network measures based on the module allegiance matrix: recruitment and integration (Bassett et 

al. 2015). Recruitment can measure the fraction of layers in which a region is assigned to the same 

community as other regions from the same pre-defined system. The recruitment of region H in 

system S is defined as:  

T6U =
1
VU
2W67
7∈U

	, 

where VU	is the number of regions in S, and W67	is the module allegiance between node H and node 

I. The integration of region H with respect to system S is defined as: 

Y6U =
1

Z − VU
2W67
7∉U
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where Z is the total number of brain regions. Integration Y6U  measures the fraction of layers in 

which region H is assigned to the same community as regions from systems other than S.  

 

2.7 Assessment of reliability 

Test-retest reliability and between-code reliability were assessed with the ICC estimated using the 

following linear mixed model: 

\67(]) = 1^^(]) + _6^(]) + `67(])	,	
 

where \67(]) represents the dynamic measure (i.e., flexibility, integration, or recruitment) for a 

given brain region ] (]=1, 2…, 200), i indexes participants (H=1, 2, … 10), and j indexes either 

the session for analyses of test-retest reliability or the code implementation options for analyses of 

between-code reliability (I=1, 2). Further, 1^^(]) is the intercept or a fixed effect of the group 

average dynamic measure at region ]; _6^(])	is the random effect for the H-th participant at region 

]; and `67(]) is the error term. The total variance of a given dynamic measure can be decomposed 

into two parts: (1) inter-individual variance across all participants (ab*=Var[_]), and (2) intra-

individual variance for a single participant across two measurements (ac*=Var[e]). The reliability 

of each dynamic measure can then be calculated as:  

Y!! =
ab*

ab* + ac*
	.	

 The model estimations were implemented using the linear mixed effect (lme) function from the 

nlme R package (http://cran.r-project.org/web/packages/nlme). 

 

2.8 Determination of the minimal data requirement 
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To establish minimal data requirements for sufficient test-retest reliability, we compared ICC 

values of the six scan durations: 10 min, 20 min, 30 min, 40 min, 50 min, and 60 min.  Different 

scan durations were obtained by pseudo-randomly selecting 1, 2, 3, 4, 5, or 6 10-min sessions from 

12 available sessions for each participant. Dynamic features were first computed for each of the 

12 10-min sessions, and then averaged across the sessions that were selected for each scan duration. 

We did not compute the dynamic measures on concatenated time series data to avoid artifactually 

introducing community changes at the concatenation point. For each scan duration, ICC was 

estimated using linear mixed models. To increase the robustness of the results and to extract stable 

features, we repeated the analysis on 100 randomized samples for each duration. The same process 

was performed for each of the four tasks to determine the data necessary for each condition. 

 

2.9 Determination of task dependency 

To investigate how estimates of test-retest reliability might depend on task states, we first 

used hierarchical linear mixed models to assess between-condition and between-session reliability 

in the same model. Hierarchical linear mixed models separate the variations among task conditions 

(i.e., between-condition reliability) from variations between sessions (i.e., test-retest reliability) by 

estimating variance between participants, across the four task conditions (for the same participant), 

and between sessions within each condition (O'Connor et al. 2017). Our model took the following 

form: 

\67e(]) = 1^^^(]) + _7e(]) + fe(]) + `67e(])	.	

The dynamic measure for a given brain region ] can be denoted as \67e(]), where i indexes over 

sessions, I indexes over conditions, and K indexes over participants. In this model, 1^^^ represents 

the intercept;  _7e represents a random effect between sessions for the I-th condition of the K-th 
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participant; fe represents a random effect for the k-th participant; and `67e represents the error 

term. The variables _7e, fe, and	`67e	are assumed to be independent and to follow a normal 

distribution with zero mean. The total variances of a given dynamic measure can be decomposed 

into three parts: (1) variance between participants ( aj* = Var[f]); (2) variance between conditions 

for the same participant (ab*= Var[_]); and (3) variance of the residual, indicating variance between 

sessions (ac*  = Var[e]). The reliability of each dynamic measure across conditions can be 

calculated as 

Y!!	(klVmHnHlVo) =
aj*

aj* + ab*
	, 

and across sessions as 

Y!!	(opooHlVo	|		klVmHnHlVo) =
aj* + ab*

aj* + ab* + ac*
	. 

Next, we estimated the test-retest reliability for each task using the simple linear mixed 

models described in Section 2.7. The main effect of task condition on ICC values was tested using 

a nonparametric Friedman test. The Wilcoxon signed-rank test was used for post hoc analyses to 

determine which tasks differed significantly in test-retest reliability. As ICCs consistently increase 

with scan duration (Laumann et al. 2015, Xu et al. 2016, O'Connor et al. 2017), hierarchical and 

simple linear mixed models were performed using 60 minutes of data (the optimal scan duration 

in the current sample) to determine the impact of task condition. 

 
3. Results 

3.1 Impact of GenLouvain code implementation  

In a previous study, when the old randomization option ‘move’ of the GenLouvain code was used, 

an abrupt change in a quantitative measure computed from a multilayer output partition was 
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observed in financial data (see Figure 5.4 of Bazzi et al. 2016). In our study, when the ‘move’ 

option was used, we observed an apparent discontinuity in multilayer network-based dynamic 

measures in two independent human brain imaging datasets (HBN-SSI and HCP), as well as in a 

toy multilayer-network dataset (Figure 1). When the updated ‘moverandw’ option was used, we 

no longer observed an apparent discontinuity. To evaluate reliability, we computed the ICC of 

flexibility between the two options.  Consistent with our intuition, we found that most of the ICC 

values above the discontinuity were near zero, suggesting that flexibility values obtained using 

different randomization options are dramatically different in that portion of the parameter space. 

In addition to flexibility, we also investigated the impact of code implementation on integration 

and recruitment. We found that flexibility was the most impacted, integration was less impacted, 

and recruitment was the least impacted (Figure S1). Furthermore, we found that the newer 

‘moverandw’ option produced measures with greater test-retest reliability than the old ‘move’ 

option (Figure S2), and better recovered known underlying dynamics in the toy data, especially 

in the portions of parameter space above the apparent discontinuity (See Figure S3 and S4 for 

details).  

3.2 Parameter optimization based on test-retest reliability 

Because our goal is to optimize multilayer network-derived measures to study individual 

differences, we chose our parameters based on test-retest reliability scores. We found that the 

selection of g and w had a large impact on the test-retest reliability of dynamic network measures 

(Figure 2). Depending on the parameter choice, test-retest reliability can range from low to high. 

