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Summary 

A complex interaction of anabolic and catabolic metabolism underpins the ability of 

leukocytes to mount an immune response. Their capacity to respond and adapt to changing 

environments by metabolic reprogramming is crucial to their effector function. However, 

current methods lack the ability to interrogate this network of metabolic pathways at the 

single cell level within a heterogeneous population. Here we present Met-Flow, a novel flow 

cytometry-based method that captures the metabolic state of immune cells by targeting key 

proteins and rate-limiting enzymes across multiple pathways. We demonstrate the ability to 

simultaneously measure divergent metabolic profiles and dynamic remodeling in human 

peripheral blood mononuclear cells. Using Met-Flow, we discovered that glucose restriction 

and metabolic remodeling drive the expansion of an inflammatory central memory T cell 

subset. This method captures the complex metabolic state of any cell as it relates to its 

phenotype and function, leading to a greater understanding of the role of metabolic 

heterogeneity in immune responses.   
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Introduction 

The immune status of a given cell type is defined by its underlying metabolic state. 

Leukocytes utilize metabolic pathways to coordinate immune specific gene expression at the 

epigenetic, transcriptional, post-transcriptional and post-translational levels. In T cells, 

glycolysis plays an important role in effector function and cytokine production1, and high 

activity through the AKT signaling pathway during activation supports both increased 

glycolysis and oxidative phosphorylation (OXPHOS) of naïve T cells2. In the context of 

activation in antigen presenting cells (APC), glycolysis, glycogen metabolism and fatty acid 

synthesis are required for immuno-stimulatory function 3-6. Conversely, the formation of 

regulatory T cell subsets (Treg) requires fatty acid synthesis 7, whereas tolerogenic dendritic 

cells require fatty acid oxidation for active suppression 8,9. This metabolic switch to lipid 

metabolism is driven by increased signaling of the mechanistic target of rapamycin (mTOR) 

pathway, measured by flow cytometry of phosphorylated proteins (Phos-Flow)10,11. These 

findings illustrate the critical role of multiple metabolic pathways in shaping cellular 

phenotype and function. 

Multiplexing the metabolic state of cells and immune function is limited by available 

technologies. The field of immunology is dominated by high dimensional single cell analysis 

using flow cytometry, mass cytometry, and single cell RNA sequencing (scRNAseq), 

whereas bulk cellular analysis technology is often used to capture metabolic respiration. 

However, these technologies are largely incompatible with analysis of heterogeneous 

cellular populations at a protein level.  

Here we present Met-Flow, a high-parameter flow cytometry method utilizing 

antibodies against metabolic proteins that are critical and rate-limiting in their representative 

pathways. The cell’s potential to flux through anabolic pathways was examined by the 

measurement of fatty acid synthesis and an arginine metabolism associated protein. The 

analysis of catabolic pathways encompassed the quantification of proteins involved in 

glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, 
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oxidative phosphorylation (OXPHOS) and fatty acid oxidation. The capacity for phosphate 

and glucose uptake was measured by the expression level of metabolic transporters, as well 

as an antioxidant enzyme that affects oxidative stress (Supplementary Table 1). 

The protein composition of these rate-limiting enzymes defines the cellular capacity 

of a metabolic pathway. Furthermore, dynamic cellular differentiation engages rapid post-

transcriptional and post-translational mechanisms, thus affecting the concentrations of 

metabolic pathway-associated proteins. Met-Flow allows us to simultaneously capture the 

state of key metabolic pathways on a single-cell, protein level, thus overcoming the inherent 

drawbacks of metabolic mRNA analysis, including: the temporal discord between mRNA 

abundance with protein concentration12. Moreover, dynamic cellular differentiation engages 

rapid post-transcriptional and post-translational mechanisms, that are not regulated by gene 

expression13. Combined, these limitations highlight the importance of protein-level analysis.  

Here, we demonstrate the ability of Met-Flow to measure divergent metabolic states 

across healthy human peripheral blood mononuclear cells (PBMCs) and draw novel 

associations between the metabolic profile of a cell with its subset phenotype, activation 

status, and immunological function. With the ability to capture metabolic heterogeneity on a 

single cell level, Met-Flow provides important insights into the understanding of the 

metabolic state across any cell type.  
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Methods 
 

Peripheral Blood Mononuclear Cell (PBMC) isolation  

PBMC were isolated from cone blood of healthy donors (IRB NHG DSRB 2000/00828) using 

ficoll density gradient centrifugation (Ficoll-Paque, GE Healthcare). Whole blood was diluted 

in a 1:1 ratio with PBS (GibcoTM, ThermoFisher, 10010023) supplemented with 2 mM EDTA 

(PBS-EDTA) (InvitrogenTM, ThermoFisher, 16676038). The diluted blood was layered on top 

of the ficoll in a 2:1 diluted blood to ficoll ratio. The sample was spun at 400 g for 30 min 

without brake 21 °C. After centrifugation, the PBMC layer was carefully removed and 

washed twice in PBS-EDTA. Cells were frozen down in freezing medium containing FBS 

(Hyclone, GE Healthcare, SH30071.03) and 10 % dimethyl sulfoxide (DMSO) at 50x106 

PBMC/ml overnight at -80 °C and subsequently stored in liquid nitrogen.  

 

PBMC and T cell culture 

PBMCs were thawed in a 37 °C water bath and washed with 10 ml of complete (c)RPMI 

containing RPMI 1640 (GibcoTM, ThermoFisher, 11875093), 10 % FBS, 100 U/ml penicillin 

and 100 µg/ml streptomycin (GibcoTM, ThermoFisher, 15140122), 1 mM sodium pyruvate 

(GibcoTM, ThermoFisher, 11360070), 2 mM L-glutamine (GibcoTM, ThermoFisher, 

35050061), 1X nonessential amino acids (GibcoTM, ThermoFisher, 11140050), 15 mM 

HEPES (GibcoTM, ThermoFisher, 15630080). T cells were isolated from PBMCs by three 

sequential rounds of magnetic separation using CD3 Microbeads (Miltenyi Biotec, 130-050-

101), according to the manufacturer’s instructions. PBMC and T cells were seeded at 1x106 

PBMC in a 96-well flat-bottom plate and rested in cRPMI for 1 hour. After resting, cells were 

stimulated for 24 h with Gibco™ Dynabeads™ Human T-Activator CD3/CD28 

(ThermoFisher, 11131D) in a bead-to-cell ratio of 0.5:1 in simultaneous presence or 

absence of 2 mM 2-Fluoro-2-deoxy-D-glucose (2-FDG) (Sigma, F5006) at 37°C, 5% CO2.  
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Flow cytometry staining 

