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Abstract: Single-cell RNA-sequencing (scRNA-seq) facilitates the unbiased 16 

reconstruction of multicellular tissue systems in health and disease. Here, we present a 17 

curated scRNA-seq dataset of human muscle samples from 10 adult donors with diverse 18 

anatomical locations. We integrated ~22,000 single-cell transcriptomes using Scanorama 19 

to account for technical and biological variation and resolved 16 distinct populations of 20 

muscle-resident cells using unsupervised clustering of the data compendium. These cell 21 

populations included muscle stem/progenitor cells (MuSCs), which bifurcated into 22 

discrete “quiescent” and “early-activated” MuSC subpopulations. Differential expression 23 

analysis identified transcriptional profiles altered in the activated MuSCs including genes 24 

associated with ageing, obesity, diabetes, and impaired muscle regeneration, as well as 25 

long non-coding RNAs previously undescribed in human myogenic cells. Further, we 26 

modeled ligand-receptor cell-communication interactions and observed enrichment of the 27 

TWEAK-FN14 pathway in activated MuSCs, a characteristic signature of muscle wasting 28 

diseases. In contrast, the quiescent MuSCs have enhanced expression of the EGFR 29 

receptor, a recognized human MuSC marker. This work provides a new technical 30 

resource to examine human muscle tissue heterogeneity and identify potential targets in 31 

MuSC diversity and dysregulation in disease contexts.  32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914713
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 33 

Skeletal muscles are essential to daily functions such as locomotion, respiration, and 34 

metabolism. Upon damage, resident muscle stem cells (MuSCs) repair the tissue in 35 

coordination with supporting non-myogenic cell types such as immune cells, fibroblasts, 36 

and endothelial cells (Bentzinger et al., 2013). However, with age and disease, the repair 37 

capacity of MuSCs declines, leading to complications such as fibrotic scarring, reduced 38 

muscle mass and strength (Blau et al., 2015; Järvinen et al., 2014), fat accumulation and 39 

decreased insulin sensitivity (Addison et al., 2014), all of which severely affect mobility 40 

and quality of life (Larsson et al., 2018).   41 

Human MuSCs are defined by the expression of the paired box family transcription 42 

factor PAX7 and can be isolated using various surface marker proteins including β1-43 

integrin (CD29), NCAM (CD56), EGFR, and CD82 to varying purities (Pisani et al., 2010; 44 

Charville et al., 2015; Alexander et al., 2016; Uezumi et al., 2016; Wang et al., 2019). 45 

With ageing, human MuSCs exhibit a heterogeneous expression of the senescence 46 

marker p16Ink4a and accumulate other cell-intrinsic alterations in myogenic gene 47 

expression programs, cell cycle control, and metabolic regulation (Sousa-Victor, et al., 48 

2014; Blau, et al., 2015). However, given their varied molecular and functional states, our 49 

understanding of MuSCs in adult human muscle tissue remains incompletely defined. In 50 

addition, cellular coordination in the regulation of human muscle homeostasis and 51 

regeneration remains poorly understood due to the lack of experimentally tractable 52 

models with multiple human muscle cell types. Given these challenges we posited that 53 

an unbiased single-cell reference atlas of skeletal muscle could provide a useful 54 

framework to explore MuSC variability and communication in adult humans.  55 

Here, we deeply profiled the transcriptome of thousands of individual MuSCs and 56 

muscle-resident cells from diverse adult human muscle samples using single-cell RNA-57 

sequencing (scRNA-seq). After integrating these donor datasets to conserve biological 58 

information and overcome technical variation, we resolved two subpopulations of MuSCs 59 

with distinct gene expression signatures. Using differential gene expression analysis and 60 

ligand-receptor interaction modeling, we extend the known repertoire of human MuSC 61 

gene expression programs, suggesting new regulatory programs that may be associated 62 

with human MuSC activation, as well as features of human muscle aging and disease. 63 
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Figure 1 (previous page). Single-cell transcriptomic map of human muscle tissue biopsies. 65 
(A) Metadata (sex, age, anatomical site, and the number of single-cell transcriptomes after quality 66 
control (QC) filtering) from n=10 donors. Colors indicate sample anatomical sites. (B) Scanorama-67 
integrated and batch-effect corrected transcriptomic atlas revealing a consensus description of 68 
16 distinct muscle-tissue cell populations. (C) Transcriptomic atlas colored by donor and 69 
anatomical location. (D) Dot-plot showing differentially expressed genes that distinguish the cell 70 
populations. Grouped in four compartments: muscle, endothelial/vascular, stromal, and immune. 71 
(E) Cell type proportions as annotated in (B) across the 10 donors and grouped by body sections. 72 
L = leg (donors 02, 07, 08), T = trunk (donors 01, 05, 06, 09, 10), F = face (donors 03, 04). 73 
 74 