Overall, recruitment (mean ICC across the landscape: 0.54±0.11) is more reliable than integration 

(0.37±0.17), and integration is more reliable than flexibility (0.30±0.15). For each measure, the 

pattern of ICC values across the 2-dimensional parameter space is highly similar across tasks. For  
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Figure 1. The impact of GenLouvain method (‘move’ vs ‘moverandw’) on estimated values of 
flexibility. When the default option ‘move’ was used (A), there was a drop-off in flexibility values 
in the 2-dimensional γ-ω parameter space. This apparent discontinuity was observed on flexibility 
values in two independent human brain imaging datasets, Healthy Brain Network-Serial Scanning 
Initiative (HBN-SSI) and Human Connectome Project (HCP), as well as in toy data. The issue was 
mitigated by the added option ‘moverandw’ (B). Reliability between the two randomization 
options quantified using intra-class correlation coefficients (ICCs) was high before the apparent 
discontinuity and was near zero above the discontinuity (C). ICCs for HBN-SSI and HCP were 
evaluated based on 60 minutes of resting state data. 
 

each task, the portions of the parameter space with high ICCs are consistent across measures. Thus, 

we were able to identify an optimal range of parameters generalizable across tasks and measures. 

For flexibility and integration, high ICCs (≥0.6) occur within a range of g=[1.0-1.1] and ω=[1.7-

3.0]. For recruitment, the range is broader: g=[1.05-1.25] and ω=[1.2-3.0].  
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Figure 2. Test-retest reliability of dynamic network measures depends on the g-w selection. We 
identified a range of parameters that produced high test-retest reliability (ICC≥0.6) for each 
measure (flexibility, integration, and recruitment) and each task: (A) rest, (B) Inscapes, (C) movie, 
and (D) flanker. For a given measure, the mean ICC in the g-w plane computed across 200 ROIs 
was highly similar across tasks (compare rows). For a given task, the locations of high ICCs were 
highly consistent across measures (compare columns). The peak ICC value was observed in the 
same location (g=1.05, w=2.05) in 7 out of the 12 two-dimensional g-w planes. The ICC score at 
this location was also high (>0.65) in the other 5 two-dimensional g-w planes. Thus, this parameter 
value pair was chosen as the optimal g-w values for our analyses. Note that the values in the 
parameter space where the number of communities was smaller than 2 or greater than 100 were 
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set to zero in each plane. ICCs were evaluated with the maximal amount of data available (60 
minutes). 

 

For the current analysis, we chose the parameters g=1.05 and ω=2.05, which produces 

maximal ICC values in 7 of the 12 g-w planes and still produces relatively high ICC values 

(ICC>0.65) in the other 5 g-w planes.  Turning to the parameter ω which affects coupling between 

layers, tuning it up to 2.05 yielded low estimates of flexibility. In a previous study, when ω value 

was too high, flexibility values followed a heavy-tailed distribution with most values of flexibility 

equal to zero (i.e., close to a static network representation) (Telesford et al. 2016). In our 

investigation, the distribution of flexibility did not resemble this heavy-tailed distribution (Figure 

S5A), thus mitigating the potential concern that the parameter was tuned too high. 

Because the ICC is determined by both within- and between-subject variability, high ICC 

could be caused by increased between-subject variability, decreased within-subject variability, or 

a combination of both. To understand the driver of this variation in test-retest reliability, we 

examined the landscape of dynamic measures, as well as the between- and within-subject variance 

of these dynamic measures. To make the variance values comparable, we normalized the between- 

and within-subject variance by the total variance. As expected, we found that the mean and 

variance of these dynamic measures also depended on the values chosen for g and w (Figure 3). 

The parameter values associated with high ICC overlapped with areas showing high between-

subject variability and low within-subject variability, and largely overlapped with areas having 

relatively low values of the dynamic measures (integration has a few exceptions).  

When the updated GenLouvain code that included ‘moverandw’ was used, we found that 

reliability was low for the previously recommended and commonly used values of g=1 and ω=1.  
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Figure 3.  The portion of the g-w space with high ICCs (areas with ICC≥0.6 are indicated by black 
lines) overlapped largely with the portion with relatively low values of dynamic network measures 
(flexibility, integration, and recruitment), high between-subject variance, and low within-subject 
variance. (A) The ICC values for the same g-w plane specifically for the movie condition shown 
in Figure 2C; (B) The mean of the dynamic network measures computed across 200 ROIs; (C) 
Between-subject variance (Btw-Sub-Var); and (D) Within-subject variance (Within-Sub-Var).  
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To better understand this low reliability, we compared the recommended parameter choice with 

our reliability-optimized set. We found that although the spatial maps of flexibility were highly 

similar between two parameter choices (r=0.70), the magnitude of flexibility was much larger for 

[g=1, w=1] compared to [g=1.05, w=2.5]: 0.66±0.01 vs 0.16±0.01, respectively (Figure S5A). In 

the literature, when [g=1, w=1] was used, the range of flexibility is typically <0.25 (Table 1). This 

discrepancy is likely because early studies used a different randomization option of the 

GenLouvain code (the older ‘move’ versus the newer ‘moverandw’). The low ICC of  [g=1, w=1] 

(mean: 0.19±0.21) relative to [g=1.05, w=2.5] (mean: 0.79±0.08) when the new option was used 

was driven by the much lower between- and higher within-subject variance for [g=1, w=1] 

compared to [g=1.05, w=2.5] (except for the visual cortex). 

To test the generalizability of our results, we applied the same multilayer analysis to HCP 

data and evaluated the test-retest reliability of flexibility. Compared to HBN-SSI data, we found 

that the areas with relatively high reliability were also located at the low g and high w areas for the 

HCP data, although flexibility values were lower for HCP in these areas. Importantly, we were 

unable to identify any parameter value pairs with an ICC≥0.6 for the HCP data, even though the 

overall reliability for the HCP data (mean ICC across the gamma-omega landscape: 0.27±0.03) is 

only slightly lower than that of the HBN-SSI data (mean: 0.30±0.15) (Figure S6). These results 

suggest that parameters optimized in one dataset may not be optimal for other datasets. 

3.3 Data requirements for characterizing inter-individual differences in network dynamics 

To establish the minimal data requirements for these types of analyses, we calculated the ICC for 

each measure and each task at six different scan durations: 10 min, 20 min, 30 min, 40 min, 50 

min, and 60 min. Consistent with previous static analysis (Laumann et al. 2015, Xu et al. 2016, 

O'Connor et al. 2017), we found that test-retest reliability of dynamic measures improves with 
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increased scan duration, and that this pattern is consistent across tasks and across dynamic network 

measures (Figure 4). From 10 to 60 min, the largest improvement is from 10 to 20 min. After 40 

min, most regions achieved high ICCs and improvements were less notable for longer scan 

durations. For regional and system-level variations in improvement of reliability as a function of 

scan duration, see Figure S7. 

Regarding the question of how much data is needed for sufficient reliability, the answer 

depends on the criteria, the task, and the measure. Here, we define good test-retest reliability as 

over 50% of ROIs with ICC≥0.5 (Xu et al. 2016). For the movie condition, good test-retest 

reliability was achieved for all three measures at 20 min (81.5% of ROIs had an ICC≥0.5 on 

average across all three measures) (Figure 5). For the flanker condition, good reliability was 

achieved at 20 min for integration (83.0% of ROIs ICC≥0.5) and recruitment (57.0% of ROIs 

ICC≥0.5). For the rest and Inscapes conditions, good reliability was achieved at 20 min only for 

integration (52.0% and 55.5% of ROIs ICC≥0.5, respectively). With 30 min of data, all measures 

and all tasks had good test-retest reliability. Across scan duration and task condition, integration 

is more reliable than recruitment (Wilcoxon signed-rank test: p<0.001) and recruitment is more 

reliable than flexibility (p=0.02).  

