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Abstract

There is a resurgence of interest in “cognitive maps” based on recent evidence that the
hippocampal-entorhinal system encodes both spatial and non-spatial information, with
far-reaching implications for human behavior. Yet little is known about the
commonalities and differences in the computational principles underlying human
learning and decision making in spatial and non-spatial domains. We use a
within-subject design to examine how humans search for either spatially or conceptually
correlated rewards. Using a Bayesian learning model, we find evidence for the same
computational mechanisms of generalization across domains. While participants were
sensitive to expected rewards and uncertainty in both tasks, how they leveraged this
knowledge to guide exploration was different: participants displayed less
uncertainty-directed and more random exploration in the conceptual domain. Moreover,
experience with the spatial task improved conceptual performance, but not vice versa.
These results provide important insights about the degree of overlap between spatial
and conceptual cognition.

Introduction 1

Thinking spatially is intuitive. We remember things in terms of places [1–3], describe 2

the world using spatial metaphors [4, 5], and commonly use concepts like “space” or 3

“distance” in mathematical descriptions of abstract phenomena. 4

In line with these observations, previous theories have argued that reasoning about 5

abstract conceptual information follows the same computational principles as spatial 6
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reasoning [6–8]. This has recently gained new support from neuroscientific evidence 7

suggesting that common neural substrates are the basis for knowledge representation 8

across domains [9–13]. 9

One important implication of these accounts is that reinforcement learning [14] in 10

non-spatial domains may rely on a map-like organization of information, supported by 11

the computation of distances or similarities between experiences. Here, we ask to what 12

extent does the search for rewards depend on the same distance-dependent 13

generalization across domains? We formalize a computational model that incorporates 14

distance-dependent generalization and test it in a within-subject experiment, where 15

either spatial features or abstract conceptual features are predictive of rewards. This 16

allows us to study learning, decision making, and exploration in spatial versus 17

conceptual domains, in order to gain insights into the organizational structure of 18

cognitive representations in both domains. 19

Whereas early psychological theories described reinforcement learning as merely 20

developing an association between stimuli, responses and rewards [15–17], more recent 21

studies have recognized that the structure of representations plays an important role in 22

making value-based decisions [11,18] and is particularly important for knowing how to 23

generalize from limited data to novel situations [19,20]. This idea dates back to Tolman, 24

who famously argued that both rats and humans extract a “cognitive map” of the 25

environment [21]. This cognitive map encodes relationships between experiences or 26

options, such as the distances between locations in space [22], 27

and—crucially—facilitates flexible planning and generalization. While cognitive maps 28

were first identified as representations of physical spaces, Tolman hypothesized that 29

similar principles may underlie the organization of knowledge in broader and more 30

complex cognitive domains [21]. 31

As was the case with Tolman, neuroscientific evidence for a cognitive map was 32

initially found in the spatial domain, in particular, with the discovery of spatially 33

selective place cells in the hippocampus [23,24] and entorhinal grid cells that fire along 34

a spatial hexagonal lattice [25]. Together with a variety of other specialized cell types 35

that encode spatial orientation [26, 27], boundaries [28, 29], and distances to objects [30], 36

this hippocampal-entorhinal machinery is often considered to provide a cognitive map 37

facilitating navigation and self-location. Yet more recent evidence has shown that the 38

same neural mechanisms are also active when reasoning about more abstract, 39

conceptual relationships [31–36], characterized by arbitrary feature dimensions [37] or 40

temporal relationships [38,39]. For example, using a technique developed to detect 41

spatial hexagonal grid-like codes in fMRI signals [40], Constantinescu et al. found that 42

human participants displayed a pattern of activity in the entorhinal cortex consistent 43

with mental travel through a 2D coordinate system defined by the length of a bird’s legs 44

and neck [9]. Similarly, the same entorhinal-hippocampal system has also been found to 45

reflect the graph structure underlying sequences of stimuli [10] or the structure of social 46

networks [41], and even to replay non-spatial representations in the sequential order that 47

characterized a previous decision-making task [42]. At the same time, much evidence 48

indicates that cognitive map-related representations are not limited to medial temporal 49

areas, but also include ventral and orbital medial prefrontal areas [9, 11,40,43–45]. 50

