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Abstract and Key Terms: 43 

Computational studies can be used to support the development of peripheral 44 

nerve interfaces, but currently use simplified models of nerve anatomy, which may 45 

impact the applicability of simulation results. To better quantify and model neural 46 

anatomy across the population, we have developed an algorithm to automatically 47 

reconstruct accurate peripheral nerve models from histological cross-sections. We 48 

acquired serial median nerve cross-sections from human cadaveric samples, staining 49 

one set with hematoxylin and eosin (H&E) and the other using immunohistochemistry 50 

(IHC) with anti-neurofilament antibody.  We developed a four-step processing pipeline 51 

involving registration, fascicle detection, segmentation, and reconstruction. We 52 

compared the output of each step to manual ground truths, and additionally compared 53 

the final models to commonly used extrusions, via intersection-over-union (IOU). 54 

Fascicle detection and segmentation required the use of a neural network and active 55 

contours in H&E-stained images, but only simple image processing methods for IHC-56 

stained images. Reconstruction achieved an IOU of 0.42±0.07 for H&E and 0.37±0.16 57 

for IHC images, with errors partially attributable to global misalignment at the 58 

registration step, rather than poor reconstruction. This work provides a quantitative 59 

baseline for fully automatic construction of peripheral nerve models. Our models 60 

provided fascicular shape and branching information that would be lost via extrusion.  61 

 62 
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1. INTRODUCTION 81 

Neural interfaces (NIs) are systems that serve to exchange information 82 

between target neural structures and artificial devices. NIs are used in 83 

neuroprosthetic systems aiming to restore sensorimotor function after damage to the 84 

nervous system, as well as in neuromodulation systems aiming to treat diseases 85 

through the alteration of regulatory neural signals. Applications of NIs implanted in 86 

the peripheral nervous system include: restoring movement after paralysis (1); 87 

creating prosthetic limbs with intuitive control and sensory feedback(2); and treating 88 

conditions such as bladder dysfunction(3), epilepsy(4), hypertension(5), as well as 89 

inflammatory and autoimmune disorders(6). Despite their potential benefits, 90 

widespread implementation of NIs in the peripheral nervous system still faces 91 

several obstacles, including damage to neural tissue, a lack of long-term stability, 92 

and low signal resolution(7). These issues may be solved, or at least mitigated, by 93 

improving the design of new NIs. Improvements may include use of new materials or 94 

electrode designs, which have the potential to increase the effectiveness and 95 

reliability of NIs.  96 

An important part of the design process for new NI designs is computational 97 

modeling (8–10). To be useful, a model should contain sufficient detail to capture the 98 

relevant features of the system of interest. Unfortunately, many existing peripheral 99 

nerve models used to design and evaluate NIs have been based on simplified 100 

anatomy – either by extruding a single “realistic” cross-section, or by assuming 101 

fascicles possess circular and/or elliptical cross-sections (11–13). Recent studies 102 

have shown that differences in peripheral neural anatomy, such as fascicular 103 

branching, can significantly alter the characteristics of neural recordings and the 104 
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conclusions drawn from a computational model. Using an anatomically accurate 105 

fascicular model can for example alter the relative amplitudes across electrode 106 

recording sites, affecting conclusions about selectivity (14). Complementing this 107 

finding, implanting an electrode before or after a fascicular branch has been shown 108 

to alter recording selectivity in vivo (15). Thus, computational models that accurately 109 

reflect fascicular anatomy will improve the validity and applicability of the 110 

conclusions, and may ultimately lead to improved NI designs(13). 111 

An anatomically accurate model of a peripheral nerve can be constructed 112 

using data acquired from a variety of imaging modalities, including histological cross-113 

sections, Micro-Computed Tomography (MicroCT), Optical Projection Tomography 114 

(OPT), or Magnetic Resonance Imaging (MRI) (14,16,17). To date, either fully 115 

manual or semi-automatic procedures have been used to reconstruct peripheral 116 

nerve models from image data (17–19). However, the internal anatomy of peripheral 117 