When data for one task is insufficient, a potential solution is to combine different tasks to 

increase scan duration, and thus improve reliability (O'Connor et al. 2017, Elliott et al. 2019a). To 

test whether this approach is relevant to the types of analyses performed here, we compared the 

ICCs obtained from 10 min of resting state data with those obtained from longer data created by 

adding either more resting state data or data from the Inscapes, movie, and/or flanker task 

conditions. We found that increased scan duration was associated with improved reliability 

regardless of what tasks were combined (Figure 6). Within each scan duration, the percent of ROIs 
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with ICC>0.4 was comparable between mixed data and pure rest data (except for 20 min 

rest+movie and 30 min rest+movie+flanker), although the rest data alone had a larger percent of 

ROIs with high ICC (≥0.6). 

 

Figure 4. Test-retest reliability of dynamic network measures increases when the amount of data 
used for estimation increases. The density map of ICC values of 200 nodes were plotted for three 
dynamic measures (flexibility, integration, and recruitment) and four tasks (A: rest; B: Inscapes; 
C: movie; D: flanker) at six scan durations (10min, 20min, 30min, 40min, 50min, and 60min). 
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Figure 5. The minimal data requirements for sufficient reliability depending on the criteria, the 
measure, and the task. Percentage of ROIs with an ICC greater than 0.4 (blue line), 0.5 (orange 
line), and 0.6 (red line) were plotted for the three dynamic network measures (flexibility, 
integration, and recruitment) and the four tasks (A: rest; B: Inscapes; C: movie; D: flanker). The 
dashed grey line was drawn at 50%. 
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Figure 6. Combining data from different tasks improves reliability. Percent of ROIs showing low 
(blue: ICC<0.4), medium (orange: 0.4 ≤ ICC <0.6), or high (red: ICC≥0.6) reliability were plotted 
for four durations: 10 min, 20 min, 30min, and 40 min. For 10 min, the resting state data (R) were 
shown as a reference for comparison. For 20-40 min, the data were either pure R or a combination 
of R and the other three tasks: Inscapes (I), movie (M), and flanker (F). Each letter (the 
abbreviation of each condition) represents 10 min of data. 
 

3.4 Task modulation on test-retest reliability of network dynamics: hierarchical linear mixed 

model 

To separate variation among scan conditions from variations between sessions, we assessed 

between-condition reliability and between-session reliability simultaneously in a hierarchical 

linear mixed model. With the optimized g-w and the maximal amount of data available (60 min), 

we found that both between-session (two sessions, 60 min/session) and between-condition (four 

conditions) reliability were high (between-session median ± interquartile range: flexibility, 

0.76±0.05; integration, 0.80±0.02; recruitment, 0.77±0.08; between-condition: flexibility, 

0.74±0.10; integration, 0.76±0.07; recruitment, 0.77±0.16) (Figure 7). Consistent with previous 

work (O'Connor et al. 2017), we found that between-condition reliability of the visual and 
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somatomotor network tended to be the lowest for recruitment which quantifies within-network 

functional interactions. Because different task states vary systematically in the richness of visual 

stimuli (movie>Inscapes>flanker>rest) and motor demands (flanker>the other three conditions), 

it is reasonable that these primary networks re-configure themselves according to unique task 

demands. 

 

Figure 7. Both between-session and between-condition reliability evaluated in a hierarchical linear 
mixed model were high for 60 min of data. The between-condition (btw-condition: reliability 
between rest, Inscapes, movie, and flanker) and between-session (btw-session: reliability between 
test and retest) ICCs were plotted on the surface map using BrainNet Viewer (Xia et al. 2013) in 
Panel A (flexibility), C (integration), and E (recruitment), as well as summarized per the seven 
networks defined by Yeo et al. (2011) in bar plots in Panel B (flexibility), D (integration), and F 
(recruitment). Vis: visual network; SMN: somatomotor network; DAN: dorsal attention network; 
VAN: ventral attention network; Limb: limbic network; FPN: frontoparietal network: DMN: 
default mode network. The same network abbreviation was used for subsequent figures.  
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3.5 Task modulation on test-retest reliability of network dynamics: linear mixed model 

Following the high-level model, we investigated test-retest reliability for each task separately using 

simple linear mixed models. We found that all four tasks have high test-retest reliability for all 

three measures (Figure 8). Median ± interquartile range of ICC for rest, Inscapes, movie, and 

flanker were: flexibility (0.73±0.09, 0.75±0.09, 0.81±0.07, 0.73±0.08), integration (0.78±0.05, 

0.76±0.05, 0.84±0.04, 0.79±0.05), and recruitment (0.74±0.13, 0.74±0.16, 0.81±0.09, 0.76±0.11). 

When reliability was directly compared between tasks, there was a significant main effect of task 

for all three measures (Friedman test: p<0.001). Using post hoc testing, we found that the movie 

condition displayed significantly higher test-retest reliability in all dynamic network measures than 

the other three conditions (Wilcoxon signed-rank test: all p-values<0.001, below Bonferroni 

correction for 18 tests: 3 measures×6 possible pairing).  
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Figure 8. The movie condition was the most reliable condition. Distribution of ICCs of 200 ROIs 
were plotted for flexibility (A), integration (C), and recruitment (E) for four conditions (rest, 
Inscapes, movie, and flanker).  Density of between-subject variance (btw-sub-var: salmon) and 
within-subject variance (within-sub-var: light sea green) were plotted for three dynamic measures 
(flexibility: B; integration: D; and recruitment: F) for each of the four conditions.  

 

For the comparison of the remaining conditions, the results were measure dependent. For 

flexibility, test-retest reliability in the Inscapes condition was significantly higher than in the 

flanker condition (p<0.001, corrected), and the other comparisons were not significant; for 

integration, reliability differed significantly (flanker>rest>Inscapes, p<0.001, corrected); for 

recruitment, reliability in the flanker condition was also significantly higher than in the rest and 

Inscapes conditions (p<0.001, corrected). Generally, reliability of these dynamic measures did not 

simply increase as a function of task engagement. The higher ICC scores were typically associated 

with relatively higher between-subject variance and lower within-subject variance (Figure 8).  