Based on these findings, we asked whether learning and searching for rewards in 51

spatial and conceptual domains is governed by similar computational principles. Using a 52

within-subject design comparing spatial and non-spatial reward learning, we tested 53

whether participants used perceptual similarities in the same way as spatial distances to 54

generalize from previous experiences and inform the exploration of novel options. In 55

both domains, rewards were correlated (see Fig. S2), such that nearby or similar options 56

tended to yield similar rewards. To model how participants generalize and explore using 57

either perceptual similarities or spatial distances, we used Gaussian Process (GP) 58
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regression [46,47] as a Bayesian model of generalization. The Bayesian predictions of 59

the GP model generalize about novel options using a common notion of similarity across 60

domains, and provide estimates of expected reward and uncertainty. We tested 61

out-of-sample predictions of the GP model against a Bayesian learner that incorporates 62

uncertainty-guided exploration but without generalization, and investigated differences 63

in parameters governing value-based decision making and uncertainty-directed 64

exploration [48–50]. 65

Participant performance was correlated across tasks and was best captured by the 66

GP model in both domains. We were also able to reliably predict participant judgments 67

about unobserved options based on parameters estimated from the bandit task. Whereas 68

the model parameters indicated similar levels of generalization in both domains, we 69

found lower levels of directed exploration in the conceptual domain, where participants 70

instead showed increased levels of random exploration. Moreover, we also observed an 71

asymmetric task order effect, where performing the spatial task first boosted 72

performance on the conceptual task but not vice versa. These findings provide a clearer 73

picture of both the commonalities and differences in how people reason about and 74

represent both spatial and abstract phenomena in complex reinforcement learning tasks. 75

Results 76

129 participants searched for rewards in two successive multi-armed bandit tasks (Fig 1). 77

The spatial task was represented as an 8× 8 grid, where participants used the arrow 78

keys to move a highlighted square to one of the 64 locations, with each location 79

representing one option (i.e., arm of the bandit). The conceptual task was represented 80

using Gabor patches, where a single patch was displayed on the screen and the arrow 81

keys changed the tilt and stripe frequency (each having 8 discrete values; see Fig. S1), 82

providing a non-spatial domain where similarities are relatively well defined. Each of 83

the 64 options in both tasks produced normally distributed rewards, where the means of 84

each option were correlated, such that similar locations or Gabor patches with similar 85

stripes and tilts yielded similar rewards (Fig. S2), thus providing traction for 86

similarity-guided generalization and search. The strength of reward correlations were 87

manipulated between subjects, with one half assigned to smooth environments (with 88

higher reward correlations) and the other assigned to rough environments (with lower 89

reward correlations), although both classes of environments had the same expectation of 90

rewards across options. 91

The spatial and conceptual tasks were performed in counter-balanced order, with 92

each task consisting of an initial training phase (see Methods; Fig 1c) and then 10 93

rounds of bandits. Each round had a different reward distribution (drawn without 94

replacement from the assigned class of environments), and participants were given 20 95

choices to acquire as many points as possible (later converted to monetary rewards). 96

The search horizon was much smaller than the total number of options and therefore 97

induced an explore-exploit dilemma and motivated the need for generalization and 98

efficient exploration. The last round of each task was a “bonus round”, where after 15 99

choices, participants were shown 10 unobserved options (selected at random) and asked 100

to make judgments about the expected reward and their level of confidence (i.e., 101

uncertainty about the expected rewards). These judgments were used to validate the 102

internal belief representations of our models. All data and code, including interactive 103

