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Abstract 
Coexisting microbial cells of the same species often exhibit genetic differences that can affect              
phenotypes ranging from nutrient preference to pathogenicity. Here we present inStrain, a            
program that utilizes metagenomic paired reads to profile intra-population genetic diversity           
(microdiversity) across whole genomes and compare populations in a microdiversity-aware          
manner, dramatically increasing genomic comparison accuracy when benchmarked against         
existing methods. We use inStrain to profile >1,000 fecal metagenomes from newborn premature             
infants and find that siblings share significantly more strains than unrelated infants, although             
identical twins share no more strains than fraternal siblings. Infants born via cesarean section              
harbored Klebsiella with significantly higher nucleotide diversity than infants delivered          
vaginally, potentially reflecting acquisition from hospital versus maternal microbiomes.         
Genomic loci showing diversity within an infant included variants found in other infants,             
possibly reflecting inoculation from diverse hospital-associated sources. InStrain can be applied           
to any metagenomic dataset for microdiversity analysis and rigorous strain comparison. 
 
Main 
Cells in microbial populations are not all identical to one another. Genetic polymorphisms             
rapidly arise through de novo mutation, and these variants can spread because they confer a               
fitness advantage or by lateral gene transfer (if the variant confers an advantage or is linked to a                  
fitness-conferring variant). It is estimated that billions to trillions of bacterial genetic mutations             
are generated de novo every day in the microbiome of an individual adult human 1, and these                 
differences can be clinically relevant. For example, just three point mutations can confer             
antibiotic resistance in Enterobacteriaceae 2. Studying genetic variation in microbial populations           
has historically involved isolating a multitude of cells from the same population and performing              
phenotypic analysis and/or genome sequencing. Genome-resolved metagenomic analysis, which         
involves extracting and sequencing DNA directly from the environment and using computational            
tools to assemble and bin the resulting DNA sequences into genomes in silico , presents an               
attractive high-throughput alternative to this process. This technique allows simultaneous          
analysis of microbial communities, the species populations that comprise them, and           
heterogeneity within these populations, and has been used to reveal fine-scale evolutionary            
mechanisms 3–5, dynamics 6–12 , and strain level metabolic variation that could contribute to strain               
selection 1,13.  
 
Many fundamental questions in human microbiome research relate to the transmission of            
microbial populations between individuals, including how we are seeded by microbes early in             
life 14–16. However, strain diversity presents challenges for such analyses. Sequence comparisons            
are usually performed by aligning consensus genomes assembled from different samples 1,17 or             
by modifying a reference genome using mapped reads and comparing it to the same sequence               
that has been modified by reads from another sample 18–20 (Supplemental Figure S1) . These              
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methods represent each population based on the most common alleles, which can lead to              
erroneous results. For example, if sample 1 contains a single nucleotide variant (SNV) A at 20%                
frequency and T (the consensus choice) at 80% frequency, and sample 2 has A at 100%                
frequency, comparing the consensus genome of both samples will fail to identify the variant              
shared by both populations. Further, alleles at intermediate frequencies (e.g. 30% - 70%) can be               
stochastically detected above or below 50% due to random sampling, resulting in chimeric             
consensus sequences. As natural microbial populations can have many polymorphic sites,           
genomic comparison methods that consider the genetic diversity are needed, as are standardized             
methods that are easy to use and that are applicable to all metagenomic studies. 
 
Here we present inStrain, a program that profiles population microdiversity from metagenomic            
short read alignments and performs microdiversity-aware genomic comparisons. This includes          
calculating nucleotide diversity and linkage disequilibrium, identifying SNVs (including         
non-synonymous and synonymous variants), and reporting accurate coverage depth and breadth.           
We demonstrate that inStrain performs strain-level comparisons with higher accuracy and           
sensitivity than leading tools. To demonstrate the value of inStrain for microbiome studies, we              
apply inStrain to a large collection of previously sequenced infant fecal microbiomes to reveal              
patterns of microbiome microdiversity and strain sharing among infants born in the same             
neonatal intensive care unit (NICU) over a period of five years. inStrain is available as an                
open-source python program on GitHub ( https://github.com/MrOlm/inStrain ) and documentation        
is available both in the supplemental materials ( Supplemental Document S1) and online at             
https://instrain.readthedocs.io/en/latest/. 
 
Results 
inStrain measures population-level diversity from metagenomic data 
InStrain profiles the microdiversity of any DNA sequence dataset that consists of paired short              
reads that are mapped to a genome assembled from a metagenome or from a cultured isolate.                
Functionality can be broken into three major steps:  
 
Step 1) Read filtering . To increase the likelihood that mapped read pairs originate from              
organisms belonging to the same population a series of filters are applied. For each read pair                
aligned to the reference genome ( de novo assembled from the same sample or a genome from                
another source) the mapQ score, average nucleotide identity (ANI) of the pair to the reference               
genome, and the insert size between aligned reads are calculated. Read pairs that don’t pass               
adjustable quality cutoffs are removed, as are all unpaired reads. The exclusive use of pairs               
doubles the number of bases used to calculate the read ANI and mapQ score, increasing their                
accuracy and substantially increasing the span of genome analyzed. This reduces mismapping at             
repeat regions or regions conserved in multiple genomes. Other software tools, such as             
StrainPhlAn and MetaPhlAn 18,21, treat pairs of reads as separate observations and can assign              

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915579doi: bioRxiv preprint 

https://github.com/MrOlm/inStrain
https://instrain.readthedocs.io/en/latest/
https://doi.org/10.1101/2020.01.22.915579
http://creativecommons.org/licenses/by/4.0/


 

each read pair to a different population, contrary to the strong expectation from Illumina              
sequencing protocols that a pair originates from a single DNA molecule. 
 
Step 2) Calculation of nucleotide diversity, SNVs, and linkage . For each gene, scaffold, and/or              
genome, inStrain calculates the mean, median, and standard deviation of the depth of coverage              
(number of reads per base-pair), breadth of coverage (percentage of reference base pairs covered              
by at least one read), expected breadth of coverage (given the average depth of coverage, the                
breadth of coverage that would be expected if reads were evenly spread across the genome), and                
average nucleotide diversity (π; 22) of all base-pairs with at least 5x coverage ( Figure 1a ). Both                
bialllelic and multiallelic SNVs and their frequencies are identified and annotated at positions             
where phred30 quality filtered reads differ from the reference genome and at positions where              
multiple bases are simultaneous detected at levels above the expected sequencing error rate.             
SNVs are classified as synonymous, non-synonymous, or intergenic based on gene annotations,            
and linkage disequilibrium is calculated between SNVs that are connected by at least twenty              
read-pairs. 
 