nerves varies across the population, so simply acquiring one fascicular model fails to 118 

capture the population-level variability that may be useful to inform NI design or 119 

surgical decision making (20). Considering the benefits of capturing population-level 120 

anatomical data, coupled with the rapidly increasing interest in peripheral NIs for 121 

multiple applications, this manual or semi-automatic construction of computational 122 

models becomes non-feasible. 123 

This paper introduces an image processing pipeline that, given a set of 124 

histological cross-sections of a nerve, aims to automatically identify and segment 125 

fascicles, and reconstruct a 3D model of a nerve’s internal fascicular anatomy. This 126 

tool is intended to greatly facilitate the generation of peripheral nerve models, while 127 
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improving their anatomic fidelity. These reconstructions can replace simplified 128 

extrusion models to produce more accurate simulation outputs, incorporate 129 

statistical information about the population, and thus better inform the design of 130 

future NIs. The system we developed ultimately proves to be a baseline for future 131 

development, supported by quantitative data. 132 

2. MATERIALS AND METHODS 133 

A four-step process was used to process images: 1) registration of consecutive 134 

slices; 2) fascicle detection; 3) fascicle segmentation; and 4) 3-dimensional 135 

reconstruction. Details of the data acquisition and processing steps follow below.  136 

2.1. Sample Acquisition 137 

Acquisition of high quality nerve samples will allow for generation of the best 138 

possible quality images for automatic registration and segmentation. Five median nerve 139 

specimens obtained from embalmed human cadaveric forearms were used. Exclusion 140 

criteria included any visible evidence of deformities, previous surgery, or pathology. 141 

Ethics approval was obtained from the University of Toronto, Health Sciences Research 142 

Ethics Board (#27210). The median nerve was chosen as it is both relatively easy to 143 

extract and relevant for the purpose of upper limb NI applications. 144 

To obtain the nerve segments for histological analysis, all superficial tissues were 145 

removed to expose the flexor digitorum superficialis muscle (FDS) and median nerve 146 

from the medial epicondyle to the nerve’s entry point into the muscle belly. Next, the 147 

median nerve and FDS were excised proximally at the elbow and distally at the wrist. 148 

The excised specimen was placed in a tray and the median nerve dissected to expose 149 

the intramuscular nerve branches. (Figure 1, top) 150 
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For histological analysis, two median nerve segments were obtained from each 151 

of the five specimens. The proximal segment was obtained by ligating the nerve 152 

approximately 2 cm proximal and distal to the first bifurcation point (4 cm segments). 153 

The distal segment consisted of the same length of nerve proximal and distal to the 154 

second bifurcation point (Figure 1, bottom). The proximal and distal nerve segments 155 

from two specimens (n=4) were used to determine optimal staining methods, while the 156 

remaining nerve segments (n=6) were used for data collection.  157 

 158 
Fig. 1: Top: A length of median nerve surrounded by flexor digitorum superficialis 159 

muscle excised from a cadaveric specimen. Bottom: The same sample, showing the 160 

nerve with the sections marked for extraction  161 

2.2. Histology 162 

All histological processing was performed by the Centre for Phenogenomics 163 

(Toronto, Ontario). The nerve segments were fixed in formalin, embedded in paraffin, 164 

and sectioned at 5μm thickness separated by 250μm intervals, resulting in 2-5 165 

contiguous blocks of nerve slices per segment. From each specimen, either the 166 

proximal or the distal segment was stained with hematoxylin and eosin (H&E) and the 167 
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other segment with anti-neurofilament antibody immunohistochemistry (IHC) (Figure 2). 168 

The sections were mounted on glass slides, with 3-5 slices per slide. Images were 169 

captured with an optical microscope (Olympus VS-120, Olympus Corporation, Tokyo, 170 

Japan) at 40x magnification. To facilitate further image processing, each slice was 171 

saved separately at 1.4x magnification (~5183 pixels per inch) and stored as a lossless 172 