After considering overall reliability (median ICC), we next visualized regional and network 

differences in reliability between tasks. Consistent with overall results, we found that the movie 

condition exhibited higher reliability than the other three conditions in most brain regions and 

networks (Figure 9). The other three conditions are similar to each other with a few exceptions: 

flexibility of the somatomotor, visual, and default mode networks, and recruitment of the visual 

and somatomotor networks. The observation that task effects were most robust within the primary 

cortices is consistent with the hierarchical linear mixed model and with previous work (O'Connor 

et al. 2017). 
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Figure 9. The impact of condition on test-retest reliability of dynamic network measures. (A) 
Spatial maps of ICCs for rest, Inscapes, movie, and flanker condition (columns) are shown on the 
brain surface for flexibility, integration, and recruitment (rows). ICCs of 200 ROIs were averaged 
based on Yeo et al. (2011)’s seven networks for each of the four conditions and shown in radar 
chart: flexibility (B), integration (C), and recruitment (D). 
 

4. Discussion 
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Optimization of dynamic network methods for reliability is key to accurately characterizing trait-

like individual differences in brain function. The present work examined the impact of code 

implementation, network parameter selection, scan duration, and task condition on the test-retest 

reliability of measures of dynamic community structure obtained using multilayer network models. 

We found that each of these factors impacted reliability, to differing degrees. As suggested by 

prior work, optimal parameter selection was found to be an important determinant of reliability; 

interestingly, our findings revealed a more complex story than previously appreciated, as reliability 

across the multivariate parameter space was found to be dependent on the version and the 

implementation of the software, due to a change in implementation of the multilayer community 

detection algorithm. Consistent with findings from the static functional connectivity literature, 

scan duration was found to be a much stronger determinant of reliability than scan condition. As 

is discussed in greater detail in the following sections, our findings suggest the value of continued 

optimization of multilayer network models before any single set of parameters or methods is 

accepted as standard practice.  

 

4.1 A cautionary note on the version and implementation of GenLouvain code 

In efforts to extract dynamic community structure from multilayer network models of data, many 

studies have capitalized on the generalized Louvain MATLAB community detection code (Lucas 

et al. 2011-2019). The earliest version of this code was developed for a paper describing the 

mathematical advances that allowed for community detection in multilayer networks (Mucha et al. 

2010); the code was publicly released in 2011. Over the years, the code has been updated several 

times (Lucas et al. 2011-2019) to improve speed and enhance its applicability to multilayer settings. 

A previous study reported that when the default randomization option ‘move’ was used, two 
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computational issues arise: an under-emphasis of persistence and an abrupt drop in the number of 

intra-layer merges in certain portions of the parameter space, both of which can lead to an abrupt 

change in a quantitative measure derived (Bazzi et al. 2016). To address these problems, one 

randomization option ‘moverand’ was added to the code in 2014 (Version 2.0) and another 

improved one ‘moverandw’ was added in 2016 (Version 2.1). The fact that abrupt changes were 

observed consistently regardless of data type (previously observed in financial data and currently 

observed here in brain imaging data as well as in synthesized data), raises concerns regarding the 

accuracy of dynamic measures derived using the default option and with parameters selected above 

the point of apparent discontinuity in the 2-dimensional parameter space. Accordingly, we found 

that the between-code reliability for flexibility estimated in the affected areas of the parameter 

space were near zero, suggesting that the measures computed using the old and new GenLouvain 

options are not just a magnitude shift from one another but differ fundamentally. Based on these 

results, as well as our demonstration that ‘moverandw’ has higher test-retest reliability and better 

validity compared to ‘move’, we strongly recommend that investigators use ‘moverandw’ for 

multilayer network analysis, especially when applied to ordinal or temporal networks.  

 

4.2 Parameter optimization for multilayer network analyses 

To detect community structures,  we employed the most commonly used algorithm to maximize 

multilayer modularity quality function (Mucha et al. 2010).  Communities that are detected using 

this algorithm are highly dependent on the free parameters (i.e., γ and ω), thus we aimed to explore 

the space defined by these parameters and identify optimal parameter selection ranges in terms of 

test-retest reliability. As one parameter may affect the other parameter’s optimal setting, it can 

prove useful to optimize γ-ω jointly. Although several heuristics exist for choosing the “best” value 
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of γ and ω (Bassett et al. 2013a, Chai et al. 2016, Weir et al. 2017), optimizing the ICC has not 

previously been proposed, possibly because it requires the acquisition of a retest dataset. Our 

results suggest that a systematic evaluation of the parameters in terms of reliability has marked 

utility, as parameter choices directly impact reliability.  

In the 2-dimensional parameter space of the γ-ω plane, we were able to find a range of 

parameters that produced dynamic network measures of community structure in multilayer 

networks with high reliability. For flexibility and integration, higher reliability was achieved with 

higher ω (i.e., when there is a strong temporal coupling) and lower γ (i.e., when there are fewer 

communities). For recruitment, high reliability was achieved with high ω and a wide range of γ 

from low to high. Stronger temporal coupling in a multilayer network is typically associated with 

lower temporal variability in network partitions over time. The high test-retest reliability obtained 

at high ω and low γ, for flexibility and integration, may suggest that the temporal variability 

reserved after tuning up ω is composed of more between-subject variability than within-subject 

variability when the number of communities is small. The relative insensitivity of recruitment to 

the number of communities may be explained by our choice of predefined systems in which nodes 

tend to be grouped together over time. These results suggest that ICC-guided parameter selection 

can potentially maximize between-subject variability and minimize within-subject variability.  

This practice is consistent with the recent call for including assessment and optimization for 

reliability as a common practice in neuroimaging, as it helps to improve statistical power and 

decrease the amount of data required per subject (Zuo et al. 2019). 

A critical cautionary note here is that the pattern of reliability across the 2-dimensional 

parameter space was also dependent on the version and implementation of the GenLouvain code.  

A parameter choice of [γ=1, ω=1] was recommended in the literature based on modularity and 
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partition similarity, as well as the differences between measures estimated on a real network 

compared to an appropriate multilayer network null model (Bassett et al. 2013a). Following the 

initial work (Bassett et al. 2011, Bassett et al. 2013a), most studies have used [γ=1, ω=1] as their 

parameter choices (see Table 1) and tested the robustness of this parameter selection with small 

variations. As this parameter choice falls in the drop off area when the old GenLouvain code was 

used (Figure 1 and Figure S1) and it falls in the low test-retest reliability area when the updated 

GenLouvain code was used (Figure S5), the parameter choice of [γ=1, ω=1] needs to be 

reconsidered.  

 

4.3 Minimal data requirements for obtaining reliable dynamic estimates 

Many factors impact test-retest reliability of functional connectivity-based measures, among 

which scan duration is one of the most important (Zuo and Xing 2014, Zuo et al. 2019). 

Establishing minimal data requirements to obtain reliable estimates is an active research area for 

static connectivity analysis (Van Dijk et al. 2010, Anderson et al. 2011, Birn et al. 2013, Liao et 

al. 2013, Zuo et al. 2013, Laumann et al. 2015, Xu et al. 2016, Noble et al. 2017, Tomasi et al. 