Step 3) Generation of tables and figures . Tables are generated that describe how many reads               
were removed by each filter described in Step 1 and enumerate all metrics described in Step 2 .                 
Figures are generated for each genome to document SNV allele frequencies, genome-wide            
nucleotide diversity, patterns of linkage disequilibrium, and to report other findings ( Figure            
1b-f). All data generated during an inStrain run is stored in a space-efficient manner and can be                 
used to quickly re-generate plots and tables with different parameters. 
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Figure 1. InStrain measures population-level diversity from metagenomic data . a) Examples of metagenomic             
reads (grey boxes) mapping to genomic regions with low and high nucleotide diversity. Mismatches to the                
reference genome are represented by small colored marks on the reads, and the reference genome is represented                 
below the reads. b-f) Examples of figures automatically generated by inStrain. b) SNV density, coverage, and                
nucleotide diversity across a bacteriophage genome. Spikes in nucleotide diversity and SNV density do not               
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correspond with increased coverage, indicating that the signals are not due to read mis-mapping. Positions with                
nucleotide diversity and no SNV-density are those where diversity exists but is not high enough to call a SNV c)                    
Metrics of SNV linkage vs. distance between SNVs; linkage decay (as shown here) is a common signal of                  
recombination. d) Distribution of the major allele frequencies of bi-allelic SNVs (the Site Frequency Spectrum).               
Alleles with major frequencies below 50% are the result of multiallelic sites. The lack of distinct puncta suggest                  
that more than a few distinct strains are present. e) Breadth of coverage (blue line), coverage depth (red line), and                    
expected breadth of coverage given the depth of coverage (dotted blue line) versus the minimum ANI of mapped                  
reads. Coverage depth continues to increase while breadth plateaus, suggesting that all regions of the reference                
genome are not present in the reads being mapped. f) Distribution of read pair ANI levels when mapped to a                    
reference genome; this plot suggests that the reference genome is >1% different than the mapped reads.  

 
Microdiversity-aware ANI calculations (PopANI) increase accuracy of strain discrimination 
Most existing strain-comparison pipelines compare microbes in different samples based on their            
consensus genomes. In contrast, inStrain considers both major and minor alleles during genomic             
comparison. This new microdiversity-aware ANI metric is referred to as “PopANI”           
(population-level ANI), and it is reported alongside consensus-based ANI (“ConANI”). Both           
metrics are calculated in a pair-wise manner for samples that have been profiled using the               
methods described above. First, all positions of the genome that have at least 5x coverage in both                 
samples are identified. Only these positions are considered in the PopANI and ConANI             
calculations. Second, the number of positions with ≥5x coverage that differ in allelic             
composition between the samples is enumerated. For ConANI, if the consensus base differs             
between the two samples a substitution is called. For PopANI, a substitution is called at a site                 
only if both samples share no alleles (either major or minor) (Figure 2a). 
 
We benchmarked inStrain’s strain comparison method against two existing common tools: dRep,            
which calculates genome-wide ANI 17, and StrainPhlAn 18, which aligns short reads to a marker               
gene database (0.3% of the genome in the case of Escherichia coli ) and compares the consensus                
maker genes in multiple samples. We first compared the ability of each method to report the ANI                 
between genomes with a known number of in silico mutations (Figure 2b) . All three methods               
performed well on this test, which does not consider microdiversity, though dRep and inStrain              
had lower errors in the ANI calculation than StrainPhlAn overall (0.00001%, 0.002%, and             
0.03%, respectively; average discrepancy between the true and calculated ANI). This is likely             
because dRep and inStrain compare positions from across the entire genome (99.9% and 99.7%              
of the genome, respectively) and StrainPhlAn does not.  
 
We next used each tool to compare metagenomes derived from defined bacterial communities.             
The ZymoBIOMICS Microbial Community Standard, which contains cells from eight bacterial           
species at defined abundances, was divided into three aliquots and subjected to DNA extraction,              
library preparation, and metagenomic sequencing. Each strain comparison tool was then used to             
compare bacterial species in each sample to each other in a pairwise manner (Figure 2c). As all                 
genomic comparisons originate from the same defined community of microbes, each tool should             
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report 100% ANI for all genomic comparisons. Deviations from this ideal either represent errors              
in sequence alignment or the presence of microdiversity that is likely present because cultures              
have been maintained in the laboratory. dRep and StrainPhlAn reported average ANI values of              
99.98%, 99.99% whereas inStrain reported average popANI values of 100% for 23 of the 24               
comparisons and 99.99996% for one comparison. The difference in performance arises because            
the Zymo cultures contain non-fixed nucleotide variants that inStrain uses to confirm population             
overlap but that confuse the consensus sequences reported by dRep and StrainPhlAn. 
 

 

Figure 2. InStrain accurately discriminates between closely related strains. a) Table demonstrating the             
circumstances under which conANI and popANI substitutions will be called. ConANI substitutions are called              
whenever the consensus base differs, and popANI substitutions are only called when there is no allelic overlap                 
between samples. b) Synthetic mutations were introduced to a reference genome of E. coli obtained from RefSeq                 
to generate variant genomes with specific ANI differences from the reference genome, and three tools were used                 
to compare the variant genomes to the reference genome. dRep and inStrain consistently reported accurate ANI                
values, while StrainPhlAn was inaccurate by a median of 0.03% ANI. c) A mock community of bacterial cells                  
was sequenced in biological triplicate and compared using three tools. InStrain performed best in correctly               
identifying that the genomes were identical in all three samples. d) The fecal microbiomes of three sets of twins                   
were compared using each of the three tools, and the number of bacterial genomes with ANI values above a range                    
of thresholds is plotted for pairs of twins (which are expected to share more strains) and pairs of unrelated infants.                    
InStrain remained sensitive at higher ANI thresholds than the other two tools.  
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We used the Zymo data to establish a threshold for the detection of “same” versus “different”                
strains. The thresholds for dRep, StrainPhlAn and inStrain, calculated based on the lowest             
average ANI across all 24 sequence comparisons, were 99.94% ANI, 99.97% ANI, and             
99.99996% ANI, respectively. Thus, inStrain can be used for detection of identical microbial             
strains with a stringency that is substantially higher than either other tool. Using the previously               
reported rate of 0.9 SNPs accumulated per genome per year in the gut microbiome of healthy                
human adults 1, in this test dRep is able to discriminate between strains that have diverged for at                  
least 2,528 years, StrainPhlAn for 1,307 years, and inStrain for 2.2 years ( Supplemental Table              
S1). Stringent thresholds are useful for strain tracking, as strains that have diverged for hundreds               
to thousands of years are clearly not linked by a recent transmission event.  
 