TIFF image. We collected a total of 130 images (10 blocks, 13 images per block) from 173 

the first specimen (65 H&E images from the proximal segment, 65 IHC images from the 174 

distal segment). A total of 144 images (12 blocks, 12 images per block) were obtained 175 

from the second (36 H&E, proximal segment/36 IHC, distal segment) and third (36 IHC, 176 

proximal segment/36 H&E, distal segment) specimens. The images obtained from one 177 

of the three segments stained with IHC showed no visible fascicles and was replaced. 178 

Any images that exhibited artifacts due to tissue processing were excluded (n=20). The 179 

final count of images used for testing the pipeline was 254 (Table 1). 180 

TABLE 1. Summary of details related to nerve segments used to test the pipeline. 181 

 182 

Specimen Segment Stain Contiguous Blocks Slices per Block 

1 Proximal HE 5 9/13/13/13/12 
1 Distal IHC 5 9/11/11/12/10 
2 Proximal HE 3 12/12/12 
2 Distal IHC 3 12/12/12 
3 Distal HE 3 12/12/12 
3 Proximal IHC 3 N/A (no neural tissue) 
4 Distal IHC 2 16/17 
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 183 
Fig 2: Two sample nerve slices, one stained with H&E (top) and the other with IHC 184 

(bottom). 185 

 186 

2.3. Registration 187 

Registration and all further processing was performed in MATLAB (r2018a, The 188 

MathWorks, Natick MA). Prior to registration, preprocessing steps for H&E stained 189 

images included an increase in local contrast (Edge Threshold 0.3, Enhancement 0.6) 190 

and a sharpening to emphasize fascicles and fascicle boundaries. The image was then 191 
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converted to grayscale and processed via anisotropic diffusion filtering (5 iterations, 192 

exponential conduction method), a method which regularizes shape interiors while 193 

preserving edges (21). Morphological opening- and closing-by-reconstruction followed. 194 

Structural element sizes or erosion and dilation were set to disks of a radius of 7 pixels, 195 

according to the fascicle sizes in the images. Preprocessing for IHC images was 196 

minimal and involved only a conversion to greyscale. 197 

Preprocessed images were aligned automatically using intensity-based image 198 

registration between consecutive slices with the stochastic gradient descent method 199 

(SGDM). We used a four-step registration method similar to the MIAQuant method (22), 200 

sequentially applying the registration four times. Each step used a different combination 201 

of registration types and image scale. These were 1) translation only, using images 202 

resized to 25% of their initial resolution 2) translation and rotation, using images resized 203 

to 50%, 3) translation, rotation, and scale, using images resized to 75% (H&E) or full 204 

resolution images (IHC) and 4) translation, rotation, scale, and shear using full 205 

resolution images. This multi-resolution procedure permits registration of gross image 206 

features first (minor details are lost when the image is scaled down), followed by 207 

progressive fine-tuning. Rotation produced black regions around the edges of the 208 

image. These were filled in with the background colour to prevent interference in 209 

registration.  210 

2.4. Fascicle Detection 211 

To identify fascicles stained with H&E, a pre-trained convolutional neural network 212 

using the VGG-16 network architecture was converted into a region-based convolutional 213 

neural network (RCNN) for fascicle detection and retrained using the MATLAB neural 214 
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network toolbox on the Neuroscience Gateway (23). Detection created a set of 215 

bounding boxes roughly delineating the outer boundaries of the fascicles. Using a 216 

cross-validation process, the network was trained, in turn, using two of the three sets of 217 

nerve images and tested using the third. The three sets contained 1296, 2158, and 218 