2017). However, to date, few efforts have been made to determine the scan duration needed to 

obtain reliable estimates of dynamic network measures. Here, we found that the test-retest 

reliability of dynamic network measures was poor for 10 min of data; it improved greatly when 

data increased to 20 min for movie fMRI and to 30 min for the other scan conditions. While 

increased scan duration has consistently been shown to improve reliability, studies vary in 

conclusions about the necessary data required to obtain reliable estimates. Studies have suggested 

that 5-10 min of data are sufficient to achieve respectable test-retest reliability (Van Dijk et al. 

2010, Liao et al. 2013, Zuo et al. 2013, Tomasi et al. 2017); importantly, these studies have either 
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focused on the default and frontoparietal networks, which have higher reliabilities than other 

functional networks, or used more complex derived measures than simple edge-wise complexity. 

More recent work has convergently reported a substantial improvement in reliability to a level 

more useful for characterizing trait-like individual differences when data are increased from 5-10 

min to 20-30 min (Laumann et al. 2015, Xu et al. 2016, Noble et al. 2017, O'Connor et al. 2017, 

Elliott et al. 2019a). Our results are consistent with these static functional connectivity studies.  

As temporal dynamic analyses are susceptible to spurious variations (Hutchison et al. 2013, 

Leonardi and Van De Ville 2015, Lehmann et al. 2017), one would assume more data are required 

to obtain reliable measures for dynamic analyses compared to static analyses. Instead, our data 

recommendations for estimating flexibility, recruitment, and integration from multilayer 

community detection analyses to examine trait-like individual differences are comparable to those 

for static functional connectivity analysis. This result may reflect our having optimized the 

analyses for test-retest reliability. As previous multilayer network-based studies vary widely in 

scan duration (ranging from 5 min to 3.45 hours: Table 1), it is crucial to establish minimal data 

requirements for the study of trait-like individual differences.  

 

4.4 Improvement of test-retest reliability by combining different conditions 

It may not be practical to collect 20 to 30 min of data for a single condition, which motivates the 

question of whether different conditions can be combined to increase scan duration and improve 

test-retest reliability. Our hierarchical linear mixed model revealed high between-condition 

reliability, as well as high between-session reliability. These results are consistent with previous 

static connectivity analysis using the HBN-SSI dataset which demonstrated high between-

condition reliability (O'Connor et al. 2017). Our findings are also consistent with previous work 
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showing that task and resting-state data share a large proportion of variance (Cole et al. 2014, 

Geerligs et al. 2015) and that inter-task variance was much smaller relative to inter-subject 

variance in functional connectivity (Finn et al. 2015, Gratton et al. 2018). Recent work leveraging 

shared features across resting-state and task fMRI using a method called ‘general functional 

connectivity’ have demonstrated that intrinsic connectivity estimated based on a combination of 

task and resting-state data offers better test-retest reliability than that estimated from the same 

amount of resting state data alone (Elliott et al. 2019a). Here, we also found that when scan 

duration was increased from 10 to 20, 30, or 40 min by combining task and resting-state data, the 

reliability of flexibility was greatly improved to a degree comparable to that estimated from 20, 

30, or 40 min of resting data alone. Extending our understanding beyond prior studies of static 

connectivity, our results suggest dynamic network reconfiguration is similar across conditions 

when scan parameters and duration are optimized, thus supporting the feasibility of combining 

data from different tasks and conditions to improve reliability.   

 
4.5 Movie fMRI identified as the most reliable condition 

Another factor that impacts test-retest reliability of brain imaging-based measures is experimental 

paradigm due to the condition-dependent nature of brain activities (Zuo et al. 2019). Multilayer 

networks have been used to assess network reconfiguration during resting state (Mattar et al. 2015, 

Betzel et al. 2017, He et al. 2018), as well as during controlled cognitive tasks (Bassett et al. 2011, 

Bassett et al. 2015, Chai et al. 2016, Telesford et al. 2016, Gerraty et al. 2018). The present work 

extended previous work by including naturalistic viewing paradigms. Naturalistic paradigms offer 

increased ecological validity and allow studying highly interactive dynamic cognitive processes 

(Bottenhorn et al. 2019) and probing complex multimodal integration (Sonkusare et al. 2019). 

Thus, studies characterizing network dynamics and establishing test-retest reliability of these 
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paradigms together have the potential to enhance our understanding of cognition as it occurs more 

naturally. A recent meta-analysis revealed that naturalistic paradigms recruit a common set of 

networks that allow separate processing of different streams of information as well as integration 

of relevant information to enable flexible cognitive and complex behavior (Bottenhorn et al. 2019).    

Compared to a passive resting state and an active flanker condition, we found the movie 

condition had the highest test-retest reliability. These results are consistent with previous static 

network studies which suggested higher test-retest reliability for movie conditions when compared 

to resting state (Wang et al. 2017). Naturalistic viewing was shown to have enhanced ability to 

identify brain-behavioral correlations compared to conventional tasks (Cantlon and Li 2013, 

Vanderwal et al. 2019) and was less impacted by head motion (Vanderwal et al. 2015), especially 

for pediatric samples (Cantlon and Li 2013, Vanderwal et al. 2019). Some have suggested that the 

higher reliability may be explained by the enhanced ability of movie watching to detect inter-

individual differences in functional connectivity that are unique at the individual level compared 

to resting state (Vanderwal et al. 2017); alternatively, findings might be related to the increased 

level of engagement for movies, which is known from the task fMRI to help stabilize connectivity 

patterns over time (Elton and Gao 2015).  Regardless of explanation, the present results support 

the utility of naturalistic paradigms for investigating network dynamics in developmental and 

clinical applications.  

 

4.6 Generalizability of the current findings to HCP data 

We found that the test-retest reliability of the HCP data was much lower than that observed in the 

HBN-SSI dataset across the 2-dimensional γ-ω parameter space. One potential explanation is that 

HCP data were acquired using faster sampling than the HBN-SSI data (TR: 0.72 s vs. 1.45 s). 
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While static studies have indicated that increasing temporal resolution (Birn et al. 2013, Liao et al. 

2013, Zuo et al. 2013) can improve reliability, the opposite was observed for dynamic analysis 

(Choe et al. 2017). Although the subjects in HCP and HBN-SSI are similar in terms of participant 

age and sex, the datasets differ in several acquisition and preprocessing parameters. Further work 

is needed to determine how to best optimize multilayer community detection measures accordingly.  

Our results demonstrating that test-retest reliability can differ substantially between 

datasets suggest that parameters optimized in one dataset may not be optimal for others. Using 

test-retest reliability to optimize multilayer network analysis can facilitate reliable and efficient 

biomarker identification. However, challenges remain in terms of feasibility. The lack of 

generalizability may limit the application of this approach for datasets which do not have a retest 

sample. It is important for future studies to assess the generalizability of parameter optimization 

to datasets homogenized in key aspects of undesirable nonbiological source of variations, such as 

scanner manufacturer, acquisition protocol, and preprocessing steps. If such datasets are not 

available, applying statistical harmonization techniques, such as ComBat (i.e., combining batches) 

(Johnson et al. 2007, Fortin et al. 2018, Yu et al. 2018), could potentially remove unwanted site 

effects to optimize multilayer network analysis. 