To compare the ability of the three methods to detect strains shared by twin premature infants,                
the microbiomes of six infants were processed according to the best recommended practice for              
each of the three tools. We then compared the number of strains found to be shared by twins and                   
non-twins over a range of ANI thresholds. All methods identified significantly more strain             
sharing among twin pairs than pairs of unrelated infants, as expected, but inStrain and dRep               
identified substantially more shared strains than StrainPhlAn and inStrain remained sensitive at            
substantially higher ANI thresholds than either of the other tools (Figure 2d) . We attribute the               
reduced ability of StrainPhlAn to identify shared strains to: (1) StrainPhlAn’s relies on a              
database of species-specific reference marker genes whereas inStrain and dRep use reference            
genomes assembled from the samples themselves. This can lead to failure to detect strains that               
are not sufficiently closely related to those in the reference database. For example, although              
inStrain identified 55 bacteriophage strains and 20 plasmid strains that were shared between at              
least two infants, StrainPhlAn detected 0, likely reflecting their poor coverage in reference             
databases. (Supplemental Table S1) . (2) Erroneous read mapping due to failure to consider             
paired read information. Reads that can be mapped to two genomes equally well, such as those                
coming from conserved regions of the genome, are randomly assigned to one genome and can               
corrupt the consensus sequence 23. InStrain’s use of paired read information substantially reduces             
this problem. (3) StrainPhlAn is able to detect only one strain per species in any sample, yet we                  
know that microbiomes can contain multiple coexisting strains. When two or more strains of a               
species are in a sample at similar abundance levels, this can lead to pileups of reads from                 
multiple strains and chimeric sequences. In combination, the reduced ability to detect truly             
shared strains and the limitations at high ANI thresholds needed to distinguish “same” from              
“different” limit the utility of the previously available tools for strain tracking. 
 
Siblings share significantly more microbial strains at birth than unrelated infant pairs 
We next applied inStrain to 1,163 fecal metagenomes from 160 premature infants born into the               
same neonatal intensive care unit 24. The dataset includes samples from six individual sampling              
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campaigns, involved the enrollment of 6 sets of monozygotic twins (MZ; identical), 20 sets of               
dizygotic twins (DZ; fraternal) and 3 sets of trizygotic (TZ) triplets, and over eight thousand de                
novo genomes from bacteria, bacteriophage, and plasmid colonists. Organisms that may have            
been introduced through contamination were removed based on their presence in sequenced            
negative controls, each genome set was de-replicated at 98% ANI to form “sub-species” groups,              
and representative genomes from each sub-species were combined into a single mapping            
database consisting of 2,266 genomes in order to reduce multi-mapped reads (Supplemental            
Figure S2) . All metagenomes were mapped to this dereplicated genome set and inStrain was              
used to profile the microdiversity of each mapping. In all cases where a sub-species was detected                
in multiple infants with over 50% breadth of coverage, inStrain was used to compare strains.  
 
A threshold of 99.999% popANI was chosen as the threshold to define bacterial, bacteriophage,              
and plasmid strains as being the same “strain” based on the Zymo experiment ( Figure 2c ) and                
comparisons between subspecies present in the same infant over time (based on the assumption              
that strain genotypes from samples collected within days or weeks of each other typically              
represent the same strain) (Supplemental Figure S3) . Thus, to be classified as the same strain,               
two populations must have no fixed differences within this margin of error. Of the 109,731               
comparisons made, 4,103 (grey lines in Figure 3a ) indicated that infants shared bacterial strains.              
Of these, 268 cases revealed sharing between pairs of siblings (despite sibling pair comparisons              
comprising only 0.3% of all comparisons; red lines in Figure 3a) . Further, the majority of               
bacterial strains that were identified in two and only two infants were shared between sibling               
pairs (Figure 3b,c) . Similar patterns were identified for bacteriophage and plasmid colonists            
(Supplemental Table S2). 
 
The majority of bacterial strains identified in this study were detected in only a single infant                
(1818 of 3044 strains). The most frequently colonizing strain ( Staphylococcus epidermidis           
158.2.ba_7) was identified in samples from 49 of the 160 infants. Six of the seven other most                 
frequently colonizing species were also Firmicutes, and many are known for their role in              
nosocomial infections, including Clostridioides difficile and Enterococcus faecalis .        
Pseudomonas aeruginosa, a Proteobacterium, is also implicated in nosocomial infections.          
Twelve strains colonized more than ten infants, including five strains of S. epidermidis, three              
strains of E. faecalis, two strains of C. difficile , and one strain each of P. aeruginosa and                 
Clostridium sp. (Figure 3g) . These frequently encountered strains may have specific adaptations            
that enable them to survive in the neonatal intensive care unit (NICU). Alternatively, they may               
be acquired from health care workers that commonly interact with these infants. 
 