Ten metabolic proteins were chosen and optimized based on their critical role in specific 

metabolic pathways (Table 1). The purified metabolic antibodies were purchased from 

Abcam and custom conjugated by Becton Dickinson (BD) using their fluorochromes, unless 

otherwise indicated; SLC20A1 (clone EPR11427(2), BD AF647, Abcam ab231703), ACAC 

(clone EPR4971, BD BUV496, Abcam ab231686), HK1 (clone EPR10134(B), BD BUV661, 

Abcam ab234112), CPT1A (clone 8F6AE9, BD V450, Abcam ab231704), IDH2 (clone 

EPR7577, BD BB790, Abcam ab231695), G6PD (clone EPR6292, BD BUV395, Abcam 

ab231690), GLUT1 (clone EPR3915, Abcam AF488, ab195359), ASS1 (clone EPR12398, 

BD AF700, Abcam ab231684), PRDX2 (clone EPR5154, BD BUV615, Abcam ab231702), 

ATP5A (clone EPR13030(B), Abcam AF594, ab216385). These metabolic proteins are 

differentially localized to the mitochondria, the cell surface or the cytosol (Table 1). In 

addition, antibodies to surface and intracellular markers were used to phenotype 11 

leukocyte subsets in PBMCs to generate a 27 color flow cytometry panel; CD4 (clone SK3, 

BD, BV480, 566104), CD8 (clone SK1, BD, BUV805, 564912 ), and CD3 (clone UCTH1, BD, 

BB630, 624294) for T cells; HLA-DR (clone G46-6, BD, BV786, 564041), CD11c (clone B-

ly6, BD, BB700, 624381), for myeloid and CD123 (clone 9F5, BD, BV650, 740588) for 

plasmacytoid dendritic cells, IgM (clone G20-127, BD, BUV805, 624287), IgD (clone IA6-2, 

BD, BV480, 566138) and CD19 (clone HIB19, BD, BB660, 624295) for B cells; CD16 (clone 

3G8, BD, BV750, 624380) and CD14 (clone M5E2, BD, PE-Cy7, 557742) for Monocytes; 

and NK subsets using CD56 (clone NCAM16.2, BD, PE-Cy5, 624350), as well as CD45 

(clone 2D1, BD, BUV563, 624284), PD-1 (clone MIH4, BD, PE, 557946), ILT3 (clone ZM3.8, 

BD, BV605, 742807), CD69 (clone FN50, BD, APC-H7, 560737), CD86 (clone 2331/FUN-1, 

BD, BUV737, 564428) and live-dead dye FVS575V (BD, BV570, 565694). The modified T 

cell panel included CCR7 (clone G043H7, Biolegend, BV650, 353134), CD45RA 

(cloneHI100, BD, PE, 561883), CD25 (clone 2A3, BD, PE-Cy7, 335789), FOXP3 (clone 

PCH101, eBioscienceTM, Thermo Fisher, PE-Cyanine5.5, 35-4776-42) and CD14 (M5E2, 

BD, BV570, 624298) for Monocytes. 
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PBMCs or purified T cells were stained for 30 minutes on ice with the antibodies 

specific for extracellular proteins in Brilliant Stain Buffer (BD, 563794). Following incubation, 

cells were washed with cold PBS and centrifuged at 300 g, 5 minutes, 3 times. Cells were 

fixed and permeabilized using eBioscience Foxp3/Transcription Factor Staining Buffer Set 

(Invitrogen, Catalog Number 00-5523-00) according to manufacturer’s instructions. We then 

washed the cells in PBS as previously described and stained with intracellular antibodies in 

permeabilization buffer for 1 hour at room temperature. Subsequently, cells were washed 

once in permeabilization buffer followed by a PBS wash. Samples were acquired on a X-30 

FACSymphony (BD) with FACS Diva Version (BD, Version 8.0.1) software. Analysis was 

completed using FlowJo (BD, version 10.5.2).  

 

Phos-Flow staining 

Purified T cells were isolated and stimulated as described above. After incubation with 

different treatments, cells were added to a 96-well V-bottom plate and spun down at 1500g 

for 1 minute at 4°C. Cells were then stained with live-dead dye FVS575V (BD, BV570, 

565694) for 5 minutes and washed by adding 150 µl PBS and spinning at 3000rpm for 1 

minute at 4°C. Following this, Fix Buffer I (BD, 557870) was added at 150 µl per well and 

incubated for 10 minutes at 37°C. After fixation and washing as described above, 150 µl of 

Perm/Wash Buffer I (BD, 557885) was added and incubated for 30 minutes, in the dark, at 

room temperature. After permeablization, cells were stained with an antibody cocktail mix for 

1 hour at room temperature in Perm/Wash Buffer I, including the antibodies CD4 (clone SK3, 

BD, BV480, 566104), CD8 (clone SK1, BD, BUV805, 564912 ), CD3 (clone UCTH1, BD, 

BB630, 624294), HLA-DR (clone G46-6, BD, BV786, 564041), CD16 (clone 3G8, BD, 

BV750, 624380), CD45 (clone 2D1, BD, BUV563, 624284), CD69 (clone FN50, BD, APC-

H7, 560737), CCR7 (clone G043H7, Biolegend, BV650, 353134), CD45RA (cloneHI100, BD, 

PE, 561883), CD25 (clone 2A3, BD, PE-Cy7, 335789), CD14 (M5E2, BD, BV570, 624298), 

the phosphorylated ribosomal protein S6 (Ser240/244, clone D68F8, AF647, 5044), as well 
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as the abovementioned 9 metabolic antibodies. Finally, cells were washed and acquired on 

the X-30 FACSymphony.  

 

GM-CSF staining 

Purified T cells were stimulated as previously described and GM-CSF was measured using 

the GM-CSF Secretion Assay Enrichment and Detection Kit (PE, Miltenyi, 130-105-760). 

The manufacturer’s instructions were modified to a 96-well format with final volumes of 200 

µl per well. Following the GM-CSF kit protocol, cells were additionally stained with CD4 

(clone SK3, BD, BV480, 566104), CD8 (clone SK1, BD, BUV805, 564912 ), CD3 (clone 

UCTH1, BD, BB630, 624294), HLA-DR (clone G46-6, BD, BV786, 564041), CD16 (clone 

3G8, BD, BV750, 624380), CD45 (clone 2D1, BD, BUV563, 624284), CD69 (clone FN50, 

BD, APC-H7, 560737), CCR7 (clone G043H7, Biolegend, BV650, 353134), CD45RA 

(cloneHI100, BD, PE, 561883), CD25 (clone 2A3, BD, PE-Cy7, 335789), CD14 (M5E2, BD, 

BV570, 624298), CD56 (clone NCAM16.2, BD, PE-Cy5, 624350) and live-dead dye 

FVS575V (BD, BV570, 565694). Subsequently, cells were fixed and permeabilized in 

Foxp3/Transcription Factor Staining Buffer as previously described, and stained with the 

abovementioned metabolic antibodies, before acquiring on the X-30 FACSymphony.  