2388 annotated nerve fascicles. The three sets of images were manually annotated with 219 

fascicle bounding boxes, which served as the ground truth to evaluate the performance 220 

of the network. Two types of networks were tested; one using registered images for 221 

training, and the other using unregistered images. The parameters used for training the 222 

network were as follows: a batch size of 128, an initial learning rate of 1*10-3, a learning 223 

rate drop factor of 0.1, a learning rate drop period of 5 epochs, and a total training 224 

period of 10 epochs. Inputs to the RCNN were raw, unprocessed images. Since the IHC 225 

images showed high contrast between fascicular and non-fascicular tissue, a separate 226 

detection step was not necessary.  227 

2.5. Fascicle Segmentation 228 

For H&E slices, the bounding boxes proposed by the RCNN were used to 229 

generate ovals around each detected fascicle. The image outside of these ovals was 230 

removed to reduce the chance of mis-segmentation. A mask, slightly larger than the 231 

ovals generated by the RCNN, was then created for segmentation via Chan-Vese active 232 

contours(24). The Chan-Vese method used a smooth factor of 0.6 and a contraction 233 

bias of 0.5. The images were then pre-processed once again, using the same method 234 

as in the registration step. The contour then shrunk inwards until the border of the 235 

fascicle was detected, or 500 iterations passed. For the IHC slices, an automatic 236 
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threshold generated by Otsu’s method (25), followed by image closing and hole-filling to 237 

account for non-uniform staining, was sufficient to produce a binary mask. 238 

2.6. Reconstruction 239 

The final step of generating a 3D model of the fascicular anatomy was 240 

accomplished by linearly interpolating between points on successive images within each 241 

block using a difference of distance maps (26). The algorithm connected shapes at 242 

different points on the z-axis by interpolating the distance between any given pixel and 243 

the object boundary along the z-axis. Shapes could be connected along the z-axis 244 

provided some overlap existed in the x-y plane. Two additional steps complemented the 245 

interpolation. The first step compensated for missed detections and mis-segmentations. 246 

Before reconstruction, the process checked the pixel indices of each fascicle on each 247 

image against those same indices on the next image. If no fascicle was detected at a 248 

particular index, but appeared in any future layer (indicating a missed detection or mis-249 

segmentation), a fascicle was inserted at each missing index to prevent discontinuous 250 

fascicles (“hole fixing”, HF, compared to “no fixing”, NF). The second step was 251 

implemented to split erroneously merged fascicles and consisted of a watershed 252 

operation initialized using a distance map derived from the fascicle segmentation. An 253 

erosion and another watershed followed, intended to catch any large merged fascicles 254 

that the first watershed might have missed, though usually unnecessary. The fascicles 255 

were then dilated back to their original sizes This process produced one model for each 256 

block of nerve images, for a total of 21 fully automatic models. 257 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.913251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.913251


12 

 

2.7. Evaluation and Analysis 258 

2.7.1 Registration 259 

Registration quality was calculated using two metrics: mean square error (MSE) 260 

and structural similarity (SSIM). MSE decreases and SSIM increases upon a successful 261 

registration. Net MSE and SSIM values, from before and after registration, were 262 

compared using Friedman’s test with a significance value of 0.05. To determine whether 263 

or not values were normally distributed, the Anderson-Darling test was used to indicate 264 

non-parametric values. 265 

2.7.2. Fascicle Detection 266 

Fascicle detection in the H&E slices was tested by comparing automatically 267 

detected fascicle bounding boxes to the manually-labeled ground truth, using the F1-268 

score (harmonic mean of precision and recall) to quantify the accuracy of the detector. 269 

An F1 score closer to 1 indicates high precision and recall. Any detected bounding box 270 

that overlapped a ground truth bounding box with an intersection-over-union (IOU) 271 

threshold of 50% was determined to be a true positive detection. To provide a point of 272 

comparison for this approach, the neural network detections were compared against 273 

Atherton-Kirby’s phase-coded method for circle detection(27). This method uses a 274 

modified version of the Circle Hough Transform to detect circles in images. 275 

2.7.3. Fascicle Segmentation 276 

For both H&E and IHC slices, segmentation quality was tested by comparing the 277 

results of automatic segmentation to a manually segmented ground truth via IOU. 278 

Ground truth segmentations were acquired by manually labelling fascicles using 279 