Results 75 

Collection and integration of a diverse human scRNA-seq dataset. 76 

We used scRNA-seq to collect and annotate a single-cell transcriptomic dataset of 77 

diverse adult human muscle samples under homeostatic conditions. The muscle samples 78 

were from surgically discarded tissue from n=10 donors (range: 41 to 81 years old) 79 

undergoing reconstructive procedures and originating from a wide variety of anatomical 80 

sites in otherwise healthy patients (Fig. 1A). Each sample was ~50 mg after removal of 81 

extraneous fat and connective tissue. Muscle samples were enzymatically digested into 82 

single-cell suspensions and independently loaded into the 10X Chromium system. All 83 

together, we collected over 22,000 human muscle single-cell transcriptomes (2206 ± 84 

1961 cells per dataset) into a single data compendium. Using unsupervised clustering, 85 

we resolved 16 types of cells of immune, vascular, and stromal origin, as well as two 86 

distinct subpopulations of MuSCs and some myofiber myonuclei (Fig. 1B). 87 

Given important differences in anatomical site, donor health history, age, sex, and 88 

surgical procedures, the muscle samples were highly heterogeneous in terms of cell-type 89 

diversity and underlying gene expression profiles. Comparing the resulting scRNA-seq 90 

datasets is therefore a challenge that we addressed using recently developed 91 

bioinformatic integration methods (Stuart et al., 2019ab; Hie et al., 2019). Our goal was 92 

to assemble a unified dataset of human muscle tissue that faithfully conserved sources 93 

of biological variability such as donor, anatomical location, and cell composition 94 

heterogeneity, while accounting for technical biases. We tested four different scRNA-seq 95 

data integration methods (Fig. S1) and found that Scanorama (Hie et al., 2019) followed 96 

by scaling the output by regressing against the library chemistry technical variable (“10X 97 

chemistry”) and the number of genes detected per single-cell best satisfied this goal. 98 

Detailed information on our methodology is provided in Fig. S1. After integrating the 10 99 
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datasets, we noted remarkable consistency amid cell types across donors (Fig. 1C, 1E); 100 

owing to the robustness of scRNA-seq technology, the bioinformatic method chosen, and 101 

our sample preparation protocol. Differential gene expression analysis between the 16 102 

distinct subpopulations identified an extensive set of unique markers that we grouped into 103 

4 categories (Fig. 1D). 104 

 105 

scRNA-seq resolves the cellular diversity of human muscle and novel markers. 106 

We annotated and interpretation the consensus cell atlas (Fig. 1B,D) into cell type sub-107 

populations as follows. We identify four types of stromal cells starting with adipocytes 108 

found to be expressing apolipoprotein D (APOD) (Muffat et al., 2010), the brown fat tissue 109 

adipokine CXCL14 (Cereijo et al., 2018), GPX3, and GLUL. Among the 3 other 110 

subpopulations of fibroblast-like cells, Fibroblasts 1 express high levels of collagen 1 111 

(COL1A1), SFRP4, SERPINE1, and CCL2; Fibroblasts 2 express fibronectin (FBN1), the 112 

microfibril-associated glycoprotein MFAP5, and CD55 known to be expressed by 113 

synoviocytes (Karpus et al., 2015); and Fibroblast 3 is mainly characterized by SMOC2, 114 

a marker of tendon fibroblasts (Swanson et al., 2019).  115 

We also identify 5 types of vascular cells, including 3 endothelial subpopulations, 116 

and a subpopulation of pericytes and smooth muscle cells (SMCs). Pericytes and SMCs 117 

express the canonical markers RGS5 and MYH11. Endothelial 1 express E-selectin 118 

(SELE), IL6, ICAM1, VCAM1. These genes are upregulated at sites of inflammation to 119 

facilitate immune cell recruitment, suggesting this Endothelial 1 cell population may be 120 

involved in homeostatic muscle tissue remodeling (Watson et al., 1996; Goncharov et al., 121 

2017). Endothelial 2 cells are distinguished by expressing high levels of claudin-5 122 

(CLDN5), ICAM2, and the chemokine CXCL2. Endothelial 3 express high levels of the 123 

platelet-recruiting Von Willebrand Factor (VWF) and caveolin-1 (CAV1), a protein known 124 

to regulate cholesterol metabolism, atherosclerosis progression, as well as MuSC 125 

activation (Fernández-Hernando et al., 2010, Volonte et al., 2004). 126 

We also noted two types myeloid immune cells. First, tissue-resident and anti-127 

inflammatory macrophages which express CD74 and histocompatibility complex HLA 128 

proteins. Second, activated macrophages and monocytes that express inflammatory 129 

markers such as S100A9 (calgranulin) and LYZ (lysozyme). Moreover, S100A9 transcript 130 
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abundance levels have been shown to be a feature in ageing and chronic inflammation 131 