 

Cytokine and chemokine analysis 

Supernatants from stimulation experiments were collected and stored at -80 °C for analysis.  

Cytokine and chemokine profiles were analyzed using a multiplexed, bead-based kit 

(Milliplex 41-plex human cytokine panel 1, Millipore, MA, USA) on the FLEXMAP 3D system 

(Luminex Corporation, TX, USA).  

 

Real-time metabolic characterization using extracellular flux analysis 

Glycolytic function and mitochondrial respiration were measured by extracellular acidification 

rate (ECAR, mpH/min) and oxygen consumption rate (OCR, pmol/min) using the XFe96 
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extracellular flux analyzer (Seahorse Bioscience, Massachusetts, USA). 200,000 cells per 

well were plated in a 96 well plate and pre-treated for 24 h in the presence or absence of 

CD3/28 beads and 2-FDG in cRPMI. Respiration was measured in XF Assay Modified 

Media with L-glutamine (2 mM), sodium pyruvate (1 mM) with or without 11 mM Glucose 

(Sigma-Aldrich, Merck, G8769) for OCR and ECAR measurements, respectively. To 

measure glycolytic parameters, the glycolytic stress test kit (Seahorse Bioscience, 103020-

100) was used, containing Glucose (10 mM), oligomycin (2 µM) and 2-deoxy-glucose (50 

mM). Mitochondrial respiration parameters were measured using the mitochondrial stress 

test kit (Seahorse Bioscience, 103015-100), by sequentially adding oligomycin (2 µM), 

Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) (1.5 µM), Rotenone and 

Antimycin A (1 µM).  

 

High-dimensional and statistical analysis 

Statistical analysis was performed using Prism (Graphpad, version 8.2.0). Data were 

compared using either T-tests for paired analysis or non-parametric one-way ANOVA with 

Dunn’s Multiple Corrections, unless otherwise stated. Data is represented as the mean ± 

standard deviation (SD). P values <0.05 were considered significant; where *P<0.05, 

**P<0.01, ***P<0.001, ****P<0.00001. High-dimensional analysis by Fast Fourier Transform-

accelerated Interpolation-based t-distributed stochastic neighbor embedding (Fit-SNE) was 

performed using FlowJo (BD, Version 10.6.1). Heatmaps were generated using a web-

enabled tool (Heatmapper 14). Chord plots15 were generated by Spearman correlation 

analysis of gMFI in one immune population relative to the gMFI of all other subsets. Analysis 

of scRNAseq data of 68k PBMCs and 5k PBMCs was done using previously published data 

and R studio 16,17.  
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Results 

 
Immune cells exhibit divergent metabolic profiles at a protein level 

Innate and adaptive immune responses are orchestrated by leukocytes, which 

require metabolic remodeling and mitochondrial signaling to exert their function 18-21. In our 

studies we set out to develop the capability to measure metabolic profiles across multiple 

immune subsets in a heterogeneous population on a single-cell, protein level.  

A 27-parameter flow cytometry panel was built, which included 10 critical metabolic 

proteins, encompassing rate-limiting enzymes, anabolic and catabolic pathways and 

transporters (Supplementary Table 1, Supplementary Fig. 1a), as well as phenotypic 

markers to analyze 11 major leukocyte subsets. Using the FitSNE algorithm, cellular subsets 

from 12 donor samples were clustered into their immune phenotype with 15,000 cells per 

leukocyte population from each donor, based on similarities in expression profiles of 

individual cells 22,23. This methodology successfully clustered the populations based on 

differential expression of both the lineage and metabolic proteins (Fig. 1a, Supplementary 

Fig. 1b). To determine whether the immune cell subsets could be identified by their 

metabolic phenotype alone, the clustering analysis was performed using the expression 

profiles of only the 10 metabolic proteins. Using the divergent expression levels of metabolic 

proteins alone clustered the populations into CD3+ T cells, CD56+ NK cells, CD19+ B cells, 

HLA-DR+/CD11c+/CD14- myeloid Dendritic cells (mDCs) and CD14+ monocytes (Fig. 1b), 

which were retrospectively identified by their lineage marker expression (Supplementary Fig. 

1c), and confirmed by an overlay of conventionally gated immune populations 

(Supplementary Fig. 1d). Both monocytes and mDCs segregated into distinct, metabolically 

defined islands. The monocytes separated out into 2 subpopulations, mainly due to a 

difference in expression of the TCA cycle enzyme IDH2 (Fig. 1b). Unlike the projection of 

phenotypic markers that separated out the functional CD4+ and CD8+ subsets (Fig. 1a), 

using metabolic protein expression profiles alone showed a similar metabolic profile across 

all CD3+ T cells (Fig. 1b, Supplementary Fig. 1c,d).  
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In comparison with scRNAseq analysis of isolated PBMC populations, we showed 

the ability of Met-Flow to define immune cells by their metabolic state with 10 metabolic 

proteins, which was comparable to the resolution of >500 metabolic genes by scRNAseq16,17 

(Supplementary Fig. 1d). Unlike the protein level analysis, the expression of the same 10 

metabolic genes alone were not able to resolve immune populations at the RNA level 

(Supplementary Fig. 1e). There is a well-characterized contribution of both post-

transcriptional and post-translational modifications that regulate metabolic genes1,2,24. Our 

data demonstrates the strong correlation of the metabolic protein profile with distinct 

leukocyte subsets.  Furthermore, the ability to identify these subsets using transcriptome 

data requires a greater amount of dimensionality compared to when using the protein-based 

Met-Flow method, thus reducing the burden for advanced analytical techniques.  