Overall, siblings shared significantly more strains of bacteria, bacteriophage, and plasmids than            
unrelated infant pairs ( Figure 3d) . However, among siblings, monozygotic (MZ) twins shared no             
more strains than dizygotic (DZ) twins and trizygotic (TZ) triplets (Figure 3e) . Infants born at               
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more chronologically similar times shared significantly more strains of bacteriophages and           
plasmids, supporting the role of the hospital room environment in shaping initial bacteriophage             
and plasmid strain acquisition (Supplemental Figure S4) . Infants born with similar gestational            
ages and birth weights also shared significantly more strains of bacteria, bacteriophages, and             
plasmids than those with different ages and weights ( Figure 3f ; Supplemental Figure S4) . In              
combination, the results point to the role of infant physiology, sibling status, and calendar date of                
birth (i.e., similar date of residence in the NICU) in strain acquisition. 
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Figure 3. Siblings share significantly more microbial strains at birth than unrelated infants. a,b) A link is                 
drawn for each strain shared between pairs of infants (represented by rectangles along the circumferences). Links                
between sibling pairs are drawn in red, links between unrelated infants are drawn in grey. Diagrams are made                  
displaying all strains (a) and only strains that are uniquely in two and only two infants (b). c) Enumeration of                    
links drawn in (a) and (b). d) Twin pairs share significantly more strains of all domains than unrelated pairs (****                    
= p < 1e-15). e) Identical twin pairs do not share significantly more strains than fraternal twin pairs. f) Infants                    
born more closely in gestational age share significantly more bacterial strains. g) Most strains colonize only a                 
single infant, but some strains colonize many more. For each minimum number of infants colonized (x-axis), the                 
percentage of total infant colonizations by strains above that threshold is shown. The top eight microbial species                 
are assigned a color, and highly colonizing strains (≥ 5 infants) of each species are assigned a shade of that color. 
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Nucleotide diversity of the premature infant microbiome  
Over the sampling time-series in this study (generally the first few months of life), hospitalized               
infants were colonized by an average of 17.8 ± 0.7 sub-species of bacteria, 26.9 ± 1.5                
sub-species of bacteriophage, and 7.4 ± 0.3 sub-species of plasmids per infant (mean ± SEM;               
colonization defined as detection of genome at >5x depth coverage across ≥ 50% of the genome)                
( Supplemental Table S3 ). As the 160 infants were sampled over six different campaigns, each              
using a unique combination of library preparation methodology, Illumina machine for           
sequencing, and institutional sequencing center, we first tested for effects related to sampling             
campaign. Infants of the same campaign were not more likely to share strains (Supplemental              
Figure S4) , but measured nucleotide diversity among colonists varied significantly between the            
six different sampling campaigns, primarily driven by differences in library preparation           
methodology and the DNA sequencing machine used (Supplemental Figure S5). We thus            
analyzed each cohort separately for relationships between microdiversity and infant metadata,           
allowing us to validate the consistency of inStrain when run using different sequencing             
methodologies.  
 
Bacteria had significantly higher nucleotide diversity than plasmids and phage in 4/6 campaigns,             
whereas plasmids had the lowest nucleotide diversity in 4/6 campaigns (Supplemental Figure            
S5). Relative to other bacteria, Proteobacteria had significantly higher and Firmicutes           
significantly lower nucleotide diversity in 3/6 and in 4/6 campaigns, respectively (Supplemental            
Table S2) . Approximately 75% of premature infants were born via cesarean section (118/160),             
and their bacterial colonists had significantly higher nucleotide diversity than vaginally delivered            
infants in the NIH4 and Sloan2 cohorts and overall (Figure 4a) . This effect was particularly               
striking for Klebsiella (Figure 4b) , and the difference remained significant even when excluding             
infants in the NIH4 and Sloan2 cohorts (Supplemental Figure S4).  
 
The mean bacterial nucleotide diversity within infants did not change over the sampling time.              
However, bacteriophage and plasmid nucleotide diversity decreased following administration of          
antibiotics, and bacteria, bacteriophage, and plasmid nucleotide diversity increased after the           
cessation of antibiotics (Figure 4c) . Subspecies detected for the first time later in life had               
significantly lower nucleotide diversity than those detected earlier (Figure 4d; P = 0.03),             
potentially reflecting increasing selective pressures with increasing gut microbiome complexity.          
Bacterial subspecies that were detected in more infants generally had higher nucleotide diversity             
(Figure 4e). 
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Figure 4. Analysis of the microdiversity of premature infant colonists . a) Overall and among two of the six                  
individual study cohorts, infants born via C-section had host microbes with higher nucleotide diversity than those                
delivered vaginally (* = p < 0.05). b) Organisms of the genus Klebsiella have significantly higher nucleotide                 
diversity in infants born via C-section than those delivered vaginally. c) Among organisms present in multiple                
time-points during antibiotic administration, nucleotide diversity tended to decrease upon administration of            
antibiotics and increase following cessation of antibiotics. d) Bacterial organisms acquired later in life tended to                
have lower nucleotide diversity than those acquired earlier in life. e) Bacterial organisms that colonized greater                
number of infants tended to have higher nucleotide diversity. 

 
Finally, we performed a statistical test to identify genes with significantly different            
microdiversity than other genes in the genome (Table 5) . Genes with significantly lower             
microdiversity include house-keeping genes like ribosomal protein S16 in bacteria and ParB in             
bacteriophage (where it is used to maintain circular lysogens 25), as well as genes with more                
interesting functions including a plasmid-encoded polymyxin resistance protein, which is          
predicted to confer resistance to polymyxin antibiotics 26, and bacteriophage lambda head            
decoration protein D, which stabilizes the expansion of the capsid after genome packaging 27.              
Among the genes with significantly higher microdiversity than the average gene are a             
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bacterial-encoded gene with an immunoglobulin (Ig) domain (which can be involved in cell             
adhesion and invasion 28) and a bacteriophage gene encoding tail fibers (which are often involved               
in host cell recognition 29). Interestingly, both the Ig domain protein and tail fiber protein are                
involved in host interaction.  
 