MATLAB. When uncertainty existed as to whether or not a certain feature was indeed 280 
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neural tissue, the original microscope slides were consulted (viewed at up to 40x 281 

magnification) to ensure that the stained feature was indeed a fascicle. Segmentation 282 

by active contours for the H&E slices was also compared to automatic thresholding 283 

using Otsu’s method and K-means clustering.  284 

2.7.4. Reconstruction 285 

No objective ground truth regarding the 3D shape of the fascicles was available 286 

to this project, since 3D imaging (e.g., MicroCT, OPT) was not performed prior to 287 

histological sectioning. Thus, images were manually registered and combined with their 288 

manual segmentations to make fully manual models, which represented our “gold 289 

standard”. Our evaluation for the reconstruction involved calculating 3D IOU between 290 

the fully manual models and the following, for two random blocks from each segment 291 

(total of six H&E and six IHC blocks): 292 

i.  The corresponding fully automatic models. 293 

ii. The manually registered images made for the fully manual models were 294 

automatically segmented (MRAS). This helped determine how differences in 295 

segmentation affected the reconstruction method. 296 

iii. Automatically registered images were combined with manual segmentations 297 

(ARMS) to make a second set of semi-automatic models. This helped determine 298 

differences in registration affected the reconstruction method. 299 

Along with the output of the automatic and semi-automatic pipelines, an extrusion (EX) 300 

generated from a manual segmentation of the first image in the block was compared to 301 

the fully manual models.  302 
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3. RESULTS  303 

We tested the pipeline using a total of 11 blocks of H&E-stained images and 10 304 

blocks of IHC-stained images. 305 

3.1. Registration 306 

The staining method had little effect on the quality of the automatic registration 307 

(Figure 3). Registration of the H&E images decreased MSE by 57.14 ± 65.61 (p << 308 

0.001, n = 121) and increased the SSIM by 0.03 ± 0.03 (p << 0.001, n = 121) (Figure 3, 309 

top). For the IHC images, registration decreased MSE by 58.86 ± 43.10 (p << 0.001, n = 310 

112) and increased SSIM by 0.09 ± 0.04 (p << 0.001, n = 112) (Figure 3, bottom). 311 

 312 

Fig. 3: A comparison of H&E images (top) and IHC images (bottom) before (left) and 313 

after (right) automatic registration. Areas of pink and green show regions of dissimilarity, 314 

whereas grey shows aligned regions. 315 
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3.2. Fascicle Detection 316 

The detection step for H&E slices produced a set of fascicle bounding boxes for 317 

each image (Figure 4). The network trained on the original images had a precision, 318 

recall and F1-score of 0.92, 0.90, and 0.91, respectively. The network trained on the 319 

registered images performed comparably, with precision, recall and F1-score of 0.91, 320 

0.92 and 0.91, respectively. Both networks were tested in the subsequent segmentation 321 

step. In contrast, the circle detection method performed worse, with precision, recall and 322 

F1-scores of 0.19, 0.45, and 0.27, respectively. A separate detection step was not 323 

required for IHC slices. 324 

 325 

Fig. 4: Bounding boxes indicating the fascicle sizes and locations automatically detected 326 

using the RCNN, on a sample histological slice. 327 

3.3. Fascicle Segmentation 328 

The segmentation outputs varied according to the method implemented (Figure 329 

5, Table 2). Active contour segmentations initialized using the neural network trained on 330 

the original, unregistered images showed the highest performance on all three 331 

segments, as well as overall, with an IOU of 0.61±0.03. These segmentations were 332 

used for reconstruction. Otsu’s method with follow-up morphological processing 333 

segmented the IHC slices well, with an IOU of 0.900±0.093.  334 
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 335 
Fig. 5: Images illustrating the segmentation of individual fascicles from histological 336 

slices. Segmentations (red) are overlaid on the original H&E image. A) Outside-in active 337 

contours B) Inside-out active contours C) Otsu’s Method D) K-means clustering. 338 

 339 

TABLE 2. Mean IOU±SD determined for each of the segmentation methods implemented on 340 

images from each staining method. 341 

 342 

     

H&E Processing 
Method/Segment 1 Proximal 2 Proximal 3 Distal All 

Active contours 
initialized from RCNN 

(trained on original 
images) 