Using a comparative heatmap analysis of the geometric mean fluorescence intensity 

(gMFI) of each protein, we showed metabolic heterogeneity across leukocytes, where each 

leukocyte population was gated based on specific lineage markers (Fig. 1c, Supplementary 

Fig. 2a,b). In plasmacytoid DCs (pDCs), our data showed higher levels of IDH2, ATP5A, 

G6PD and GLUT1 reflecting heightened capacity for OXPHOS, the TCA cycle, PPP and 

glucose uptake compared to mDCs (Fig. 1c, Supplementary Fig. 2c). In both CD16hi/lo 

monocyte subsets, the expression of all metabolic proteins is high in comparison to the other 

populations. Inflammatory CD16+ monocytes expressed higher G6PD, ACAC and HK1 in 

comparison to the CD16- population (Fig. 1c, Supplementary Fig. 2d). Analysis of B cells 

showed significantly higher GLUT1 and IDH2 in comparison to T and NK subsets (Fig. 1c, 

Supplementary Fig. 2e-f). The increased GLUT1 and IDH2 indicates a high capacity for 

glucose uptake and OXPHOS, which has previously been shown to play a critical role for B 

cell activation by mTOR signaling, mitochondrial membrane potential remodeling and ROS 

production 25,26. Across CD16- NK cell subsets, our data demonstrates divergent metabolic 

profiles of CD56 bright cells compared to the dim population (Fig. 1c, Supplementary Fig. 

2g). The CD56 bright cells express higher SLC20A1, ASS1, ACAC and HK1, whereas CD56 

dim cells show greater expression of CPT1A and GLUT1. Moreover, in comparison to CD4+ 
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T cells, we demonstrated higher expression of IDH2, G6PD, ACAC, CPT1A, GLUT1 in NKT 

cells (Fig. 1c, Supplementary Fig. 2h). Lastly, GLUT1 and HK1 are expressed at similar 

levels between CD4+ and CD8+ T cells (Fig. 1c, Supplementary Fig. 2i), as both subsets 

similarly rely on glycolytic flux 27, however there is a significant difference in G6PD indicating 

a dissimilarity in capacity for flux through the PPP. Additionally, the relative correlation 

between immune subsets of a given phenotypic marker to each metabolic protein was 

measured. This data showed an increased or decreased association between specific 

metabolic pathways and individual leukocyte populations reflecting metabolic heterogeneity 

of cellular human PBMC populations (Fig. 1d). 

Collectively, this data demonstrated the ability of this novel immuno-metabolic flow 

cytometry panel to capture differential metabolic profiles within a heterogeneous immune cell 

population. Met-Flow measured single cell and protein level metabolic states and provided 

novel correlations between immune subpopulations and specific metabolic pathways.  
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Figure 1. Protein level analysis shows divergent metabolic profiles in leukocytes (a) 
FitSNE projection of both phenotypic and metabolic proteins, and (b) FitSNE projection of 
metabolic proteins only, with corresponding expression in each population, representing n=12 
samples from 4 independent experiments. (c) log2 of gMFI expression of each immune cell type 
(n=12). (d) Chord visualization using spearman correlation between metabolic protein and 
immune phenotype. A positive correlation is presented in red, a negative correlation is presented 
in blue based on the r value (n=9). 
 

Dynamic metabolic reprogramming occurs during T cell activation 

With the ability to measure divergent metabolic profiles across resting immune 

populations, the relationship between metabolism, leukocyte activation and maturation was 

tested using purified T cells. To explore metabolic dynamics, beads coated with anti-CD3 

and anti-CD28 (CD3/28) were added to activate T cells by TCR engagement and co-

stimulatory signal 28. A modified flow cytometry panel was used to include T cell memory 

markers, with a focus on CD4+ T cells. Stimulation of the T-cells altered activation-

dependent protein levels, with the highest fold change increase observed in CD25 
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expression, followed by CD69 and HLA-DR (Fig. 2a). Simultaneous measurement of 

metabolic protein expression showed a 3-fold induction of GLUT1, suggesting a significantly 

increased capacity for glucose transport in these activated cells (Fig. 2a, Supplementary Fig, 

3a,b). Moreover, the analysis showed over 2-fold inductions of IDH2, ACAC, G6PD, ASS1 

and PRDX2, indicating an increased capacity for flux through the TCA cycle, fatty acid 

synthesis, oxidative PPP, arginine synthesis and the antioxidant response pathways, 

respectively (Fig. 2a, Supplementary Fig. 3a,b). HK1, ATP5A and CPT1A were also 

significantly higher following activation, showing increased capacity for flux through 

glycolysis, OXPHOS and fatty acid oxidation (Fig. 2a,b). Cumulatively, the data 

demonstrated that differential reprogramming of multiple metabolic pathways is closely 

linked to T cell activation.  

Congruent with the findings in purified T cells, the mixed PBMC studies showed 

similar increases in the capacity for flux through the glycolytic, PPP, OXPHOS and fatty acid 

metabolism pathways (Supplementary Fig. 3c). Whilst the purified T cells demonstrated a 

significant increase of ASS1 and PRDX2 protein level with activation, this observation was 

less pronounced in total PBMCs (Supplementary Fig. 3c). In contrast to the decreased 

expression of the phosphate transporter SLC20A1 with activation in PBMCs, we noted the 

loss of SLC20A1 once T cells were purified (Supplemental Fig. 3d). This was independent of 

any stimulation and suggests that purification methods alter the expression of some 

metabolic proteins.  

We next investigated the relationship between metabolic state and T cell activation 

(Fig. 2c). The activation markers CD25 and CD69 showed positive correlations with multiple 

metabolic proteins. Conversely, a negative correlation between ACAC and HK1 with HLA-

DR was demonstrated, indicating a difference in metabolic requirements of fatty acid 

synthesis and glycolysis for early and late activation. Specifically, the strongest correlation 

was seen between GLUT1 and CD25 (r=0.8571), indicating a positive relationship between 

the capacity for glucose uptake and CD25 expression with activation (Fig. 2d,e), and 

demonstrated by the overlap of high expressing CD25 and GLUT1 cells in the FitSNE 
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projection of activated CD4+ T cells (Fig. 2f). This finding directly correlates the sensitivity of 

the T cell to the IL-2 growth factor CD25, to the capacity for glucose uptake by GLUT1, and 

is supported by the increase in glucose uptake by 2-NBDG (Supplementary Fig. 3e). In 

comparison to CD8+ T cells, we further demonstrate differential metabolic upregulation in 

CD4+ T cells with activation. Though at resting state, the CD4+ and CD8+ subsets show 

similar metabolic profiles, CD4+ T cells upregulate oxidative metabolism with higher 

expression of IDH2 and ATP5A, as well as GLUT1. In contrast, CD8+ T cells augment their 

capacity for flux through the PPP with higher G6PD expression (Fig. 2b, Supplementary Fig. 

3e). This confirmed that T cell activation requires remodeling of the metabolic state that is 

specific to functional T cell subsets29. 