Table 5. Genes with significantly higher or lower microdiversity than the rest of the genome. 
Type Taxonomy Gene ID q-value pFam Description 

Low microdiversity 

bacteria 

E. faecalis 23754 7.93E-20 PF00886.18 Ribosomal protein S16 

S. epidermidis 16419 9.51E-15 PF02597.19 ThiS family 

K. pneumoniae 15325 4.33E-10 PF02617.16 ATP-dependent Clp protease 
 adaptor protein ClpS 

phage 

Escherichia 223 9.39E-06 PF08775.9 ParB family 

E. coli 205 0.00011027 PF02924.13 Bacteriophage lambda head  
decoration protein D 

Phietavirus 334 0.00018497 PF00692.18 dUTPase 

plasmid 

Bacilli 0 0.00013818 PF02388.15 FemAB family 

K. aerogenes 281 0.00034062 PF11183.7 Polymyxin resistance protein PmrD 

S. epidermidis 290 0.00043106 PF01479.24 S4 domain 

High microdiversity 
 

bacteria 

S. epidermidis 15627 6.23E-43 PF05345.11 Putative Ig domain 

K.pneumoniae 15332 2.38E-34 PF00465.18 Iron-containing alcohol 
dehydrogenase 

E. faecalis 23792 4.03E-32 PF13731.5 WxL domain surface cell 
wall-binding 

phage 

Escherichia 226 1.25E-13 PF03400.12 IS1 transposase 

E. coli 243 6.41E-12 PF03406.12 Phage tail fiber repeat 

E. faecalis 293 1.18E-08 PF01183.19 Glycosyl hydrolases family 25 

plasmid 

Unknown 358 1.95E-28 PF00665.25 Integrase core domain 

Bacilli 11 4.84E-25 PF03432.13 Relaxase/Mobilisation nuclease 
domain 

Clostridium 374 9.71E-14 PF02782.15 FGGY family of carbohydrate 
kinases, C-terminal domain 
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Tracking specific genetic variants within and between populations 
To investigate the relationship between the diversity of a population within a single infant              
(intra-infant diversity) and the diversity of populations of the same subspecies in multiple             
different infants (inter-infant diversity), we performed a detailed analysis of an Enterococcus            
faecalis bacteriophage (subspecies 482_10.ph) that was present at high coverage depth (>20x)            
and breadth of coverage (>80%) in 44 infants in our cohort ( Supplemental Table S3 ). Genes               
with a substantial number of intra-infant SNPs had correspondingly more fixed inter-infant            
substitutions ( Figure 6b) . We observed that 72% of sites with inter-infant fixed substitutions             
were also found as intra-infant polymorphisms, indicating that a large fraction of the intra-infant              
polymorphic variation observed within an infant could be ascribed to mixing of variants that are               
found alone in other individuals ( Figure 6d ). 34% of intra-infant SNPs were also found to be                
polymorphic in at least 3 different infants, indicating a substantial overlap in polymorphic             
variation across infants (Supplemental Table S4). 
 
Seven of the fifty-one genes annotated on the E. faecalis bacteriophage genome had dN/dS ratios               
over 0.5, including five proteins of unknown function, a DnaB replication initiation homolog,             
and a predicted distal tail gene ( Figure 6ab ). The predicted distal tail gene, which might play a                 
role in host specificity, was also found to have a relatively low intra-infant pN/pS ratio, possibly                
indicating selection for variation between but not within individual populations. Multiple small            
hypothetical proteins also had high dN/dS ratios, one of which was only present in ~50% of                
infants ( Figure 6c) . The relaxed purifying selection indicated by high dN/dS ratios and the              
variable presence of these genes perhaps indicates an accessory or vestigial function. 
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Figure 6. Tracking specific genetic differences within and between populations of an E. faecalis              
bacteriophage. a) Frequencies of gene deletions, substitutions, and SNPs for all genes across an E. faecalis                
bacteriophage genome identified in 44 infants. Genes are colored based on their annotations. b) Frequency of                
observed substitutions (fixed differences between pairs of infants) in each gene versus frequency of SNPs               
(positions with multiple alleles in an individual infant). c) Ratios of non-synonymous to synonymous substitutions               
(dN/dS ) and ratios of non-synonymous to synonymous population-level variants (pN/pS ) for each gene. d)              
Classification of variant sites observed across infants only as substitutions, only as SNPs, and as both. 

 
Discussion 
InStrain is an integrated and versatile program for profiling the microdiversity of organisms from              
metagenomic data. Its ability to perform microdiversity-aware genomic comparisons offers          
several advantages over existing pipelines, including the consideration of major and minor            
alleles, thus accounting for the presence of coexisting strains. Because it uses sample-assembled             
genomes and full paired-read information there is greatly increased confidence that reads are             
aligned correctly, which improves the high resolution comparisons being made based on entire             
genomes. Many of these capabilities have been successfully implemented individually in           
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previous studies 15,19,30–33. However, their simultaneous integration into a well-documented and           
easy to use pipeline allows substantially more rigorous detection of near-identical strains than the              
existing commonly used pipelines ( Figure 2 ) used in recent high-profile publications to quantify             
the ecologically critical process of microbiome transmission 14,34. The method substantially           
increases the stringency of evidence for strain sharing and thus identification of the factors that               
determine the extent to which this occurs. 
 
Twin studies have previously been used to elucidate relationships between host genetics and             
human microbiome composition, with the basic premise being that because twins are reared             
together and share similar environments, increased microbiome similarity between MZ twins           
compared to DZ twins can be ascribed to genetic effects 35. Although studies of adult twins have                 
consistently found some microbial taxa to be more commonly identified in MZ than DZ twins               
36–39, diet and lifestyle preferences have also been shown to be more similar in MZ twins than DZ                  
twins 40–42 , presenting significant potential for confounding effects. In contrast to prior studies,              
all subjects in the current study were housed in the same NICU for the entirety of sampling time.                  
Our findings, based on new and demonstrably more robust methods, indicate that MZ twins              
shared no more strains of bacteria, bacteriophage, or plasmids than DZ twins. This points to a                
minimal role of human genetics in early life strain colonization. 
 