0.64 ± 0.05 0.53 ± 0.06 0.64 ± 0.02 0.61 ± 0.03 

Active contours 
initialized from RCNN 
(trained on registered 

images) 

0.61 ±0.03 0.51 ± 0.03 0.58 ±0.02 0.57 ± 0.03 

K-means 0.53 ±0.10 0.30±0.04 0.35 ±0.05 0.42 ± 0.04 
Otsu’s Method 0.56 ± 0.16 0.48 ± 0.03 0.55 ± 0.00 0.54 ± 0.06 

IHC Processing 

 1 Distal 2 Distal 4 Distal All 

     
Otsu’s Method 0.88±0.14 0.95±0.01 0.87±0.00 0.90±0.08 
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3.4. Reconstruction 343 

The fully automatic, semi-automatic, and extruded models had similar IOUs, but 344 

qualitatively differed in appearance (Figures 6 and 7, Table 3). EX had higher IOUs than 345 

the fully automatic models for ten of the twelve examined blocks. Of the semi-automatic 346 

models, MRAS models performed superior to EX and ARMS models. For H&E images, 347 

reconstruction with hole-fixing of discontinuous fascicles marginally improved IOUs, 348 

while the opposite was true for IHC images. In most models, the quantitative effect of 349 

hole-fixing was minor; the greatest impact occurred in the third distal block of the 350 

second specimen, with a 1.88% increase in IOU (Figure 8).  351 
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 352 
Fig. 6: Models generated from the first proximal block of the first nerve specimen, 353 

stained with H&E. Shown are the fully automatic, semi-automatic, and fully manual 354 

models, along with an extrusion using the first slice of the block. Dimensions on each 355 

axis are expressed in pixels. 356 
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 357 
Fig. 7: Models generated from the third distal block of the first nerve specimen, stained 358 

with IHC. Shown are the fully automatic, semi-automatic, and fully manual models, 359 

along with an extrusion using first slice of the block. Dimensions on each axis are 360 

expressed in pixels. 361 
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 362 
Fig. 8: The effect of hole-fixing. Note that the connected fascicles in the fixed image 363 

(left) are separate in the unfixed image (right). Dimensions on each axis are expressed 364 

in pixels. 365 

 366 

TABLE 3. Mean IOU±SD of the different reconstruction methods for H&E and IHC images, 367 

compared to fully manual reconstructions. The two semi-automatic methods are listed 368 

separately as they were not directly compared to the other three methods, and instead were 369 

used to identify contributions of registration and segmentation to the final IOU scores. 370 

 371 

Method Mean IOU  
(H&E) 
n=6 

Mean IOU 
(IHC) 
n=6 

HF 0.426±0.062 0.398±0.149 
NF 0.423±0.064 0.399±0.150 
EX 0.485±0.110 0.528±0.064 

ARMS 0.476±0.108 0.400±0.150 
MRAS 0.612±0.066 0.900±0.093 

4. DISCUSSION 372 

The goal of this project was to create an algorithm that can automatically 373 

reconstruct fascicular branching patterns from consecutive cross-sections of peripheral 374 

nerves. The current pipeline intends to alleviate the need for time intensive manual 375 

processes and facilitate the construction of computational models for neuroprosthetic 376 
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and neuromodulation applications. The pipeline successfully generated models from 377 

images based on both H&E- and IHC-stained histological slices. Contrary to 378 

expectation, some models produced using our fully automatic method were 379 

quantitatively poorer than those based on extrusion. However, fully automatic models 380 

provided qualitative information about fascicle shape and branching patterns that were 381 

lost using extrusions. The generation of semi-automatic models, ARMS and MRAS, 382 

demonstrated the impact of the registration and segmentation on the final 383 

reconstruction.  384 

4.1 Registration 385 

Registration improved the overall alignment of sequential slices. The improved 386 

alignment was demonstrated by the average decrease and increase in MSE and SSIM, 387 