notebooks containing all analyses in the paper, is publicly available at 104

https://github.com/charleywu/cognitivemaps. 105
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Figure 1. Experiment design. a) In the spatial task, options were defined as a
highlighted square in a 8×8 grid, where the arrow keys were used to move the highlighted
location. b) In the conceptual task, each option was represented as a Gabor patch,
where the arrow keys changed the tilt and the number of stripes (Fig S1). Both tasks
corresponded to correlated reward distributions, where choices in similar locations or
having similar Gabor features predicted similar rewards (Fig S2). c) The same design
was used in both tasks. Participants first completed a training phase where they were
asked to match a series of target stimuli. This used the same inputs and stimuli as
the main task, where the arrow keys modified either the spatial or conceptual features,
and the spacebar was used to make a selection. After reaching the learning criterion
of at least 32 training trials and a run of 9 out of 10 correct, participants were shown
instructions for the main task and asked to complete a comprehension check. The main
task was 10 rounds long, where participants were given 20 selections in each round to
maximize their cumulative reward (shown in panels a and b). The 10th round was a
“bonus round” where after 15 selections participants were asked to make 10 judgments
about the expected reward and associated uncertainty for unobserved stimuli from that
round. After judgments were made, participants selected one of the options, observed
the reward, and continued the round as usual.

Computational Models of Learning, Generalization, and Search 106

Multi-armed bandit problems [51,52] are a prominent framework for studying learning, 107

where various reinforcement learning (RL) models [14] are used to model the learning of 108
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reward valuations and to predict behavior. A common element of most RL models is 109

some form of prediction-error learning [53,54], where model predictions are updated 110

based on the difference between the predicted and experienced outcome. One classic 111

example of learning from prediction errors is the Rescorla-Wagner [54] model, in which 112

the expected reward V (·) of each bandit is described as a linear combination of weights 113

wt and a one-hot stimuli vector xt representing the current state st: 114

V (xt) = w>t xt (1)

wt+1 = wt + ηδtxt (2)

Learning occurs by updating the weights w as a function of the prediction error 115

δt = rt − V (xt), where rt is the observed reward, V (xt) is the reward expectation, and 116

0 < η ≤ 1 is the learning rate parameter. In our task, we used a Bayesian Mean Tracker 117

(BMT) as a Bayesian variant of the Rescorla-Wagner model [54,55]. Rather than 118

making point estimates of reward, the BMT makes independent and normally 119

distributed predictions V (si,t) ∼ N (mi,t, vi,t) for each state si,t, which are 120

characterized by a mean m and variance v and updated on each trial t via the delta rule 121

(see Methods for details). 122

Generalization using Gaussian process regression 123

Yet, an essential aspect of human cognition is the ability to generalize from limited 124

experiences to novel options. Rather than learning independent reward representations 125

for each state, we adopt a function learning approach to generalization [19,56], where 126

continuous functions represent candidate hypotheses about the world, mapping the 127

space of possible options to some outcome value. For example, a function can map how 128

pressure on the gas pedal is related to the acceleration of a car, or how different 129

amounts of water and fertilizer influence the growth rate of a plant. Crucially, the 130

learned mapping provides estimates even for outcomes that have not been observed, by 131

interpolating or extrapolating from previous experiences. 132

While the literature on how humans explicitly learn functions extends back to the 133

1960s [57], more recent approaches have proposed Gaussian Process (GP) regression [46] 134

as a candidate model of human function learning [58–60]. GPs unite previous proposals 135

of rule-based [61, i.e., learning the weights of a particular parametric function] and 136

exemplar-based theories [62, i.e., neural networks predicting similar inputs will produce 137

similar outputs], while also predicting the perceived difficulty of learning different 138

functions [63] and explaining biases in how people extrapolate from limited data [58]. 139

Formally, a GP defines a multivariate-normal distribution P (f) over possible value 140

functions f(s) that map inputs s to output y = f(s). 141

P (f) ∼ GP (m(s), k(s, s′)) (3)