  

4.7 Addressing concerns regarding head motion 

Head motion remains a major concern for dynamic functional connectivity estimation (Yang et al. 

2014, Bassett et al. 2018, Satterthwaite et al. 2019). In the present work, we only included 

participants with minimal head motion. During preprocessing, we regressed out 24 motion-related 

parameters (Friston et al. 1996), as well as controlled motion with more generalized approaches 

such as global signal regression at the individual level (Yan et al. 2013, Yang et al. 2014, Lydon-
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Staley et al. 2019a). To provide further insights into this concern, we examined the correlation 

with head motion, which we quantified as median framewise displacement (Jenkinson et al. 2002), 

and the global mean of each dynamic measure; we did not observe any significant correlations 

between these variables. Furthermore, we re-estimated test-retest reliability for flexibility on the 

movie condition using the optimized parameter while including median framewise displacement 

as a covariate at the group level in the linear mixed model. We found similarly high reliability with 

and without head motion included in the model (ICC=0.67 and 0.74, respectively), suggesting that 

the impact of head motion on test-retest reliability was small.  

 

4.8 Limitations and future work 

To estimate functional connectivity, we used wavelet coherence based on its predominance across 

similar studies in the literature (see Table 1), as well as due to its advantages in terms of denoising, 

robustness to outliers, and appropriateness for fMRI time series (Zhang et al. 2016). While wavelet 

coherence offers several advantages, it is a frequency-specific measure and does not utilize phase 

information (Percival and Walden 2000). As such, wavelet coherence is not useful when the phase 

of the signal is important. Ongoing work is examining the reliability of other connectivity 

estimation methods, such as the Pearson’s correlation coefficient (Bassett et al. 2011, Mattar et al. 

2015, Chai et al. 2016, Pedersen et al. 2018) which is informed by both phase and frequency 

information and which can be computed more swiftly. Future work should investigate how edge 

density and threshold, as well as edge weight sign (i.e., inclusion/exclusion of negative correlations) 

might impact the reliability of the dynamic network measures studied here.  

We focused our analyses on low frequency fluctuations (0.01-0.1Hz). The lower reliability 

of the flanker condition compared to the movie condition could reflect our ignoring high frequency 
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signals in the flanker task. To evaluate this possibility, we assessed flanker data reliability at a 

higher frequency range: 0.1-0.3 Hz. This range was selected to avoid the noisy upper bound (with 

TR=1.45 s, the highest frequency we can examine is 0.34 Hz). We found the reliability of dynamic 

measures obtained in the low frequency signals of the flanker task was much higher than in the 

higher frequency signals (Figure S8). This suggests that the low frequency signals carry more 

non-random between-subject variation for this task, and that the relatively low reliability of the 

flanker condition compared to the movie condition cannot be explained by frequency alone. 

Alternatively, the lower reliability of the flanker condition could be ascribed to its having been 

designed to minimize between-subject variance to “isolate” a single cognitive process (Elliott et 

al. 2019b).  

We determined the size of the parameter space by considering the number of communities 

(≥2 and ≤100), and we estimated the ICC at each point in the 2-dimensional γ-ω parameter space 

at a relatively coarse scale (γ: 0.9-1.3 with increments of 0.05; ω: 0.1-3.0 with increments of 0.1). 

We note that this resolution is comparable to most previous work (Bassett et al. 2011, Bassett et 

al. 2013b, Braun et al. 2015, Braun et al. 2016, Chai et al. 2016, He et al. 2018). Recent extensions 

of the multilayer network approach to dynamic community detection have demonstrated that 

sweeping across a range of intra-coupling parameters can offer insights into the multi-scale 

hierarchical organization of the brain (Ashourvan et al. 2019). Moreover, such studies have 

demonstrated that inter- and intra-subject variability in modular structure are scale specific (Betzel 

et al. 2019). Thus, sampling community structure from more points in the γ, ω parameter space 

may provide a better characterization of the brain’s dynamic network reconfiguration.  

Indeed, some algorithms have been developed recently which allow a more refined and 

efficient search for parameters, for example, the Convex Hull of Admissible Modularity Partitions 
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(CHAMP) (Weir et al. 2017). Unlike the traditional way of selecting parameters in which the 

optimal partitions obtained at each (γ, ω) were treated independently, CHAMP uses the union of 

all computed partitions to identify the convex hull of a set of linear subspaces. It can greatly reduce 

the number of partitions that can be considered for future analyses by eliminating all partitions that 

were suboptimal across a given range of parameter space. Although the CHAMP software package 

is currently in its early versions (https://github.com/wweir827/CHAMP), future work 

implementing these methodological updates can potentially facilitate the parameter optimization 

process and map the ICC landscape in greater detail. 

Optimization of multilayer network measures for reliability has the potential to enhance 

our ability to use these measures and study trait-like brain-behavior relationships more efficiently 

(Choe et al. 2017, Zuo et al. 2019). Establishing high reliability is a key component of reproducible 

research (Nichols et al. 2017, Poldrack et al. 2017). However, high test-retest reliability does not 

necessarily correspond to high sensitivity to detect brain-behavior relationships (Noble et al. 2017). 

Thus, it is important for future work to investigate the functional relevance of reliability-optimized 

dynamic network measures, as well as to consider optimizing the multilayer modularity framework 

based on other factors, such as discriminability between individuals (Bridgford et al. 2019) or 

predictive accuracy (Dadi et al. 2019). Prior work suggests that pipelines optimized on 

discriminability can better detect brain-phenotypic associations (Bridgford et al. 2019). Other prior 

work suggests that pipelines optimized on predictive accuracy give the best prediction for diverse 

targets (including neurodegenerative diseases, neuropsychiatric diseases, drug impact, and 

psychological traits) across multiple datasets (Dadi et al. 2019). Thus, adding these new 

dimensions as optimization targets may enhance the ability of multilayer network measures to 

become fundamental tools to delineate meaningful brain-behavior relationships. This approach 
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may be particularly useful for examining developmental questions. Multi-layer network analyses 

have been applied to reveal developmental patterns in brain function (Betzel et al. 2015, 

Schlesinger et al. 2017b, Zhang et al. 2018). Changes in brain connectivity dynamics have also 

been reported in the context of other dynamic connectivity methods from childhood to adulthood 

(Faghiri et al. 2018, Vohryzek et al. 2019), during adolescence (Medaglia et al. 2018),  and across 

the lifespan (Yan et al. 2017).  