(Swindell et al., 2013). We also identified a pool of T/B lymphocytes and NK cells 132 

characterized by IL7R and NKG7, respectively, as well as a small subset of HBA1+ 133 

erythroblasts. 134 

Finally, we identified two subpopulations of MuSCs (henceforth called “MuSC1” 135 

and “MuSC2”). MuSC1 highly expressed the canonical myogenic transcription factor 136 

PAX7 (Kuang et al., 2006), as well as chordin-like protein 2 (CHRDL2) and Delta-like non-137 

canonical Notch ligand 1 (DLK1). CHRDL2 has been shown been previously shown to be 138 

expressed in freshly isolated quiescent human MuSCs (Charville et al., 2015), though its 139 

function is still to be understood. DLK1 is an inhibitor of adipogenesis whose role in 140 

muscle has mainly been recognized in the embryo but remains controversial in adult 141 

muscle regeneration (Waddell et al., 2010; Andersen et al., 2013; Zhang et al., 2019). In 142 

contrast to MuSC1, MuSC2 expressed lower levels of PAX7 but maintain expression of 143 

MYF5 (a marker of activated MuSCs) and APOC1 (Fig. 2B). Interestingly, the MuSC2 144 

population also had elevated expression of two long non-coding RNAs (lncRNAs), 145 

LINC00152 and MIR4435-2HG. LncRNAs are involved in regulating myogenesis (Hagan 146 

et al., 2017). Surprisingly, we detected low expression of the myogenic commitment 147 

factors MYOD1 and MYOG (Fig. 2B), in contrast to scRNA-seq analyses of adult mouse 148 

muscle (Dell’Orso et al., 2019; De Micheli et al., 2019). These observations suggest that 149 

the MuSC1 and MuSC2 populations are both comprised largely of muscle stem cells, not 150 

committed myogenic progenitors. In addition, we noted that “Myonuclei” population (Fig. 151 

1B) was enriched for myosin light chain (MYLFP), skeletal alpha-actin (ATCA1), and 152 

troponin C (TNNC2), proteins involved in muscle contraction. This multiple-donor scRNA-153 

seq atlas highlights the cellular diversity of human muscle tissue and revealed two distinct 154 

MuSC subpopulations along with specific myogenic expression programs. 155 

 156 

Homeostatic human muscle contains two distinct MuSC subpopulations. 157 

Next we examined genes that were differentially expressed between the MuSC1 and 158 

MuSC2 subpopulations and the biological processes that characterize them (Fig. 2A-B). 159 

The MuSC1 subpopulation was enriched for PAX7, DLK1, and CHRDL2, as well as for 160 

the cyclin-dependent kinase inhibitor CKDN1C (encoding P57KIP2), suggesting that these  161 
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Figure 2. (previous page) Gene expression and pathway analysis comparison between two 163 
MuSC subpopulations. (A) Volcano plot from comparing transcript levels between all cells within 164 
the “MuSC1” and “MuSC2” subpopulations. Log2 fold-change in normalized gene expression 165 
versus -log10-adjusted p-value plotted. Differentially expressed genes (adjusted p value < 0.05) 166 
are colored dark or light blue (based on their enrichment in MuSC1 or MuSC2, respectively). 167 
Genes with log2 fold-change > 0.75 are labeled. (B) Normalized expression values of select 168 
differentially expressed genes. q-values reported in inset. (C) Top activated canonical pathways 169 
by Ingenuity Pathway Analysis based on differentially expressed genes and ranked by p value. 170 
Pathways significantly enriched in either population with |z-score| > 1 are indicated in blue. (D) 171 
Select gene ontology (GO) terms and hallmark pathways enriched between the MuSC 172 
subpopulations as identified by gene set enrichment analysis (GSEA) and ranked by enrichment 173 
score (ES). 174 
 175 

cells are quiescent and not cycling. In addition, this subpopulation expresses the 176 

transcription factor BTG2, which was identified in mouse to be enriched in quiescent 177 

MuSCs (De Micheli et al., 2019). We also note that the MuSC1 subpopulation expressed 178 

elevated levels of mitochondrial genes as well as FOS, JUN, and ERG1. Upregulation of 179 

these genes has been shown to be potential artefacts of the enzymatic digestion during 180 

the sample preparation (van den Brink et al., 2017). 181 

The MuSC2 subpopulation was enriched for multiple markers of inflammation 182 

including CCL2, CXCL1, IL32, and surface receptor TNFRSF12/FN14. In particular, 183 