Initial colonists are believed to have an outsized role in microbiome development 43,44. The              
hospitalized premature infants in this study were all given prophylactic antibiotics immediately            
after birth, housed in isolettes that maintained separation from other infants, and ~75% were born               
by cesarean section. These factors likely limited their exposure to microbes from the mother,              
other family members, and the external home environment. The patterns of strain-sharing among             
infants in this study suggest the importance of i) Family-specific sources . Strains present in two               
and only two infants were significantly more likely to be shared between siblings (Figure 3) ,               
highlighting the role of strain sources such as shared visitors and/or parents in infant              
colonization. ii) The hospital environment . Non-sibling infants born at similar times           
chronologically shared more strains than those born further apart, indicating that the local             
hospital microbiome plays a role in strain acquisition. The identification of strains of ESKAPE              
pathogens (known for their antibiotic resistance and ability to cause nosocomial infections)            
colonizing large numbers of infants further points to the hospital room as an important source of                
initial strains. These highly-colonizing strains may have been dispersed in part by healthcare             
workers that interact with many infants. iii) Infant physiology . Infants with similar physiological             
properties such as gestational age and birth weight shared significantly more strains, potentially             
due to differences in the development of the human immune system or physical gut environment.               
iv) Unique sources . The majority of strains identified were found in only a single infant,               
demonstrating that even in a highly-cleaned environment like the NICU, initial microbiota            
acquisition is a largely individualized process.  
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It is difficult to distinguish microbiome diversity that is evolved in situ from that introduced by                
immigration 1,10. In this study of newborn infants we found evidence that initial bacterial              
microdiversity can be related to mode of acquisition; Klebsiella had higher levels of nucleotide              
diversity in infants born via C-section than those born vaginally, suggesting that there is a more                
diverse pool of Klebsiella strains in the operating room (where Enterobacteriaceae have            
previously been identified 45) than in the maternal microbiome. Firmicutes may have had lower              
levels of nucleotide diversity than Proteobacteria overall due to their propensity for spore-based             
transmission 46. Patterns of nucleotide diversity in relation to antibiotic administration are            
consistent with increasing and decreasing selective pressures during and following antibiotic           
administration, respectively (Figure 4c) . The general increase in nucleotide diversity and dN/dS            
ratios of genes involved in cell-cell interactions compared to other functions indicates that these              
genes are likely under diversifying selection. Identification of house-keeping genes with lower            
than average nucleotide diversity demonstrates the utility of inStrain for identifying genes under             
purifying selection (Table 5) . The finding that the bacterial strains that colonize the most infants               
also have the highest nucleotide diversity in infants (Figure 4e) is indicative of a relationship               
between the diversity of the inoculation source (especially the NICU) and the ability of an               
organism to widely colonize newborns. 
 
By reporting and classifying all gene variants, inStrain enables locus-specific analyses of the             
genetic differences within and between populations. Further, as inStrain also does not rely upon              
reference databases or conserved bacterial marker genes, it is capable of tracking genetic             
variation in bacteriophages and plasmids. For example, applying inStrain to a highly prevalent E.              
faecalis bacteriophage confirmed a relationship between the diversity within individual infants           
and the subspecies diversity overall, and identified specific genes with divergent dN/dS ratios             
and variable presence (Figure 6) . Specifically, we found evidence that nonsynonymous changes            
in a tail fiber gene are purged within infants (possibly to maintain infectivity), yet selected for                
between infants (suggestive of variation in bacterial host immunity). 
 
Diversity is a hallmark of stable and healthy human microbiomes 47–49. While microbial diversity              
is typically measured by quantifying the number and evenness of microbial species or genera              
present in a sample, the detected microbial taxa represent larger populations of cells with              
within-population genetic heterogeneity. Microdiversity may increase the likelihood of harboring          
a fit genotype as conditions change. Alternatively, an overall wider gene variant pool may reflect               
adaptation to spatial variation in local environmental conditions. InStrain allows scientists to            
easily measure and analyze population microdiversity. In existing and future metagenomic           
sequencing-based projects, there is the potential to improve our understanding of relationships            
between microbial population diversity and resilience, stability, population-level phenotypes and          
to track ecologically relevant processes such as strain migration and in situ evolution. 
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Methods 
Benchmarking inStrain against other methods 
Synthetic comparisons ( Figure 2b ) were performed by using SNP Mutator 50 to introduce a              
known number of mutations into a reference genome ( Escherichia coli strain SQ88; RefSeq             
accession number GCF_000988385.1) and comparing the mutated genomes to the original           
reference genome. For dRep, mutated genomes were compared to the reference genome using             
dRep on default settings. For inStrain and StrainPhlAn, Illumina reads were simulated for all              
genomes at 20x coverage using pIRS 51. For inStrain, synthetic reads were mapped back to the                
reference genome using Bowtie 2 23, profiled using “inStrain profile” under default settings, and              
compared using “inStrain compare” under default settings. For StrainPhlan, synthetic reads           
profiled with Metaphlan2 21, resulting marker genes were aligned using StrainPhlan, and the ANI              
of resulting nucleotide alignments was calculated using the class         
“Bio.Phylo.TreeConstruction.DistanceCalculator('identity')” from the BioPython python package      
52. Raw values from this analysis are available in Supplemental Table S1. 
 
Isolate-based comparisons ( Figure 2c ) were performed based on the ZymoBIOMICS Microbial           
Community Standards product (Catalog #D6300). Three samples were prepared from aliquots of            
this mixture of cells in which DNA extraction, library preparation, and in silico sequence              
trimming and analysis were performed separately. For dRep, reads from each sample were             
assembled independently using IDBA-UD 53, binned into genomes based off of alignment to the              
provided reference genomes   
( https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip) using  
nucmer 54, and compared using dRep on default settings. For StrainPhlAn, reads from Zymo              
samples profiled with Metaphlan2, resulting marker genes were aligned using StrainPhlan, and            
the ANI of resulting nucleotide alignments was calculated as described above. For inStrain, reads              
from Zymo samples were aligned to the provided reference genomes using Bowtie 2, profiled              
using “inStrain profile” under default settings, and compared using “inStrain compare” under            
default settings. “popANI” values were used for inStrain. Eukaryotic genomes were excluded            
from this analysis, and raw values are available in Supplemental Table S1. 
 