 

5. Conclusions 

Here, we optimized the well-known multilayer modularity maximization framework for test-retest 

reliability and investigated the dependence of subsequent measures on modeling parameters, scan 

duration, and task condition. Our results provide evidence that dynamic measures from a common 

multilayer community detection technique (multilayer modularity maximization) can be highly 

reliable when the updated GenLouvain code was used, the parameters were optimized for 

reliability, and scan duration was sufficient. Although the movie condition was the most reliable, 

other passive (resting state and Inscapes) and active (flanker) conditions can be reliable as well 

when total scan duration is 30 minutes or longer. These results are promising and important, as 

there is a clear need in the network neuroscience field for reliable measures that can be used to 

find trait-like individual differences in cognition and diseases. Future work is needed to continue 

optimizing this framework by evaluating the impact of scanning parameters, preprocessing steps, 

and multilayer network analyses-related methodological decisions on reliability, as well as to 

optimize predictive accuracy.
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Table 1. Summary of prior papers using flexibility, integration, or recruitment in the context of fMRI data. 

Authors Task (Scan Duration) Edge estimation γ ω Flexibility Range 
Al-Sharoa et al. (2019) Rest (8.8 min) Pearson's correlation 

coefficient 
1 1 N/A 

Bassett et al. (2011) Motor learning (3.45 hrs) Pearson's correlation 
coefficient, wavelet 
coherence 

1 1 <0.06 

Bassett et al. (2013b) Motor learning (3.45 hrs) wavelet coherence 1 1 <0.20 
Bassett et al. (2015) Motor learning (3.45 hrs) wavelet coherence 1 1 N/A 
Betzel et al. (2017) Rest (10 min/session, 91 sessions) wavelet coherence 1 1 <0.25 
Braun et al. (2015) Working memory (~5 min) wavelet coherence 1 1 <0.20 
Braun et al. (2016) Working memory (~5 min) wavelet coherence 1 1 <0.15 
Chai et al. (2016) Semantic relatedness judgment Task (13 min) 

Story comprehension task (18~36 min) 
Pearson's correlation 
coefficient 

1 0.5 <0.20 

Cole et al. (2014) Dataset 1: Rest (10 min), Permuted rule operation 
cognitive task (72 min) 
Dataset 2 (HCP): Rest (56 min), 7 Tasks* (total 60 min) 

Pearson's correlation 
coefficient 

1 0-2 N/A 

Cooper et al. (2019) Persuasive messaging task (30.3 min) wavelet coherence N/A N/A <0.25 
Feng et al. (2019) Rest (~8 min) Pearson's correlation 

coefficient 
1 1 N/A 

Gerraty et al. (2018) Reinforcement learning (25 min) wavelet coherence 1.18 1 <0.15 
He et al. (2018) Rest (5 min), Verbal generation task (5 min) wavelet coherence 1 0.4 <0.25 
He et al. (2019) Rest (~8 min) Pearson's correlation 

coefficient 
1 1 N/A 

Khambhati et al. (2018) Rest (40 min) multi-taper coherence 1 1 <0.20 
Lehmann et al. (2017) Simulated rest (12 min) Pearson's correlation 

coefficient 
1.25 
1.5 

2 
1 

N/A 

Li et al. (2019) Rest (~6.7 min) wavelet correlation 1 1 <0.9 
Lydon-Staley et al. (2019a) Rest (6 min) Pearson's correlation 

coefficient 
1 1 <0.60 

Lydon-Staley et al. (2019b) Rest (6 min) wavelet coherence 1 1 <0.60 
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Mattar et al. (2015) Rest (10 min), Permuted rule operation cognitive task 
(72 min) 

Pearson's correlation 
coefficient 

1 0.45 N/A 

Pedersen et al. (2018) Rest (HCP: 60 min) Pearson's correlation 
coefficient 

1 1 <0.02 

Schlesinger et al. (2017a)  

Dataset 1: Recognition memory task (25.5 min) 
Dataset 2: Rest (6 min), attention task (20 min), 
memory task with lexical stimuli (22.5 min), face 
memory task (22.5 min) 

wavelet coherence 1 1 Dataset 1: <0.55 
Dataset 2: <0.5 

Schlesinger et al. (2017b) Word memory task (25.3 min) wavelet coherence 1.2 
1.15 

0.05 
0.001 

<0.85 

Shao et al. (2019) Rest (6.75 min) least absolute shrinkage 
and selection operator 
(LASSO) 

1 1 N/A 

Shine et al. (2016) Rest (10 min/session, 84 sessions) multiplication of 
temporal derivatives 
(MTD) 

1 1 N/A 

Telesford et al. (2016) Recognition memory (20 min) 
Strategic attention task (20 min) 

wavelet coherence 1 1 <0.25 

Tian et al. (2019) 
Rest (7 min) Pearson's correlation 

coefficient 
1 0.25 <0.045 

Wei et al. (2017) Rest (6.75 min) conditional Granger 
causality 

1 1 <0.65 

Wymbs et al. (2012) Motor learning (3.45 hrs) Inter-key interval (IKI) 0.9 0.03 N/A 
Zheng et al. (2018) Rest (8 min) Pearson's correlation 

coefficient 
1 1 <0.2 

Note: * 7 tasks from HCP are: emotional, gambling, language, motor, relational, social, and N-back task.
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Supplementary Materials 
 
Methods 
 
Human Connectome Project (HCP) 

 The original retest dataset included 45 subjects with imaging data 

(https://www.humanconnectome.org/study/hcp-young-adult/data-releases). Each subject had four 

resting state fMRI runs collected using the same protocol on a 3T Siemens Skyra with a 

multiband gradient-echo EPI sequence (multiband factor=8, TR=0.72 s, echo time = 33.1 ms, 

field of view = 208 × 180 mm2, number of slices = 72, voxel size = 2 mm3, and flip angle = 52°). 

All subjects are monozygotic twins (19 twin pairs and 7 without a paired twin). Three subjects 

were excluded due to incomplete data acquisition (total number of volumes less than 80%). For 

the remaining 42 subjects (16 twin pairs and 10 without a paired twin), one subject from each 

twin pair (the one who is more right-handed and/or with a test-retest interval closer to the median 

was chosen). Only one subject from a twin pair was included to avoid the twin-related decrease 

in between-subject variance. Additionally, one nonpaired twin who is left-handed was excluded, 

leaving a total number of 25 right-handed subjects for analysis (age: 22 to 35 years, 9 males/16 

females, test-retest intervals ranging from 52 to 326 days).   

Functional imaging preprocessing used HCP functional and ICA-Fix pipelines. The 

functional pipeline includes gradient distortion correction, motion correction, field bias correction, 

spatial registration into a common Montreal Neurological Institute (MNI) space, intensity 

normalization (Glasser et al. 2013), and artifact removal using independent component analysis 

FIX (Griffanti et al. 2014, Salimi-Khorshidi et al. 2014). After preprocessing, flexibility across the 

g-w plane and the intra-class correlation coefficient (ICC) of flexibility were computed in the same 
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way as in the HBN-SSI data. The window length was 139 TRs (~100 s) which is comparable to 

that used for the HBN-SSI dataset. 

Toy Data 

To test the impact of GenLouvain code implementation on recovering known underlying dynamic 

changes in community structure, we created a toy multilayer network dataset. It consists of 128 

nodes which were divided into four 32-node communities where each community represents a 

complete graph (i.e., all nodes are interconnected with each other). Across 13 layers, these four 

communities either split to form a 16-node community or merge to form a 32-node community. 