CCL2 and CXCL1 are inflammatory cytokines known to be upregulated in muscle repair, 184 

exercise, and fat metabolism (Harmon et al., 1985; Pedersen et al., 2012). In addition, 185 

IL32 has been shown to have inflammatory properties in human obesity (Catalán et al., 186 

2017) and have a negative impact on insulin sensitivity and myogenesis (Davegårdh et 187 

al., 2017), while TNFRSF12/FN14 has been implicated in various muscle wasting 188 

diseases (Mittal et al., 2010; Enwere et al., 2014) and metabolic dysfunction (Sato et al., 189 

2014). Furthermore, the MuSC2 population is enriched for ribosomal gene expression 190 

(e.g. RPLP1 and RPS6; data not shown), indicating that these cells may have elevated 191 

translational mechanisms. Lastly, the MuSC1 population has enriched expression of the 192 

myogenic gene PAX7 and, to a lesser extent, MYF5, compared the MuSC2 population. 193 

These observations suggest that MuSC1 is comprised of quiescent MuSCs and MuSC2 194 

is comprised of an early-activated MuSCs. 195 

We performed Ingenuity Pathway Analysis (IPA) to compare biological processes 196 

differentially activated between the MuSC1 and MuSC2 populations. The IPA gene group 197 

“Oxidative Phosphorylation” is enriched in MuSC1 (Ryall et al., 2015), while “EIF2 198 
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Signaling”, associated with protein translation processes, is enriched in MuSC2 (Fig. 2C). 199 

Furthermore, Gene Set Enrichment Analysis (GSEA) also found MuSC1 to be enriched 200 

for “myogenesis”, “muscle cell differentiation”, “hypoxia”, and “response to mechanical 201 

stimulus” gene sets, consistent with the observation that these cells are both less 202 

differentiation and may have stress-associated gene induction due to tissue dissociation 203 

(van den Brink et al., 2017) (Fig. 2D). MuSC2 cells are enriched for “ribosome and 204 

translational initiation”, “MYC targets” and “E2F (cell proliferation)”, “G2M checkpoint (cell 205 

division)”, and “inflammation” gene sets, further supporting the interpretation that these 206 

cells may be in an early activated or partially differentiated state within an inflammatory 207 

environment (Fig. 2D). Taken together, these observations suggest that the MuSC1 208 

population is comprised of quiescent MuSCs, while the MuSC2 population is comprised 209 

of active, proliferating, and/or dysregulated MuSCs, with expression alterations 210 

associated with inflammation, ageing, and muscle wasting. Differentially expressed 211 

genes such as IL32, CXCL1, CCL2, and TNFRSF12/FN14 may constitute a marker set 212 

for MuSC variation in chronic muscle inflammation in various pathologies. 213 

 214 

Ligand-receptor interaction model identifies potential surface markers and cell-215 

communication channels in muscle pathologies. 216 

Given the distinct expression profiles between the MuSC1 and MuSC2 populations, we 217 

sought to identify genes that could facilitate surface antigen-based separation of these 218 

two human MuSC populations for prospective isolation strategies. We identified surface 219 

receptor genes that were differentially expressed between the MuSC1 and MuSC2 220 

populations, using a database of 542 human surface “receptor” genes (Ramilowski et al., 221 

2015) (Fig. 3A). MuSC1 were exhibit elevated expression of EGFR, ITGB1, FGFR4, 222 

SDC2, as well as the three tetraspanins CD81, CD82, and CD151. EGFR is a recently 223 

established human MuSC marker and is required for basal-apical asymmetric cell division 224 

(Charville et al., 2015; Wang et al., 2019). The tetraspanin CD82 is also a recently 225 

recognized human MuSC maker (Alexander et al., 2016), while CD9 and CD81 have been 226 

identified to control muscle myoblast fusion (Charrin et al., 2013). Furthermore, 227 

Syndecans (SDCs) have been identified in mouse to be heterogeneously expressed on 228 

MuSCs and myoblasts during muscle repair (De Micheli et al., 2019) and have been 229 
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shown to form co-receptor complexes with integrin β1 (ITGB1) and FGFR4 upstream of 230 

signaling pathways regulating myogenesis (Pawlikowski et al., 2017). Only SDC4 and 231 