respectively. However, unexpectedly high standard deviations for both MSE and SSIM 388 

indicated that not all pairs of consecutive images benefitted equally from registration. In 389 

some cases, registration quantitatively decreased the alignment, likely due to the 390 

emphasis on aligning the fascicles and decreased visibility of the connective tissue and 391 

nerve boundary caused by preprocessing. Although the study that introduced this four-392 

step registration method mentioned no such difficulties (22), the current study indicates 393 

the need to more closely evaluate the registration outcomes at each step. Finally, the 394 

registration method tended to align epineurium boundaries, thus potentially 395 

straightening out the epineurium of successive slices relative to actual in vivo geometry. 396 

This was not a key concern for the neuroprosthetic context, since implantation of certain 397 

neural interfaces such as nerve cuff electrodes may straighten out the nerve regardless. 398 

However, more generally, a straightened nerve may not represent the nerve course in 399 

situ. An external reference, generated using MRI or MicroCT/OPT, could be used to 400 
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acquire pre-histological external boundary information, to which the algorithm could be 401 

modified to conform. 402 

4.2 Fascicle Detection 403 

The RCNN successfully detected fascicles in the H&E slices, as demonstrated by 404 

the high F1-score. Investigating neural network architectures other than VGG-16 (e.g., 405 

YOLOv3 (28)) may further improve detection performance; however, fascicle detection 406 

was likely not the bottleneck in our current pipeline, as registration and segmentation 407 

proved more challenging. While unsupervised machine learning methods have been 408 

used previously for fascicle detection, our study is the first to use a trained RCNN to 409 

detect fascicles in H&E stained images (29). Additionally, we specifically and uniquely 410 

quantified the performance of fascicle detection to provide a point of comparison for 411 

future implementations. 412 

4.3 Fascicle Segmentation 413 

The accuracy of fascicle segmentation depended on staining method, and thus 414 

the amount of pre- and post-processing involved with the images. Our fully automatic 415 

method achieved accuracies ranging from 53 to 64% for the H&E images. Although our 416 

segmentation scores for H&E images were lower than the 89 to 94% reported for semi-417 

automatic methods (29), our fully automatic method is more easily scalable for 418 

generating models from multiple individuals. In contrast, our segmentation of IHC 419 

images achieved 90% accuracy using Otsu’s method with minimal pre and post-420 

processing. The performance on IHC images was comparable to the 94.5% similarity 421 

reported for active contour segmentation of Micro-CT slices, relative to manually labeled 422 

boundaries (16). Active contour-based segmentation provided good approximation of 423 

fascicle boundaries, but could miss small or less visible fascicles.  424 
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Some difficulty was experienced when segmenting densely packed fascicles, 425 

which we partially addressed using watershed splitting. A potential alternative to active 426 

contours would be to train a semantic segmentation deep neural network. Semantic 427 

segmentation involves using a CNN in a pixel-wise manner, in our case classifying each 428 

pixel as part of the fascicle or the background. If supplied with sufficient training data, 429 

this could eliminate the detection step and improve the segmentation performance. 430 

Although a more expensive preparation, IHC stained nerves did not require advanced 431 

image processing. Regardless of the staining method used, the segmentation quality of 432 

individual slices markedly affected reconstruction outcomes. 433 

4.4 Reconstruction 434 

Several mechanisms contributed to discontinuous fascicles due to the logic of the 435 

reconstruction method: 1) the registration could not align the fascicle; 2) the fascicle 436 

was not detected in a particular slice(s); 3) the fascicle was not fully segmented (i.e., no 437 

overlap with neighbouring slice); or 4) the fascicle experienced an abrupt change in 438 

position. Hole-fixing appeared to help in some cases, but hindered reconstruction in 439 

others. For H&E slices, hole-fixing tended to introduce a quantitatively minor benefit in 440 

terms of IOU. The effect was opposite for IHC slices, where blocks without hole-fixing 441 

showed a minor increase in IOU. This could be due to the high quality of segmentation 442 

for IHC slices. With few missing fascicles requiring compensation, applying additional 443 

hole-fixing would likely introduce more errors. Another possibility is that our algorithm 444 

generally performs well without hole-fixing when dealing with large, well-defined 445 

fascicles. Thus, hole-fixing mostly benefits small fascicles and only minor changes in 446 