The GP is fully defined by the mean function m(s), which is frequently set to 0 for 142

convenience without loss of generality [46], and kernel function k(s, s′) encoding prior 143

assumptions (or inductive biases) about the underlying function. Here we use the radial 144

basis function (RBF) kernel: 145

k(s, s′) = exp

(
−||s− s

′||2

2λ2

)
(4)

encoding similarity as a smoothly decaying function of the squared Euclidean distance 146

between stimuli s and s′, measured either in spatial or conceptual distance. The 147
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length-scale parameter λ encodes the rate of decay, where larger values correspond to 148

broader generalization over larger distances. 149

Given a set of observations Dt = [st,yt] about previously observed states and
associated rewards, the GP makes normally distributed posterior predictions for any
novel stimuli s?, defined in terms of a posterior mean and variance:

m(s?|Dt) = K(s?, st)
[
K(st, st) + σ2

ε I
]−1

yt (5)

v(s?|Dt) = k(s?, s?)−K(s?, st)
[
K(st, st) + σ2

ε I
]−1

K(st, s
?) (6)

The posterior mean corresponds to the expected value of s? while the posterior variance 150

captures the underlying uncertainty in the prediction. Note that the posterior mean can 151

also be rewritten as a similarity-weighted sum: 152

m(s?|Dt) =
t∑
i=1

wik(s?, si) (7)

where each si is a previously observed input in st and the weights are collected in the 153

vector w =
[
K(st, st) + σ2

ε I
]−1

yt. Intuitively, this means that GP regression is 154

equivalent to a linearly weighted sum, but uses basis functions k(·, ·) that project the 155

inputs into a feature space, instead of the discrete state vectors. To generate new 156

predictions, every observed reward yi in yt is weighted by the similarity of the 157

associated state si to the candidate state s? based on the kernel similarity. This 158

similarity-weighted sum (Eq 7) is equivalent to a RBF network [64], which has featured 159

prominently in machine learning approaches to value function approximation [14] and as 160

a theory of the neural architecture of human generalization [65] in vision and motor 161

control. 162

Uncertainty-directed exploration 163

In order to transform the Bayesian reward predictions of the BMT and GP models into 164

predictions about participant choices, we use upper confidence bound (UCB) sampling 165

together with a softmax choice rule as a combined model of both directed and random 166

exploration [19,49,50]. 167

UCB sampling uses a simple weighted sum of expected reward and uncertainty:

qUCB(s) = m(s) + β
√
v(s) (8)

to compute a value q for each option s, where the exploration bonus β determines how 168

to trade off exploring highly uncertain options against exploiting high expected rewards. 169

This simple heuristic—although myopic—produces highly efficient learning by 170

preferentially guiding exploration towards uncertain yet promising options, making it 171

one of the only algorithms with known performance bounds in Bayesian 172

optimization [66]. Recent studies have provided converging evidence for directed 173

exploration in human behavior across a number of domains [19,49,67–69]. 174

The UCB values are then put into a softmax choice rule:

P (si) =
exp (q(si)/τ)∑
j exp (q(sj)/τ)

(9)

where the temperature parameter τ controls the amount of random exploration. Higher 175

temperature sampling leads to more random choice predictions, with τ →∞ converging 176

on uniform sampling. Lower temperature values make more precise predictions, where 177

τ → 0 converges on an arg max choice rule. Taken together, the exploration bonus β 178

and temperature τ parameters estimated on participant data allow us to assess the 179

relative contributions of directed and undirected exploration, respectively. 180
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Figure 2. Behavioral results. a) Mean reward in each task, where each dot is a
participant and lines connect the same participant across tasks. Tukey boxplots show
median (horizontal line) and 1.5x IQR, while diamonds indicate the group mean. The
dashed line indicates chance performance. Bayes Factors (BF ) indicate the evidence
against a specified null hypothesis for either two sample (rough vs. smooth) or paired
(conceptual vs. spatial) t-tests (see Methods). b) Correspondence between tasks, where
each dot represents the average reward of a single participant and the dotted line
indicates y = x. c) Task order effect, where experience with spatial search boosted
performance on conceptual search, but not vice versa. Bayes factors correspond to paired
t-tests. d) Average learning curves over trials, showing the mean (line) and standard
error (ribbon) aggregated across rounds and participants. The dashed line indicates
chance performance. e) The Manhattan distance between selections compared to a
random baseline (black line). f) Distance between selections as a function of the previous
observed reward value, showing the means (points) and the group-level predictions of a
mixed-effects regression (Table S1), where the ribbons indicate the 95% CI.