SDC3 have yet been identified to mark adult mouse MuSCs (Pisconti et al., 2012). In 232 

comparison, the MuSC2 population has elevated expression of CD44 and 233 

TNFRSF12/FN14 as previously noted. The CD44 receptor has been shown to regulate 234 

myoblast migration and fusion in mouse, but also mark MuSCs in osteoarthritis patients 235 

(Mylona et al., 2006; Scimeca et al., 2015). 236 

Next, we used a ligand-receptor (LR) interaction model and a database of LR pairs 237 

(Ramilowski et al., 2015) to map cell signaling communication channels in human muscle 238 

and uncover differences between the MuSC1 and MuSC2 populations. The model also 239 

identifies interacting ligand(s) and is restricted to receptor genes is differentially 240 

expressed by a specific cell type within the consensus human muscle cell atlas (Fig. 1B). 241 

For each LR pair, the model calculates an interaction score from differentially expressed 242 

receptors on MuSCs and ligands expressed by other cell types. We identified 73 and 6 243 

significant LR interactions for the MuSC1 and MuSC2 populations, respectively (Fig. 3). 244 

Over one third of all interactions in the MuSC1 population involve the EGFR receptor, 245 

which has recently been shown to play a critical role in directing MuSC asymmetric 246 

division in regenerating muscle (Wang et al., 2019). A limited number of EGFR ligands 247 

have been identified in muscle repair. For example, amphiregulin (AREG) is secreted by 248 

Treg cells (Burzyn et al., 2013). According to our model findings, EGFR may also interact 249 

with ligands expressed by immune cells, such as with TGF-α (TGFA), heparin-biding EGF 250 

(HBEGF), amphiregulin (AREG), and epiregulin (EREG). Other EGFR ligands include 251 

brevican (BCAN), and betacellulin (BTC) produced by endothelial cells, ECM proteins 252 

fibulin 3 (EFEMP1), decorin (DCN), and tenascin C (TNC) expressed by fibroblasts, and 253 

FGF13, AHM, NRG4 and EGF, expressed by mature skeletal myofibers. We also detect 254 

seven interactions involving NOTCH3 with a variety of ligands. Notch3 signaling is 255 

involved in maintaining MuSC quiescence, in particular through interaction with DLL4 256 

(Low et al. 2018), which we found differently expressed by endothelial cells along with 257 

JAG2. In addition, NOTCH3 also interacts with the ECM protein thrombospondin-2 258 

(THBS2). 259 

 260 
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Figure 3 (previous page). Differentially expressed receptors and ligand-receptor interaction 262 
scores. (A) List of differentially expressed genes between the MuSC1 and MuSC2 subpopulation 263 
ranked by log2 fold-change in expression. Positive average values correspond to genes that are 264 
upregulated in MuSC1, whereas negative values are upregulated in MuSC2. Receptors that are 265 
statistically significant (q-value is corrected for FDR < 0.05) are colored in blue. Receptors that 266 
are not statistically significant are in grey. (B) Heatmap representing row-normalized (Z-score) LR 267 
interaction scores. Rows represent ligand-receptor interaction pairs in the format 268 
LIGAND_RECEPTOR, where the receptor is either differentially expressed in the MuSC1 or 269 
MuSC2 populations compared to all the other cell types. Columns identify cell types expressing 270 
the ligand. Asterisks after the pair name also indicates that the ligand is differentially expressed 271 
by the other cell type and that interaction is likely cell-type specific. Red pairs involve the EGFR 272 
receptor, purple pairs the NOTCH3 receptor. A positive value indicates that the interaction has a 273 
high score for a particular ligand and cell type compared to other cell types. 274 

 275 
Only two receptors, TNFRSF12/FN14 and RPSA, were found differentially 276 

expressed in MuSC2 compared to other cell types. The first, TNFRSF12/FN14, interacts 277 

with the TWEAK cytokine ligand. While typically recognized to be expressed by 278 

macrophages and other immune cells (Tajrishi et al., 2014), our model suggests TWEAK 279 

is also expressed by the Fibroblasts 2 and Pericyte cell populations, though not in a 280 

statistically significant manner. The second, RPSA, is surface ribosomal protein that 281 

interacts with laminins (LAM), a dual-specificity phosphatase 18 (DUSP18), and prion 282 

protein 2 (PRND), which taken together may suggest various pathological processes such 283 

as prion diseases and cancer (Pampeno et al., 2014; Wu et al., 2019). Together, this 284 

ligand-receptor analysis identifies a broad set of surface markers that could refine the 285 

molecular definition of human MuSCs and their subpopulations, as well as candidate cell-286 

communication channels differentially involved in healthy and diseased muscle tissues. 287 