Twin-based comparisons (Figure 2d) were performed on three randomly chosen sets of twins             
that were sequenced during a previous study 24. For StrainPhlAn, all reads sequenced from each               
infant were concatenated and profiled using Metaphlan2, compared using StrainPhlAn, and the            
ANI of resulting nucleotide alignments was calculated as described above. For dRep, all             
de-replicated bacterial genomes assembled and binned from each infant (available from 24) were             
compared in a pairwise manner using dRep under default settings. For inStain, strain-sharing             
from these six infants was determined using the methods described below. ANI values from all               
compared genomes and the number of genomes shared at a number of ANI thresholds are               
available for all three methods in Supplemental Table S1. 
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Calling, detection, and profiling of sub-species of bacteria, bacteriophage, and plasmids 
Genomes of bacteria, bacteriophage, plasmid, and eukaryotes were previously binned from the            
infants comprising this study, as described previously 24 (genomes are available for download at              
https://doi.org/10.6084/m9.figshare.c.4740080.v1). To generate a single genome set, all bacterial         
genomes were compared to each other using dRep version 2.2.0 under default settings, all              
bacteriophage genomes were compared to each other using the command “dRep dereplicate            
--S_algorithm ANImf -nc .5 -l 10000 -N50W 0 -sizeW 1 --noQualityFiltering --clusterAlg            
single”, and all plasmid genomes were compared to each other using the same command as               
bacteriophages. Genomes with ANI >= 98% were classified as the same subspecies, and the              
genome with the highest score (as determined by dRep) was chosen as the representative genome               
from each subspecies. Bacteriophage and plasmid genomes with taxonomic classifications          
specifying “Eukarya” were marked as “likely human” and excluded from further analysis.            
Information about sub-species is available in Supplemental Table S3. 
 
Reads from each individual fecal sample, reads from each infant concatenated together (referred             
to as “coReads”), and reads from all negative extraction control samples concatenated together             
were mapped to all representative sub-species genomes concatenated together using Bowtie 2            
with default settings. “InStrain profile” was run on all resulting mapping files with default              
settings. Detection of a sub-species in a sample was defined as that genome being present with                
>= 0.5 unmaskedBreadth (meaning that at least half of the bases in the genome were covered by                 
at least 5 reads). Mappings from coReads were used for all analyses unless otherwise specified.               
Subspecies detected in the negative extraction control sample, and genomes detected           
significantly more often in one of the six individual sampling campaigns were marked “likely              
contaminant” and excluded from further analysis. Information on sub-species abundance is           
available in Supplemental Table S3. 
 
Identification of strains and associations with metadata 
Strain-level comparisons were performed between subspecies detected in multiple samples from           
the same infant over time-series sampling, and strain-level comparisons were performed between            
subspecies detected in the coReads of multiple infants. For within-infant subspecies           
comparisons, all subspecies detected in multiple individual samples from an infant (as described             
above) were compared using “inStrain compare”. Raw values are available in Supplemental            
Table S2 . For between-infant subspecies comparisons, subspecies that were detected in coRead            
samples from multiple infants (or the coRead sample consisting of all negative extraction             
controls) were compared using “inStrain compare” with default settings. A distance matrix then             
created for each subspecies based on popANI values, and this matrix was used to cluster               
subspecies into a number of individual strains using ‘average’ hierarchical clustering with a             
threshold of 99.999% ANI with the scipy cluster package 55. Strains that were present in the                
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reads from the negative extraction control, and strains from subspecies that were filtered out              
using the methods described above were removed from further analysis. Raw comparison values             
and strain identities are available in Supplemental Table S2. 
 
The number of strains shared between infants was visualized in Figure 3ab using Circos 56. The                
strain-level Jaccard distance between infants was calculated according to the formula: Jaccard            
similarity = number of strains shared by both infants / number of strains present in either infant.                 
P-values for Jaccard similarity are based on the Wilcoxon rank-sum statistic between all twin              
pairs and all non-twin pairs, as calculated using the python module scipy.stats.ranksums 55.             
Associations between the number of strains shared between infants and their difference in birth              
day, birth weight, and gestational age was determined by first binning the metadata variable into               
windows of size 20 (birth weight, gestational age) or 1 (gestational age) and calculating the               
average number of strains shared between infants within that window. Siblings were excluded             
from this analysis. P-values and R2 values are based on linear regression, as calculated using the                
python module sklearn. 
 
The visualization in Figure 3g was created by first identifying the eight bacterial species with               
the highest colonizing strain, and then assigning a specific color to each strain within these eight                
species that colonized at least five infants. For each value on the x-axis, the y-axis displays the                 
proportional count of the total strains detected in infants by strains that colonized at least that                
value of infants. 
 
Nucleotide diversity analysis 
The coReads inStrain analysis described above resulted in a total of 8,336 subspecies / infant               
pairs in which the subspecies genome was detected at 5x coverage across at least 50% of the                 
genome. The Wilcoxon rank-sum statistic (as implemented in Scipy 55) was used to compare the               
nucleotide diversity of different sets of genomes and generate p-values. 
 
Time-series sampling information from individual infants was used to analyze nucleotide           
diversity in relation to antibiotic administration (Figure 4c) . Using the same definition of             
presence as described above, subspecies were identified that were present in at least two of the                
following three windows: seven days prior to antibiotic administration, during antibiotic           
administration, seven days after antibiotic administration. To determine whether antibiotic          
administration changed before as compared to during antibiotic administration, for each           
organism type (bacteria, plasmid, or bacteriophage), the nucleotide diversities of all subspecies            
of that type present in both widows were subjected to a two sided dependent t-test (as                
implemented using the Scipy module “scipy.stats.ttest_rel”). The same procedure was used to            
test for significant differences between “during” and “after” antibiotic administration, and           
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“before” and “after” antibiotic administration. P-values were corrected for multiple testing using            
Benjamini-Hochberg p-value correction. 
 
Samples for individual fecal samples were also used to test for differences between subspecies              
microdiversity and date of subspecies acquisition (Figure 4d) . Samples within five days of             
antibiotic administration were excluded from this analysis, the first day that a bacterial             
subspecies was detected as present was plotted against the nucleotide diversity of the subspecies              
in that sample, and a linear regression line of best fit was plotted for infants deriving from each                  
sampling campaign. A binomial t-test (as implemented using the Scipy module           
scipy.stats.binom_test) was used to determine the p-value for 6/6 campaigns displaying a            
negative slope. 
 