IOU would occur after its application. Whether or not to use hole-fixing may warrant a 447 
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case-by-case examination, especially since reconstruction is one of the least time-448 

intensive components of the overall pipeline. 449 

4.5 Impact of Registration and Segmentation on Reconstruction Quality 450 

Using our semi-automatic models, we could ensure a good registration or 451 

segmentation and thus better understand how each of these two steps contributed to 452 

the IOU scores after reconstruction. In some cases, IOU demonstrated that simple 453 

extrusions were superior to our fully automatic method, but only in one case was the 454 

extrusion superior to MRAS semi-automatic slices. This suggests the importance of 455 

registration in determining the final reconstruction IOU. Additionally, the possibility exists 456 

that the fascicles within the automatic models appear collectively displaced (within the 457 

global reference frame) relative to those of the manual models. This lack of alignment in 458 

the global reference frame may cause low IOU scores, although the fascicles are 459 

correctly aligned relative to one another. Therefore, compared to segmentation, 460 

registration carries larger impact on the final quality of reconstruction. 461 

4.6 Outlook 462 

Reviewing all blocks where extrusions were superior to the automatic method 463 

identified potential causes for variation in IOU scores. Specifically, we noted the 464 

following possible causes: local misalignment in registration (8 cases); large fascicles 465 

missing (i.e., detection issue; 2 cases); small fascicles missing (i.e., segmentation issue; 466 

5 cases); discontinuous fascicles in manual segmentation (3 cases); and high fascicle 467 

density (1 case). For registration, increasing the contrast of fascicles in pre-processing 468 

or increasing the focus on external nerve boundaries, could create closer-to-manual 469 

models. Adding an extra registration at low resolution could increase the focus on 470 

alignment of exterior boundaries. In three cases, fascicles rapidly changed position and 471 
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appeared discontinuous in the fully manual nerve slices. Taking one slice every 100µm 472 

would allow for more precise tracking of individual fascicles along the length of the 473 

nerve, reducing the likelihood of discontinuities caused by rapid changes in fascicle 474 

position. Detection could be improved by acquiring more nerve slices to increase the 475 

amount of training data. Adding a minimum size constraint could improve segmentation, 476 

ensuring that fascicles detected in the mask are not lost after outside-in segmentation.  477 

4.7 Contributions to Literature 478 

The current work presents a unique fully automatic 3D reconstruction method. 479 

We quantified the performance of each step of our process in order to establish a 480 

standard for future explorations of this technology. Furthermore, except for one group 481 

that created their own visualization software (18), others used commercial 482 

reconstruction software to generate their models, reducing the accessibility to their 483 

methods(16,17,19,29). Every step of our method was implemented in MATLAB, which 484 

both simplified the processing pipeline and reduced the barrier to entry. While further 485 

work remains to achieve a completely reliable process, the modular nature of our 486 

method will make it easy to improve individual steps in the pipeline. Moreover, 487 

modularity makes it possible to independently implement any step within semi-488 

automatic workflows.  489 

 490 

5. CONCLUSION 491 

Currently existing peripheral nerve computational models for neural interfaces 492 

predominantly use simplified neural anatomy. Previous research has shown that the 493 

conclusions drawn from computational models can differ depending on the level of 494 

anatomical detail in the model; however, the construction of anatomically accurate 495 

models is very time consuming when done manually. We introduced a framework to 496 
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automatically generate nerve models based on serial histological cross-sections. While 497 

models could be produced from both H&E and IHC slices, the easier processing and 498 

superior quality resulting from the IHC slices suggests that this avenue should be 499 

preferred. While improvements are still required, this study provides a baseline and 500 

stable platform for future development of algorithms to generate accurate computational 501 

models to support the development of neural interfaces.  502 
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