 288 
Discussion 289 

Here we present an annotated multi-donor dataset consisting of 22,000 single-cell 290 

transcriptomes from 10 different donors and unique anatomical sites, some of which 291 

difficult to access outside of reconstructive surgeries. We performed single-cell RNA 292 

sequencing and the bioinformatic integration method Scanorama to examine the cellular 293 

heterogeneity across diverse adult human muscle tissue samples. We observed that 294 

Scanorama performed data integration more successfully than other approaches (Fig. 295 

S1). We describe the muscle tissue cellular heterogeneity and provide a comprehensive 296 

analysis of differentially expressed genes for 16 resolved cell subpopulations (Fig. 1). 297 
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This analysis suggests new gene markers for muscle FAPs and vascular endothelial cells 298 

that may provide unique perspective to human muscle physiology.  299 

Most notably, this analysis suggests that human muscle may contain two distinct 300 

MuSC subpopulations (Fig. 2). Given the broad donor age range in this study, these two 301 

subpopulations may constitute a healthy and an aged/diseased MuSC pool. We conclude 302 

that the “MuSC1” subpopulation to be largely comprised of “quiescent” MuCSs, owning 303 

high levels of PAX7, the mitotic inhibitor CDKN1C, and DLK1. Interestingly, DLK1 may 304 

be an important regulator for human MuSC maintenance and a marker of healthy tissue 305 

given its role in inhibiting adipogenesis (Andersen et al., 2013). Conversely, we identified 306 

in the “MuSC2” population signatures of inflammation and increased fat metabolism 307 

(CCL2 and CXCL1), reduced insulin sensitivity (IL32), cell cycle (EIF2 Signaling terms), 308 

and muscle wasting (TNFRSF12/FN14), thereby suggesting that these cells may 309 

constitute an “early-activated” and possibly dysfunctional MuSC pool. These markers are 310 

consistent with prior observations that excessive fat accumulation in muscle can be 311 

attributed to obesity, diabetes, and ageing (Addison et al., 2014). In addition, we identify 312 

two upregulated lncRNAs that warrant further investigation as candidate non-coding 313 

regulators of myogenesis (Hagan et al., 2017). Moreover, the finding of two human MuSC 314 

subpopulations mirrors similar observations made from mouse muscle scRNA-seq 315 

analyses (De Micheli et al., 2019; Dell’Orso et al., 2019) and agrees with the general 316 

conceptual framework that muscle stem cells transition between quiescent, activated and 317 

cycling states (Bentzinger et al., 2013). Future studies comparative analysis of these 318 

MuSC subpopulations across species may reveal human-specific aspects of myogenesis. 319 

Ligand-receptor interaction models from scRNA-seq data can help formulate new 320 

hypotheses about cell-communication channels that regulate muscle function (De Micheli 321 

et al., 2019). Identifying new MuSCs surface receptors will also help us refine MuSC 322 

purification protocols for prospective isolation studies used for in vitro and transplantation 323 

models. Our LR model revealed a set of 40 surface receptor genes that are distinctly 324 

expressed between MuSC1 and MuSC2, confirming some prior reports but also providing 325 

new candidate surface antigens for human MuSC subpopulation fractionation (Fig. 3). 326 

For example, we identify that SDC2 may mark “quiescent” MuSCs while CD44, 327 

TNFRSF12, and RPSA “early-activated” MuSCs in ageing and disease contexts. In 328 
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addition, our model proposed 79 cell-communication signals that may act between 329 

MuSCs and other cell types; in particular with fibroblasts, myofibers and immune cells 330 

through the EGFR receptor, and with vascular cells through the NOTCH3 receptor. These 331 

interactions may be critical regulators of muscle homeostasis and should be further 332 

investigated. 333 

Our study has some limitations. First, the sample size is small, and donors are very 334 

diverse, thus limiting our ability to control for age and sex. We performed differential 335 

expression and gene set enrichment analyses within the MuSC1 and MuSC2 populations 336 

between the middle-age (43-69 yo) and aged (70-81 you) donors, but found few age-337 

cohort specific differences (data not shown). Nevertheless, our dataset still offers a new 338 

transcriptomic cell reference atlas and computational data integration approaches as a 339 

resource to examine human muscle cell diversity in health, ageing and disease.   340 

Future studies should aim at collecting muscle specimens in a more controlled 341 

manner, for example using a Bergström needle (Tarnopolsky et al., 2011; Sarver et al., 342 