Together, Met-Flow confirms previously described metabolic inductions of glycolysis, 

OXPHOS and fatty acid synthesis in activated T cells 1,27-29. This technique enabled the 

association of glycolysis and immune activation on a single cell level, by elucidating the 

positive correlation between GLUT1 and CD25 expression. The data further demonstrated 

reprogramming of other pathways, including key enzymes in mitochondrial respiration, the 

PPP and fatty acid oxidation, that contribute to the metabolic state of activated T cells.    
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Figure 2. Activation induces extensive metabolic reprogramming in T cells. Purified T cells 
were untreated (UT) or activated with anti-CD3/CD28 beads (CD3/28). (a) Geometric mean 
fluorescence intensity (gMFI) was measured for activation and metabolic proteins in CD4+ T 
cells. Each dot represents one donor, data representative of n=8 donors, from 3 independent 
experiments. (b) FitSNE projection and corresponding expression of metabolic protein and 
activation markers in T cells, data acquired from n=5 samples, with 10,000 cells per donor. (c) 
Chord visualization of correlation between immune and metabolic proteins in activated CD4+ T 
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cells, representative of n=8 donors. (d) Spearman correlation of GLUT1 and CD25 expression in 
untreated and (e) activated CD4+ T cells. (f) Heatmap of FitSNE projection of GLUT1 and CD25 
expression in untreated and activated CD4+ T cells. 
 

Glycolytic inhibition alters the metabolic and activation status of T cells 

Previous analysis of global metabolic reprograming showed an increased capacity 

for glucose uptake and glycolysis, associated with T cell activation. Therefore, we 

investigated the dependence on glycolytic metabolism for the immuno-metabolic state. The 

glucose analog 2-Fluoro-2-deoxyglucose (FDG) was added in the presence or absence of 

anti-CD3/28 stimulation in purified T cells. 2-FDG is a closer analog to glucose than 2-DG, is 

less toxic, and more specific, as it does not interfere with mannose metabolism by 

incorporating into N-linked glycosylation30-33. We determined that 24 hours of 2-FDG alone 

did not cause a significant decrease in any metabolic pathway components (Fig. 3a-d). 

Stimulation of anti-CD3/28 resulted in an increase in surface expression of CD25 (Fig. 2a), 

whilst the addition of 2-FDG prevented this increase (Fig. 3c) 34. The dependence of 

glycolysis for CD25 expression was not shared across all surface activation molecules, since 

CD69 and HLA-DR were unchanged or increased respectively (Fig. 3c, Supplementary Fig. 

4a). Inhibition of glycolysis with 2-FDG did not affect the protein level of GLUT1, indicating a 

feedback loop and the requirement for GLUT1 to maintain high levels of intracellular glucose 

(Fig. 3d, Supplementary Fig. 4a).  As shown previously, stimulation with CD3/28 upregulated 

the expression of all other metabolic proteins analyzed, whilst 2-FDG combined with CD3/28 

treatment reduced their expression with differential sensitivity, indicating partial dependence 

on glycolysis (Fig. 3a, b, d, Supplementary Fig. 4a). Taken together, these results indicate a 

heavy reliance on glucose for metabolic function during T cell activation.  

To correlate the changes in maturation and metabolism of these T cells with cellular 

function, we measured the cytokine and chemokine release in their supernatants. This 

analysis showed a significant increase in pro-inflammatory CCL3, IL-13, IL-6, sCD40L, IL-

17A, TNF-⍺, IFN-g and CXCL10 following CD3/28 stimulation, as expected (Supplementary 

Fig. 4b). Glycolytic inhibition with 2-FDG selectively reduced the production of IL-13, IL-6, 
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sCD40L, IL-17A. In contrast, IL-8 and GM-CSF increased following stimulation in the 

presence of 2-FDG, suggesting a regulatory role of glycolysis for these molecules 

(Supplementary Fig. 4b).  

With the differential effects of glycolytic inhibition on activation markers and 

metabolic protein levels, our data demonstrated the dependence on glycolysis in regulating 

multiple metabolic pathways that alters T cell cytokine release. We showed glycolytic 

requirement for the upregulation of specific activation molecules and cytokines, including 

CD25, IL-13, IFN-g and IL-17A. Moreover, all metabolic proteins were expressed at a lower 

level following glycolytic inhibition, with the exception of GLUT1, indicating maintenance of 

metabolic feedback. Collectively, Met-Flow is effective at elucidating differential responses of 

metabolic pathways in immunological processes.  

 
 
Figure 3. The activation and metabolic states of CD4+ T cells are altered by glycolytic 
inhibition. Fold change of metabolic protein and activation markers (gMFI) was measured in 
CD4+ T cells with no treatment (UT), 2-FDG, CD3/28, and combination of 2-FDG with CD3/28 
(Combi). Metabolic proteins are grouped by (a) anabolic pathways, including fatty acid synthesis 
and arginine metabolism, and (b) catabolic pathways, including glycolysis, oxidative PPP, TCA 
cycle and fatty acid oxidation. (c) Activation markers and (d) the ATP synthase protein critical for 
OXPHOS, glucose transporter and the antioxidant protein were measured. Each dot represents 
one donor sample, total n=8 donors from 3 independent experiments. 
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T cell memory subsets show differential metabolic phenotypes 

In the studies described above, we showed the use of Met-Flow in assessing 

dynamic metabolic remodeling in T cell subsets following activation. Past studies have 

shown that T cell subsets utilize distinct energy sources under differential nutrient availability 

29,35-38. Leveraging the capability of Met-Flow to measure metabolism of cellular subsets, we 

investigated the different metabolic states during memory differentiation and the effect of 

glycolytic inhibition. 

Using FitSNE projection, the 10 metabolic proteins are differentially expression 

across memory subsets (Fig. 4a-b). We showed distinct sub-clusters of CM and EM 

populations based on their immuno-metabolic profiles, whereas the naïve and TEMRA 

subsets showed some overlap (Fig. 4a). The CM and EM populations both expressed higher 

levels of ACAC, PRDX2, and CPT1A, in contrast to the naïve and TEMRA subsets (Fig. 4b). 

Previous work has shown that EM cells have higher oxygen consumption rates and spare 

respiratory capacity in comparison to naïve CD4+ T cells 2,35. We corroborated this finding by 

showing increased IDH2 expression in the EM population (Fig. 4b, Supplementary Fig. 5a). 

Moreover, there is a concomitant high expression of PRDX2 in the EM cells, which may be a 

result of high oxidative stress produced by OXPHOS. These findings illustrate the ability to 

capture the differential metabolic states across resting T cell memory subsets using Met-

Flow. 