We first analyzed participant performance in the bandit tasks before turning to 182

model-based analyses. Participants achieved much higher rewards than chance in both 183

conceptual (one-sample t-test: t(128) = 24.6, p < .001, d = 2.2, BF > 100) and spatial 184

tasks (t(128) = 34.6, p < .001, d = 3.0, BF > 100; Fig. 2a)1. Using a two-way mixed 185

ANOVA, we found that both environment (smooth vs. rough: F (1, 127) = 9.4, p = .003, 186

η2 = .05, BF = 13) and task (spatial vs. conceptual: F (1, 127) = 35.8, p < .001, 187

η2 = .06, BF > 100) influenced performance. The stronger reward correlations present 188

1Bayes Factors (BF ) accompany each frequentist test to indicate the evidence against a specified
null hypothesis. See Methods for further details.
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in smooth environments facilitated higher performance (two sample t-test: t(127) = 3.1, 189

p = .003, d = 0.5, BF = 12), even though both environments had the same expected 190

reward. 191

While performance was strongly correlated between the spatial and conceptual tasks 192

(Pearson’s r = .53, p < .001, BF > 100; Fig. 2b), participants performed systematically 193

better in the spatial version (paired t-test: t(128) = 6.0, p < .001, d = 0.5, BF > 100). 194

This difference in task performance can largely be explained by a one-directional transfer 195

effect (Fig. 2c). Participants performed better on the conceptual task after having 196

experienced the spatial task (t(127) = 2.8, p = .006, d = 0.5, BF = 6.4). This was not 197

the case for the spatial task, where performance did not differ whether performed first 198

or second (t(127) = −1.7, p = .096, d = 0.3, BF = .67). Thus, experience with spatial 199

search boosted performance on conceptual search, but not vice versa. 200

Participants learned effectively within each round and obtained higher rewards with 201

each successive choice (Pearson correlation between reward and trial: r = .88, p < .001, 202

BF > 100; Fig 2d). We also found evidence for learning across rounds in the spatial 203

task (Pearson correlation between reward and round: r = .91, p < .001, BF = 15), but 204

not in the conceptual task (r = .58, p = .104, BF = 1.5). 205

Patterns of search also differed across domains. Comparing the average Manhattan 206

distance between consecutive choices in a two-way mixed ANOVA showed an influence 207

of task (within: F (1, 127) = 13.8, p < .001, η2 = .02, BF = 67) but not environment 208

(between: F (1, 127) = 0.12, p = .73, η2 = .001, BF = 0.25, Fig. 2e). This reflected that 209

participants searched in smaller step sizes in the spatial task (t(128) = −3.7, p < .001, 210

d = 0.3, BF = 59), corresponding to a more local search strategy, but did not adapt 211

their search distance to the environment. Note that each trial began with a randomly 212

sampled initial stimuli, such that participants did not begin near the previous selection 213

(see Methods). The bias towards local search (one-sample t-test comparing search 214

distance against chance: t(128) = −16.3, p < .001, d = 1.4, BF > 100) is therefore not 215

a side effect of the task characteristics, but both purposeful and effortful (see Fig S4 for 216

additional analysis of search trajectories). 217

Participants also adapted their search patterns based on reward values (Fig. 2f), 218

where lower rewards predicted a larger search distance on the next trial (correlation 219

between previous reward and search distance: r = −.66, p < .001, BF > 100). We 220

analyzed this relationship using a Bayesian mixed-effects regression, where we found 221

previous reward value to be a reliable predictor of search distance (bprevReward = −0.06, 222

95% HPD: [−0.07,−0.06]; see Table S1), while treating participants as random effects. 223

This provides initial evidence for generalization-like behavior, where participants 224

actively avoided areas with poor rewards and stayed near areas with rich rewards. 225