2017) from a unique anatomical site; though this would not be possible for some muscles 343 

presented in this study. These biopsies would allow for ageing and disease comparative 344 

analyses. Indeed, a recent report by Rubenstein et al. (2020) performed scRNA-seq on 345 

four human vastus lateralis muscle biopsies found that myofiber type composition and 346 

gene expression alterations based on donor age. Further, future work could also focus 347 

on collecting single-myonuclei from myofibers while discarding other non-myogenic cell 348 

types. This could illuminate the transcriptomic diversity of myofiber type, on differences 349 

that the local anatomy and tissue physiology may demonstrate, and to ultimately enrich 350 

our repertoire of know human muscle markers and understanding of its molecular 351 

regulators.  352 
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Methods 353 

 354 
Human participation for muscle sample collection 355 

All procedures were approved by the Institutional Review Board at Weill Cornell Medical 356 

College (WCMC IRB Protocol # 1510016712) and were performed in accordance with 357 

relevant guidelines and regulations. All specimens were obtained at the New York-358 

Presbyterian/Weill Cornell campus. All subjects provided written informed consent prior 359 

to participation. Samples were de-identified in accordance to IRB guidelines and only 360 

details concerning age, sex, and anatomic origin were included. Sample anatomic 361 

locations and donor details are provided in Fig. 1A.  362 

 363 

Muscle digestion and single-cell sequencing library preparation 364 

After collection from donors during surgery, the muscle samples were cleared from 365 

excessive fat and connective tissue and weighted. About 50-65 mg of tissue was then 366 

digested into a single-cell suspension following a previously reported protocol (Spinazzola 367 

et al., 2017). Briefly, the specimen was digested in 8 mg/mL Collagenase D (Roche) and 368 

4.8 U/mL Dispase II (Roche) for 1 hr followed by manual dissociation, filtration, and red 369 

blood cell lysis. All single-cell suspensions were then frozen at -80oC in 90% FBS, 10% 370 

DMSO and were re-filtered after thawing and prior to generating scRNA-seq libraries. The 371 

sequencing libraries were prepared using the Chromium Single Cell 3' reagent V2 or V3 372 

kit (10X Genomics) in accordance with the manufacturer’s protocol and diluted as to yield 373 

a recovery of ~6,000 single-cell transcriptomes with <5% doublet rate. The libraries were 374 

sequenced in multiplex (n=2 per sequencing run) on the NextSeq 500 sequencer 375 

(Illumina) to produce between 200 and 250 million reads per library. 376 

 377 

Single-cell data analysis 378 

Sequencing reads were processed with the Cell Ranger version 3.1 (10X Genomics) 379 

using the human reference transcriptome GRCh38. The downstream analysis was carried 380 

out with R 3.6.1 (2019-07-05). Quality control filtering, data clustering, visualization, and 381 

differential gene expression analysis was carried out using Seurat 3.1.0 R package. Each 382 

of the 10 datasets was first analyzed and annotated independently before integration with 383 
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Scanorama (Hie et al., 2019). Filtering retained cells with >1000 unique molecular 384 

identifiers (UMIs), <20% UMIs mapped to mitochondrial genes, and genes expressed in 385 

at least 3 cells. Unsupervised shared nearest neighbor (SSN) clustering was performed 386 

with a resolution of 0.4 following which clusters were annotated with a common 387 

nomenclature of 12 cell type terms (Fig. S1). Differential expression analysis was 388 

achieved using either Seurat’s “FindAllMarkers” (Fig. 1D) or “FindMarkers” (Fig. 2A) 389 

function using a Wilcoxon Rank Sum test and only considering genes with >log2(0.25) 390 

fold-change and expressed in at least 25% of cells in the cluster. P-values were corrected 391 

for false-discovery (FDR) and then reported as q-values. Integration of raw counts was 392 

achieved using the “scanorama.correct” function from Scanorama. The integrated values 393 

were finally scaled in Seurat regressing out the 10X chemistry type and the number of 394 

genes per cell. Visualization was done using uniform manifold approximation and 395 

projection (UMAP) (Becht et al., 2018). 396 

 397 

Pathway and gene set enrichment analysis 398 

The list of differentially expressed genes between MuSC1 and MuSC2 (Fig. 2A) was used 399 

in Ingenuity Pathway Analysis (IPA) (QUIAGEN, 2019-08-30). Activated (canonical) 400 

pathways were calculated by “Core Analysis” setting a q-value cutoff of 0.05, which 401 

yielded 964 genes (366 down, 598 up).  Top canonical pathways were chosen based of 402 

-log(p-value) and z-score values. Gene set enrichment analysis (GSEA, v.4.0.3) 403 

(Subramanian et al., 2005) was ran on the same gene list as IPA ranked by log2 fold-404 

change and with default program settings. Gene sets database used: 405 

h.all.v7.0.symbols.gmt, c2.all.v7.0.symbols.gmt, c5.all.v7.0.symbols.gmt (Broad 406 