To measure the effect of glycolytic inhibition on the metabolic state across subsets, 

the cells were stimulated with CD3/28 and 2-FDG. This resulted in differential effects in each 

memory population, measured by cell frequency, metabolic protein level and activation 

status. Stimulation with CD3/28 caused a decrease in frequency of naïve CD4+ T cells 

compared to the untreated control (Fig. 4c-d). Addition of 2-FDG during activation (Combi) 

resulted in the increased frequency of CM cells and reduction of both TEMRA and EM 

populations (Fig. 4d). To further explore this expanded CM subset, we focused on the 

immuno-metabolic differences within the CM populations across treatment. The results 

demonstrated that glycolytic inhibition attenuated the activation induced expression of HK1, 
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GLUT1, CPT1A, IDH2, G6PD, ACAC, ATP5A, PRDX2, ASS1 compared to activated CM 

cells (Fig. 4e, Supplementary Fig. 5b). This coincided with the decrease in CD25, but not in 

CD69 or HLA-DR, highlighting the difference in glycolytic dependence in early and late 

activation (Fig. 4e, Supplementary Fig. 5b). Lastly, compared to all other memory subsets 

and treatments, the FitSNE projection demonstrated a well-defined cluster based on the 

immuno-metabolic state of this perturbed CM subset (Fig. 4e, Supplementary Fig. 5c), 

indicating a specific metabolic state of this memory population.  

Taken together, we show that Met-Flow is able to dissect metabolic profiles within T cell 

memory subsets. We identified the selective expansion of CM cells, that are independent of 

glycolysis, compared to other memory T subsets. Met-Flow captures divergent immuno-

metabolic states in cellular subpopulations that arise during different cellular and tissue 

environments.  
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Figure 4. T cell memory subsets differentially respond to glycolytic inhibition (a) FitSNE 
projection of resting state CD4+ memory populations, data represents n=5 donor samples. (b) 
Metabolic protein expression of resting state CD4+ memory subsets by gMFI, data represents 
n=8 donor samples. (c) Gating strategy of CD4+ memory subsets by CCR7 and CD45RA. (d) 
Cell count of CD4+ T memory populations across treatments. (e) FitSNE of CD4+ CM populations 
across treatments, data represents 5 donor samples from 2 independent experiments, with 
20,000 cells per samples. 
 

Increased respiration and downstream pathway signaling in activated T cells 

To confirm the metabolic reprogramming shown by flow cytometry, we assessed 

real-time respiration in bulk T cells using extracellular flux analysis, which analyses glycolytic 

function and mitochondrial respiration. We further identified a CM subset with high S6 

phosphorylation, that expanded with 2-FDG addition.  T cells were activated with CD3/28, 

and the corresponding metabolic modulators were added sequentially as described 

previously. As expected, the addition of CD3/28 induced a significant increase in overall 
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glycolytic function, shown by elevated basal glycolysis, glycolytic capacity and reserve, 

compared to untreated cells (Fig. 5a,b). Mitochondrial respiration was also significantly 

impacted, revealing enhanced basal and maximal respiration, as well as spare mitochondrial 

capacity (Fig. 5c,d). These metabolic shifts in glycolysis and OXPHOS detected by 

extracellular flux analysis confirmed our metabolic protein flow cytometry results (Fig. 2b). 

Moreover, these changes in real-time respiration are supported by earlier work showing 

remodeling of glycolysis, the TCA cycle and OXPHOS following T cell activation 29,39,40.  

We next evaluated the dependence of energetic metabolism on glucose using 2-FDG 

in real-time respiration. The activation-induced increases in ECAR and the associated 

glycolytic parameters were reduced in the presence of 2-FDG, confirming our earlier Met-

Flow results (5a,b). Overall mitochondrial respiration did not significantly decrease with 2-

FDG addition (Fig. 5c,d, Supplementary Fig. 6), indicating that at the bulk level their 

OXPHOS is not dependent on glucose.  

Bulk analysis did not show a concurrent decrease in mitochondrial respiration with 

glycolytic inhibition, indicating cellular dependence on other carbon sources. We therefore 

aimed to investigate whether this dependence on alternative carbon sources was true for the 

entire population or specific for a subset of cells within bulk analysis. To evaluate the 

dynamics of metabolic protein level changes, we incorporated the phosphorylation state of 

ribosomal protein S6 (pS6) into the Met-Flow panel. The S6 protein is downstream of the 

mTORC1 signaling pathway and is phosphorylated upon TCR engagement, driving the 

translation of glycolytic proteins in T cells 2,41. Met-Flow analysis showed increased levels of 

CD69, CD25 and GLUT1 in the pS6 positive cells compared to pS6 negative cells, whereas 

the other metabolic proteins showed heterogeneous expression (Fig. 5e). This 

phosphorylation was specifically induced by CD3/28 stimulation, as untreated or 2-FDG 

treated T cells are pS6 negative. However, 2-FDG dampened this activation induced 

increase in the bulk population (Fig. 5f). To distinguish subset-specific metabolic 

preferences, we gated the T cell memory subsets using the expression of CCR7 and 

CD45RA to identify naïve, central memory (CM), effector memory (EM) and terminally 
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differentiated effector memory T cells (TEMRA). Stimulation caused increased S6 

phosphorylation across all memory subsets, compared to the unstimulated conditions. In the 

naïve and CM subsets, there was a mean of 67% and 69% pS6 positive cells respectively, 

whilst EM and TEMRA were 38% and 36%. The addition of 2-FDG to the stimulation 

condition caused the majority of cells to become pS6 negative in all subsets, apart from CD4 

CM T-cells, in which the majority of cells maintained their pS6 positivity, thus, indicating their 

dependence their dependence on carbon sources other than glucose. These findings 

demonstrate the ability of Met-Flow to identify cellular populations with alternative metabolic 

reliance, which would not be achievable using other methodologies. 

In sum, the bulk real-time respiration analysis confirms our previously described 

differential effect of activation and glycolytic inhibition on the metabolic state of T cells. 