Gene-based nucleotide analysis 
InStrain was used on default settings to profile genes for all detected subspecies in individual               
samples and coReads, using gene annotations provided by Prodigal 57 run in metagenome mode              
on original assemblies. Genes with significantly different coverage and/or nucleotide diversity           
than the rest of genes on the genome were identified using data from coReads profiling of                
subspecies. For each genome present in at least three infants, the coverage / nucleotide diversity               
of each gene on the genome across all infants in which the subspecies was present were                
compared to the coverage / nucleotide diversity of all other genes on the genome across all                
infants in which the subspecies was present using the Wilcoxon rank-sum statistic (as             
implemented in Scipy). P-values were corrected to q-values to account for multiple hypothesis             
testing using Benjamini-Hochberg p-value correction. Genes were annotated based on pFam           
database HMMs 58. For display in Table 5 , only genes with pFam annotations that did not                
include the words “Uncharacterized” or “unknown” in the description were retained, all genes             
with significant differences in coverage (in addition to nucleotide diversity) were excluded, and a              
maximum of one gene from each taxonomic annotation was allowed for inclusion in each              
quadrant of high/low microdiversity and organism type. 
 
Tracking specific nucleotide variants 
Enterococcus faecalis bacteriophage subspecies 482_10.ph was identified with at least 80%           
breadth of coverage and 20x coverage depth in the coReads of 44 infants. Open reading frames                
were called using Prodigal in metagenome mode, and genes were annotated using USEARCH to              
search against the UniRef100 database. Gene categories (tail-associated, structural, etc.) were           
assigned based on manual inspection of the resulting database hits. The gene map presented in               
Figure 6a was generated using the python module “dna_features_viewer”. 
 
Bi-allelic SNPs (intra-infant variants) were identified based on the results of “inStrain            
profile_genes”, where the resulting “SNP_mutation_types” table was subset to SNVs with an            

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915579doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915579
http://creativecommons.org/licenses/by/4.0/


 

allele_count of 2. Substitutions (inter-infant variants) were identified from the “SNVs” table            
resulting from the operation “inStrain profile”, where the table was subset to SNVs with an               
allele_count of 1. The number of genomic locations where an SNV was identified in at least one                 
infant, where a substitution was identified in at least one infant, and where both were identified                
in at least one infant was displayed in a waffle plot using the python module “PyWaffle”.  
 
Synonymous and nonsynonymous variants were identified using inStrain, and the total number            
of synonymous and nonsynonymous sites in each gene was determined using methods from the              
script “dnds_from_drep.py” 59. dN/dS was calculated using the formula [(non-synonymous          
substitutions / non-synonymous sites) / (synonymous substitutions / synonymous sites)], and           
pN/pS was calculated using the formula [(non-synonymous SNPs / non-synonymous sites) /            
(synonymous SNPs / synonymous sites)]. The number of substitutions per kbp and the number of               
SNPs per kbp were calculated by dividing the total number of substitutions / SNPs identified in                
each gene in all infants by the sum of the length of the gene times the masked breadth (the                   
percentage of the gene with at least 5x coverage; the coverage required to call a SNV) of the                  
gene for each infant the gene was identified in. Genes with a masked breadth ≥ 50% were                 
defined as being present, and the gene deletion frequency was calculated as the percentage of               
infants where the gene was not present. 
 
Supplemental Information 
 
Supplemental Figure S1. Graphical comparison of inStrain to other strain-level analysis           
pipelines. 
 
Supplemental Figure S2. Genome de-replication at 98% ANI reduces multi-mapped reads. a)            
Reads from sample N1_004_0008G1 were mapped to the set of genomes exclusively assembled             
from infant N1_004 (primary mapping), and reads that mapped to genome           
dasN1_004_010G1_maxbin2.maxbin.002 in the primary mapping were next mapped to set of           
genomes consisting of all genomes assembled from all infants de-replicated at 99.8% ANI             
(secondary mapping). The number of reads mapping to genome         
dasN1_004_010G1_maxbin2.maxbin.002 is the secondary mapping is shown with an orange dot,           
and the number of reads mapping to other genomes in the secondary mapping are shown with                
blue dots. The probability of occurrence of an identical 190bp stretch (the length of read pairs in                 
sample N1_004_0008G1) given an overall genome ANI is drawn with a dotted line using the               
formula: Probability of identical 190bp fragment = (genome ANI) ^ 190. The fit between the               
data and the line indicate that read pairs fail to map to the original genome in the secondary                  
mapping due to the presence of identical regions in alternate genomes. b) The same process was                
performed as described in ( a ), but the secondary mapping was filtered to remove all read pairs                
with MapQ scores less than 2, removing read pairs that map equally well to two locations. In this                  
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context, only a miniscule number of reads map to alternate genomes in the secondary mapping,               
but the number of reads mapping to the original genome is reduced substantially compared to               
(a). For more information see the online inStrain documentation. 
 
Supplemental Figure S3. Genomic comparisons between subspecies present in the same infant            
over time. In cases where the same subspecies was detected in multiple time-points over the               
time-series sampling of an infant, the percentage of comparisons between these subspecies that             
exceed various popANI (a) and conANI (b) thresholds is plotted. The use of popANI allows               
greater stringency than conANI.  
 
Supplemental Figure S4 . Metadata associated with strain sharing and nucleotide diversity. a)            
Associations between strain sharing and birth weight, gestational age, and birth study day for              
bacteria, bacteriophages, and plasmids. b) Infants of the same campaign are not more likely to               
share strains. 
 
Supplemental Figure S5. Metadata associated with nucleotide diversity. a) Nucleotide diversity           
is associated with library preparation methodology and sequencing machine used. b) Nucleotide            
diversity of plasmids, bacteriophages, and bacteria in the six sampling campaigns. Cases where             
one class has a nucleotide diversity significantly different from the other two within a sampling               
campaigned are annotated ( P < 0.05; Wilcoxon rank-sums). c) The association between            
Klebsiella and birth mode remains significant when not considering samples from the Sloan2 and              
NIH4 campaigns. 
 
Supplemental Table S1. Information related to inStrain benchmarking. 
 
Supplemental Table S2. Strain-level comparisons within infant samples, between infant          
coReads, and strain identities. 
 
Supplemental Table S3. Abundance of subspecies in all infants, individual samples, and            
controls, and information about subspecies genomes and representatives. 
 
Supplemental Table S4. Detailed SNP information for Enterococcus faecalis bacteriophage          
subspecies 482_10.ph. 
 
Supplemental Document S1. InStrain program documentation.  
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