Institute). Gene sets enriched in phenotype were selected based on q-value and 407 

enrichment score (ES). 408 

 409 

Ligand-receptor cell communication model 410 

The model aims at scoring potential ligand-receptor interactions between MuSCs 411 

(receptor) and other cell types (ligand). We used the ligand-receptor interaction database 412 

from Ramilowski et al. (2015). From the database, we considered 1915 ligand-receptor 413 

pairs (from 542 receptors and 518 ligands) to test for differential expression in our scRNA-414 
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seq dataset. To calculate the score for a given ligand-receptor pair, we multiply the 415 

average receptor expression in MuSCs by the average ligand expression per other cell 416 

type. We only considered receptors that are differentially expressed in either the MuSC1 417 

or MuSC2 subpopulation when compared individually to all other cell types. 418 

 419 

Reagents and Resources 420 
 421 
Reagents 
Dispase II (neutral protease, grade II) Sigma-Aldrich 04942078001 
Collagenase D, from Clostridium histolyticum Sigma-Aldrich 11088866001 

 422 
Commercial kits 
Chromium Single Cell 3' Library & Gel Bead 
Kit v2 

10X Genomics CG00052 (protocol) 

Chromium Single Cell 3' Library & Gel Bead 
Kit v3 

10X Genomics CG000183 (protocol) 

 423 
Deposited data 
Human ligand-receptor database Ramilowski et al., 2015 https://www.ncbi.nlm.nih.g

ov/pubmed/26198319 
Human scRNAseq dataset This paper GSE143704 

 424 
Software packages and algorithms 
Cell Ranger 3.1.0 (July 24, 2019) 10X Genomics https://support.10xgenomi

cs.com/single-cell-gene-
expression/software/down
loads/latest 

Seurat 3.1.0 Stuart et al., 2019b https://github.com/satijala
b/seurat 

Scanorama (online version as of 2019-11-19) Hie et al., 2019 https://github.com/brianhi
e/scanorama 

Gene Set Enrichment Analysis (4.0.3) Subramanian et al., 2005 http://software.broadinstit
ute.org/gsea/index.jsp 

Ingenuity Pathway Analysis (IPA, 2019-08-
30) 

QUIAGEN https://www.qiagenbioinfo
rmatics.com/products/ing
enuity-pathway-analysis/ 

  425 
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Figure S1. (previous page) Comparison of scRNA-seq integration and batch correction 674 
methods. We compared four scRNA-seq data integration methods to evaluate which most 675 
faithfully conserves donor, anatomical, and biological information while minimizes technical 676 
biases. (A) The n=10 donor datasets were first annotated independently using a nomenclature of 677 
12 common cell type terms following unsupervised SNN clustering. Then we evaluated the 678 
integration method by UMAP and by coloring the data either by cell type, donor ID, or 10X library 679 
chemistry used. First, we integrated the data by merging the individually normalized gene 680 
expression matrices without any further correction. We saw strong technical biases that 681 
overwhelmed biological information as the different cell populations segregate by sample/donor 682 
and chemistry type. For instance, the two MuSC and progenitor subpopulations are grouped with 683 
fibroblasts and endothelial cells. Second, we tested the Seurat SCT integration method (Stuart et 684 
al., 2019b). This method first calculates a cross-correlation subspace from genes that are shared 685 
between datasets. We noticed that this method better “aligns” donor and chemistry type but at 686 
the expense of masking biological variability. For instance, we observed that the two MuSC and 687 
four stromal subpopulations (Fibroblast 1,2,3 and Adipocytes) were grouped together, hiding 688 
important biological heterogeneity. Although certainly useful to validate reproducibility in scRNA-689 
seq experiments, the Seurat SCT integration approach overcorrected biological heterogeneity for 690 
heterogeneous samples. Third, we tested the Scanorama method (Hie et al., 2019), which relies 691 
on a computer vision algorithm that “stitches” datasets together even when the cell type 692 
composition between dataset is considerably different. We see that this method groups similar 693 
cell populations together while acknowledging donor differences. Yet, surprisingly, this method is 694 
also very sensitive at picking up differences in chemistry. To correct this chemistry effect, we 695 
scaled the Scanorama output by regressing out the chemistry and the number of genes detected 696 
per cell (significantly different between chemistry type) (B). Using this integration method, we 697 
observed clear separation of the independently annotated cell populations. We present the 698 
resulting Scanorama-integrated dataset as a “consensus atlas” (see Fig. 1B-C) of human muscle 699 
that describes donor-to-donor differences while grouping cells that are similar together and 700 
removing technical biases. 701 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914713
http://creativecommons.org/licenses/by-nc-nd/4.0/