Overall, increased downstream mTOR signaling corresponded with T cell activation in all 

memory subsets. We additionally identified a CM subset that was highly phosphorylated and 

glycolytically independent. Unlike bulk analysis, using Met-Flow identifies specific metabolic 

reprogramming corresponding to particular T cell subsets. These studies corroborate the 

changes in metabolic protein levels demonstrated by Met-Flow and further emphasize the 

unique advantages of single-cell metabolic flow cytometry over bulk analysis.   
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Figure 5. Respiration and downstream AKT signaling increase with T cell activation. (a) 
Glycolytic function across untreated (UT), 2-FDG treated, CD3/28 activated and combination 
treated (2-FDG+CD3/28) donor samples. Graph depicts one representative sample from a single 
donor. (b) Glycolytic parameters measured by extracellular acidification rate (ECAR) across 
treatments. (c) Mitochondrial respiration measured by oxygen consumption rate (OCR) in purified 
T cells across treatments and its associated (d) mitochondrial parameters. Data represents n=6 
donor samples from 2 independent experiments. Statistical analysis was performed using one-
way ANOVA with Tukey’s multiple comparisons test. (e) CD4+ T cells phosphorylation status of 
phospho-S6 (pS6) and respective levels of metabolic and activation markers. Data shown 
represents n=6 by FitSNE analysis. (f) Phosphorylation status across different treatments. (g) 
Phosphorylation status across memory subsets with treatment. Statistical analysis was 
performed using multiple t-test and Wilcoxon Signed Rank test. 
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Metabolic remodeling drives GM-CSF production of central memory T cells 

We previously demonstrated that IL-8 and GM-CSF increased with glycolytic 

inhibition in bulk T cells, unlike other effector cytokines. To determine whether the 

metabolically distinct CM population was responsible for this inflammatory cytokine 

production, we measured the production of GM-CSF by incorporating a capture antibody into 

the Met-Flow capability. The production of GM-CSF by activated T cells stimulates myeloid 

cells to promote tissue inflammation42,43. Our data confirmed an increased production of GM-

CSF with CD3/28 stimulation. This was linked to a higher metabolic state (Fig. 6a), whereas 

unstimulated or only 2-FDG treated T cells produce low GM-CSF and showed lower levels of 

metabolic protein expression (Fig. 6a, Supplementary Fig. 7a). We next investigated 

whether GM-CSF production was different across T cell memory subsets. With CD3/28 

treatment, the EM subset was the largest GM-CSF producing population (Fig. 6b). The 

addition of 2-FDG showed a selective reduction of GM-CSF production in the EM and 

TEMRA memory populations. In contrast, the CM subset increased with 2-FDG addition to 

CD3/28, and the naïve population showed a similar trend (Fig. 6b-c). This increase in the 

GM-CSF producing CM cells was similar to the expanded pS6 high CM population (Fig. 4g), 

demonstrating glycolytic independence specific for this memory subset. 

To link the differential GM-CSF producing subsets to their underlying metabolic state, 

we measured their metabolic protein expression. The decrease in GM-CSF production with 

2-FDG addition in EM was associated with lower metabolic protein expression compared to 

CD3/28 treatment alone (Supplementary Fig. 7b). Comparing across subsets with 

combination activation and glycolytic inhibition, the CM subsets shows an overall trend of 

high metabolic protein expression (Fig. 6d). Specifically, in comparison to the glycolytically 

dependent EM subset, the CM population was characterized by higher expression of 

glycolytic proteins, GLUT1 and HK1, as well as increased fatty acid synthesis enzyme 

ACAC, OXPHOS protein ATP5A, arginine synthesis by ASS1 and the antioxidant enzyme 

PRDX2. Unlike other memory subsets, this increased frequency of GM-CSF producing CM 
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population has a specific metabolic state, that is differentially impacted by glycolytic 

inhibition.  

In conclusion, the expansion of Met-Flow with cytokine analysis demonstrated the 

ability to attribute differential effector function to divergent metabolic states of specific 

immune subsets. Using this capability, we identified a novel metabolic profile of pro-

inflammatory CM T cells, which produce high GM-CSF independently of glucose 

metabolism. 

 
Figure 6. Glucose restriction and metabolic remodeling drive the expansion of 
inflammatory memory T subpopulation. (a) FitSNE projection of GM-CSF producing total 
CD4+ T cells. (b) GM-CSF producing frequency (%) of CD4+ T cells across all treatments and 
memory subsets. (c) Comparison of activation and combi (CD3/28+2-FDG) treated memory 
subset frequency. (d) Differential expression of metabolic proteins across T cell memory subsets 
with glycolytic inhibition during CD3/28 activation (combi). All data represents n=8 donors, and 
statistical analysis was performed using T test or Friedman’s test with Dunn’s multiple 
comparisons.  
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Discussion 

The ability to measure the metabolic state of specific immune cells is essential for a 

fundamental understanding of cellular function, particularly in the context of disease. Here, 

we present Met-Flow, a novel capability to simultaneously measure multiple metabolic 

pathways across diverse immune subsets on a single-cell, protein level using a combination 

of intracellular staining and flow cytometry. The application of this technology on human 

PBMCs revealed cell type specific differences in core metabolic pathways. Furthermore, we 

demonstrate that the surface expression of specific activation molecules, cytokines, and 

chemokines were dependent on their underlying metabolic state in a cell type specific 

manner. Together, this novel technique demonstrates that immune cell subsets have unique 

metabolic protein signatures relating directly to their activation and maturation states. 

Bulk cellular analysis has demonstrated that leukocytes possess an array of 

metabolic states leading to different functional capacity and disease outcome35,44. Moreover, 

the metabolic microenvironment and tissue localization influence immune cell function 45-47. 

We began by analyzing the total peripheral blood mononuclear population using Met-Flow, 

enabling a global view of immune cell metabolism. Analysis of monocytes, which play a key 

role in innate immune function, revealed a higher expression of all metabolic proteins 

relative to other cell types. This suggests that they exist in a metabolically poised state with 

implications for inflammatory responses and plasticity48,49. This elevated expression was not 

due to assay intrinsic factors such as cellular size, as the mDC and monocyte populations 

share a similar forward scatter profile, yet their metabolic protein expression is vastly 

different (data not shown). Deeper subset analysis demonstrated that the inflammatory 

CD86+CD16+ monocytes expressed higher HK1, suggesting a greater glycolytic capacity. 

This supports and clarifies earlier work showing that the activation induced upregulation in 

the global monocyte population is dependent on glycolysis 50. In addition our findings show 

divergent metabolic requirements in the DC subpopulations following activation 51. We 

observed different metabolic profiles, with a higher capacity for flux through arginine 

metabolism in mDCs, compared to higher capacity for OXPHOS and glucose uptake in 
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pDCs. The characterization of NK subsets using Met-Flow revealed that CD56 bright cells 

express significantly higher HK1, confirming their increased glycolytic activity in comparison 

to the CD56 dim subset52. Moreover, we highlight an opposing requirement for fatty acids, 

with CD56 bright cells expressing higher fatty acid synthesis enzyme ACAC, compared to 

the increased capacity for flux through fatty acid oxidation by CPT1A in the CD56 dim cells. 