As shown in Figure S3A, the four communities split or merge at different rates; Community 1 

does not change, Community 2 splits or merges every three layers, Community 3 splits or merges 

every two layers, and Community 4 splits or merges every layer. The changes in community 

structure across layers (over time) can be captured using the GenLouvain algorithm (Figure S3B). 

Whenever the community assignment of a node changes, this fact is recorded and can be used to 

calculate node flexibility; as shown in Figure S3C, node flexibility varies across nodes in the four 

original communities, with nodes originally in Community 1 showing no changes and nodes 

originally in Community 4 showing the most changes.  

Given that output from the GenLouvain algorithm is nondeterministic, it is common 

practice to run the algorithm across multiple optimizations. In the case of the toy network, after 

1000 optimizations, a change should occur with a 50% probability at each split or merge. This 

behavior occurs because all edges in the network have equal weight, and thus when a 32-node 

community splits, there is equal likelihood that nodes forming the new community come from 

either set of 16 nodes. Likewise, when a community merges, there is equal likelihood that the older 
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community will cease and join the new community, or the newer community will cease and return 

to the older community.  
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Figure legends 

Figure S1. The impact of the GenLouvain method (‘moverandw’ vs. ‘move’) on dynamic network 

measures. In the 2-dimensional g-w parameter space, abrupt changes in flexibility, integration, 

and recruitment were observed when the method ‘move’ was used (A). This issue is most serious 

for flexibility, followed by integration, and less so for recruitment. The method ‘moverandw’ 

mitigates this issue and results in an apparently more continuous landscape (B). Reliability 

between the two methods above the point of apparent discontinuity is close to zero for flexibility, 

ranges from low to medium for integration, and ranges from low to high for recruitment (C).  

 

Figure S2. Test-retest reliability of dynamic network measures was substantially impacted by the 

GenLouvain method. The test-retest reliability in the portion of the parameter space above the 

apparent discontinuity is lower for ‘move’ (A) compared to ‘moverandw’ (B) for flexibility, 

integration, and recruitment. Results were obtained for the movie condition with 60 minutes of 

data. 

 

Figure S3. The impact of the GenLouvain method (‘moverandw’ vs. ‘move’) on multilayer 

network analyses in the toy data. (A) A multilayer network representing groups of nodes split into 

four communities shows the splitting and merging of communities across 13 layers. (B) 

Community structure across layers is identified by the GenLouvain algorithm (we show one 

optimization here). (C) Node flexibility quantifies how often a node changes community 

assignment. From the single optimization, flexibility is calculated by finding the number of times 

a node changes community divided by the number of possible times the nodes can change. In 

practice, flexibility is calculated across multiple optimizations. Using the GenLouvain algorithm 
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across n = 1000 optimizations, it is expected that at the point where a community changes, there 

is a 50% chance that a group of nodes will form the new community or merge with an old 

community. When comparing method choice, it is readily apparent that although results appear 

visually similar at one optimization, the ‘move’ method (D) does not result in community changes 

with equal likelihood at each split or merge, while using the ‘moverandw’ (E) method produces 

the expected outcome for this toy network. 

 

Figure S4. The method ‘moverandw’ performs better than ‘move’ in terms of recovering the 

underlying dynamic changes in modular structure regardless of the g-w selection. When using the 

GenLouvain algorithm, the parameters g and w change the average flexibility measured across 

nodes. (A) In comparing the algorithms, we noticed that using the method ‘move’ results in values 

of the dynamic network metric that abruptly drop off at w values greater than 1. Using the newer 

method ‘moverandw’ does not produce this abrupt change, resulting in an apparently more 

continuous modulation of the metric values. (B) Although the values in the parameter space appear 

similar below the apparent discontinuity seen using ‘move’, multiple optimizations reveal stark 

differences in the converging results. When choosing a value below the apparent discontinuity (g 

= 1.00, w = 0.25), the output from ‘moverandw’ matches the expected outcome for the toy network. 

In contrast, ‘move’ does not produce the expected outcome. When choosing a value above the 

apparent discontinuity, ‘moverandw’ is still able to recover the expected outcome while ‘move’ 

does not find any changes. 

 

Figure S5. Comparison of our parameter selection [g=1.05, w=2.5] and previously recommended 

parameters [g=1, w=1]. The spatial topographies of mean flexibility computed across subjects for 
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two parameter choices are similar (A: Pearson’s r=0.70), even though the range of flexibility 

values differs. Consistent with previous work (Betzel et al. 2017), we found that high-order 

cognitive regions had greater flexibility than primary cortices. For the movie condition, visual 

cortex had the lowest flexibility. Compared to the parameter choice [g=1, w=1], [g=1.05, w=2.5] 

had much higher test-retest reliability across the brain (except for visual cortex) (B). The low test-

retest reliability of flexibility observed at [g=1, w=1] is driven by low between-subject variance 

(Between-Sub-Var: C) and high within-subject variance (Within-Sub Var: D). The relatively low 

ICCs (although still medium in size) observed in visual cortex at [g=1.05, w=2.5] are associated 

with comparable within- and between-subject variance.  In the scatter plot, each dot represents an 

ROI. These results were obtained based on the movie condition using 60 minutes of data. 

 

Figure S6. HBN-SSI and HCP data differed in flexibility values and the test-retest reliability of 

flexibility across the g-w plane. Using 60 min of resting state data, flexibility (A) and ICC of 

flexibility (B) were computed in the same way for HBN-SSI and HCP data. In HBN-SSI data, 

there was a range of parameters with high reliability (ICC≥0.6). However, in HCP data, we were 

unable to find a range of reliability-optimized parameters. Overall, the flexibility across the g-w 

landscape was lower for HCP than for HBN-SSI data. 

 

Figure S7.  Regional and system-level variations in reliability improvement as a function of scan 

duration for the movie condition. (A) The ICC values were plotted on the brain’s surface for 

flexibility, integration, and recruitment at six scan durations. For ease of interpretation, regional 

ICC values were summarized using Yeo et al. (2011)’s seven networks for three measures 

(flexibility: B; integration: C; and recruitment: D) and each of the six scan durations. With 10 min 
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of data, ICC values of dynamic metrics were low in all networks, except for recruitment in the 

visual network. With increased scan duration, reliability of dynamic metrics improved, and the 

improvement was most noticeable from 10 to 20 min. The visual network had the lowest reliability 

for flexibility and highest reliability for recruitment. Spatial variation was less obvious for 

integration than for the other two measures.  

 

Figure S8. For the flanker task, dynamic network measures were more reliable when estimated 

from the low frequency components of the fMRI signal (0.01-0.1Hz) compared to the high 

frequency components (0.1-0.3Hz). ICCs of the 200 ROIs were plotted on the brain surface and 

summarized in a violin plot for low (red) and high (blue) frequency components of the fMRI signal.  
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Supplementary Figures 
 
Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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Figure S7 
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Figure S8 
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