NKT cells had higher levels of IDH2 in comparison to CD4+ T cells, which verifies studies 

that show increased levels of OXPHOS in NKT cells, important for their function 53. Taken 

together, this demonstrates the ability of Met-Flow to simultaneously analyze diverse 

metabolic states on differential immune subpopulations. 

The association of immune and metabolic states has been extensively studied in T 

cell biology. Increased utilization of glycolysis, OXPHOS, and fatty acid synthesis following T 

cell receptor stimulation 1,34,39,54-56. In this study, we confirmed these findings and further 

demonstrated the involvement of the PPP, fatty acid oxidation, antioxidant level, and 

arginine synthesis pathways post activation. Using our method, we confirmed the highly 

oxidative phenotype of CD4+ in comparison to the CD8+ subset29. Though expression of the 

glycolytic enzyme HK1 was similar between both subsets, the PPP was significantly induced 

in CD8+ T cells, indicating a differential metabolic program that utilizes glucose breakdown. 

We also confirmed that the activation induced expression of the high affinity IL-2 receptor, 

CD25, is dependent on glycolysis.  Importantly, CD25 expression positively correlated with 

GLUT1 protein levels, confirming the association with activation induced glucose uptake. 

Similar associations between GLUT1 and CD25 expression were found in activated CD8+ T 

cells from chronic lymphocytic leukemia (CLL) patients 57. These CLL patient-derived T cells 

showed lower GLUT1 intracellular reserves upon stimulation, and impaired mitochondrial 

fitness compared to activated T cells from healthy donors. This highlights the potential of 

Met-Flow to measure reprogramming of immuno-metabolic states in the diseased context. 

Studies have shown that CD8+ memory cells have a higher mitochondrial capacity and favor 

fatty acid oxidation compared to the naïve counterparts 58,59. Moreover, the inhibition of the 

glycolytic pathway enhances the formation of CD8+ memory cells 60,61. By leveraging the 
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single-cell nature of the technology, we were able to dissect T cell memory populations into 

EM and CM based on the combination of surface markers and intracellular metabolic profiles 

and found differential regulation by glycolysis. At resting state, our data confirms higher 

metabolic activity in CM and EM subsets compared to naïve T cells 2.  With the inhibition of 

glycolysis, we observed an expansion of the CM population, whereas the frequency of the 

EM population decreased. A lower reliance on fatty acid synthesis was previously shown in 

CD4+ EM cells in low glucose conditions, whereas CM and naïve populations can increase 

their uptake of fatty acids for survival 38. Our data similarly demonstrates that the metabolic 

state of CM cells was distinct from other memory populations both with and without glycolytic 

inhibition. This illustrates the ability to capture differential responses of cellular 

subpopulations by revealing diverse immuno-metabolic states, reflecting divergent metabolic 

dependence and function. 

Consistent with previous studies, the release of cytokines post activation was largely 

dependent on glycolysis1. We showed that glycolytic inhibition decreased IL-13, IL-6, 

sCD40L and IL-17A production from isolated T cells. Interestingly, GM-CSF and IL-8 were 

not dependent on glycolysis suggesting differential control and redundancy in the metabolic 

regulation of cytokine production. A rapid immune response, including the production of 

cytokines, is regulated by multiple post-transcriptional mechanisms, including non-coding 

RNAs, micro-RNA, RNA-binding proteins and translational control by mTOR signaling 13,62-64. 

Specifically, GM-SCF mRNA stability is controlled by protein binding to AU-rich elements in 

3’-untranslated regions, which direct mRNA degradation and control mRNA half-life65,66. The 

intersection of cytokine biology and metabolism is often regulated at the post-transcriptional 

level. Similarly to GM-CSF, the production of IFNγ and TNFα are controlled by the 

repression of mRNA binding of lactate dehydrogenase 37,67. Like many genes involved in 

dynamic processes, post-transcriptional regulation of cytokine production can make accurate 

measurement of gene expression using mRNA abundance difficult64.  

GM-CSF production by T cells activates myeloid cells for inflammatory cytokine 

production, phagocytosis and pathogen killing68-70. Pro-inflammatory T cells are known to be 
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associated with negative disease outcome, as GM-CSF production can drive disease 

progression in autoimmune disorders71, neurological disease72 and skin hyperinflammation73. 

In graft-versus-host disease, high GM-CSF produced by allogeneic T cells induces donor-

derived myeloid cells to produce inflammatory cytokines, which drives pathology74. In 

hepatocellular carcinoma, tumor cells produce high amounts of GM-CSF that recruit myeloid 

derived suppressor cells to induce immune tolerance and increase PD-L1 expression75. 

Using Met-Flow analysis, we identified the selective expansion a CM subset with a unique 

metabolic state, that produces high amounts of GM-CSF in the absence of glucose. This 

population expressed high GLUT1, ACAC, PRDX2, ATP5A, ASS1 and HK1, indicating a 

metabolic state independent of glycolysis. This profile was specific to the CM subset, as the 

activated EM cells reduced total metabolic activity and frequency of GM-CSF producing cells 

with glycolytic inhibition. Using Met-Flow, we have discovered a novel metabolic phenotype 

of a clinically important T cell subset. This suggests an axis of pro-inflammatory T cell 

differentiation relevant in multiple inflammatory pathologies. Inhibiting GM-CSF production 

by targeted restriction of the metabolic pathways identified using Met-Flow could give rise to 

novel therapeutic targets for combination with tumor immunotherapy.  

In summary, the studies presented here have described a novel high dimensional 

flow cytometry technique, which facilitates the analysis of key metabolic proteins, cellular 

lineage and activation molecules simultaneously. Traditional methods assess metabolism in 

bulk populations, which do not have the ability to identify differences in the metabolic profile 

in cellular subsets on a single cell, protein level. These methods can mask important 

attributes specific to infrequent populations and may not account for heterogeneity in cellular 

subsets. Using our method, we were able to simultaneously capture dynamic metabolic 

states across multiple immune populations. Met-Flow can be combined with methods of 

post-translational modification such as histone acetylation, phosphorylation status and 

intracellular cytokine production, enabling comprehensive single-cell immuno-metabolic 

analysis at the protein level. The expansion of this technique with the inclusion of additional 

biosynthetic pathways, will be greatly assisted with improvements in other high-dimensional 
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flow based methods, such as Abseq76 and Cytof77. Met-Flow can be applied to the 

investigation of metabolic remodeling in any cell type and disease context and has the 

potential to uncover unique metabolic targets for therapeutic intervention.  
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