In summary, we find correlated performance across tasks, but also differences in both 226

performance and patterns of search. Participants were boosted by a one-directional 227

transfer effect, where experience with the spatial task improved performance on the 228

conceptual task, but not the other way around. In addition, participants made larger 229

jumps between choices in the conceptual task and searched more locally in the spatial 230

task. However, participants adapted these patterns in both domains in response to 231

reward values, where lower rewards predicted a larger jump to the next choice. 232

Modeling Results 233

To better understand how participants navigated the spatial and conceptual tasks, we 234

used computational models to predict participant choices and judgments. Both GP and 235

BMT models implement directed and undirected exploration using the UCB exploration 236

bonus β and softmax temperature τ as free parameters. The models differed in terms of 237

learning, where the GP generalized about novel options using the length-scale parameter 238
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λ to modulate the extent of generalization over spatial or conceptual distances, while 239

the BMT learns the rewards of each option independently (see Methods). 240

Both models were estimated using leave-one-round-out cross validation, where we 241

compare goodness of fit using out-of-sample prediction accuracy, described using a 242

pseudo-R2 (Fig 3a). The differences between models were reliable and meaningful, with 243

the GP model making better predictions than the BMT in both the conceptual 244

(t(128) = 3.9, p < .001, d = 0.06, BF > 100) and spatial tasks (t(128) = 4.3, p < .001, 245

d = 0.1, BF > 100). In total, the GP model best predicted 85 participants in the 246

conceptual task and 93 participants in the spatial task (out of 129 in total). A Bayesian 247

model selection framework [70,71] confirmed that the GP had the highest posterior 248

probability (corrected for chance) of being the best model in both tasks (protected 249

exceedance probability; conceptual: pxp(GP ) = .997; spatial: pxp(GP, spatial) = 1.000; 250

Fig 3b). superiority of the GP model suggests that generalization about novel options 251

via the use of structural information played a guiding role in how participants searched 252

for rewards (see Fig S6 for additional analyses). 253

Learning Curves 254

To confirm that the GP model indeed captured learning behavior better in both tasks, 255

we simulated learning curves from each model using participant parameter estimates 256

(Fig. 3c; see Methods). The GP model achieved human-like performance in all tasks 257

and environments (comparing aggregate GP and human learning curves: conceptual 258

MSE=17.7; spatial MSE=16.6), whereas BMT learning curves were substantially less 259

similar (conceptual MSE=150.6; spatial MSE=330.7). 260

Parameter Estimates 261

To understand how generalization and exploration differed between domains, Fig. 3d 262

compares the estimated model parameters from the conceptual and spatial tasks. The 263

GP model had three free parameters: the extent of generalization (λ) of the RBF kernel, 264

the exploration bonus (β) of UCB sampling, and the temperature (τ) of the softmax 265

choice rule (see Fig. S9 for BMT parameters). Note that the exploration bonus captures 266

exploration directed towards uncertainty, whereas temperature captures random, 267

undirected exploration, which have been shown to be distinct and recoverable 268

parameters [19,69]. 269

We do not find reliable differences in λ estimates across tasks (Wilcoxon signed-rank 270

test: Z = −1.2, p = .115, r = −.11, BF = .13), although the removal of outliers 271

revealed a pattern of narrower generalization in the conceptual domain (paired t-test 272

with outliers removed: t(104) = −3.8, p < .001, d = 0.4, BF = 75, see Methods). In all 273

cases, we observed lower levels of generalization relative to the true generative model of 274

the underlying reward distributions (λrough = 2, λsmooth = 4; min-BF = 1456), 275

replicating previous findings [19] that found undergeneralization to be largely beneficial 276

in similar settings. Generalization was also correlated across tasks (Kendall rank 277

correlation: rτ = .13, p = .028, BF = 1.3; Pearson correlation with outliers removed: 278

r = .30, p = .002, BF = 22), suggesting participants tended to generalize similarly 279

across domains. 280

Whereas generalization was similar between tasks, there were intriguing differences 281

in exploration. We found substantially lower exploration bonuses (β) in the conceptual 282

task (Z = −5.0, p < .001, r = −.44, BF > 100; outliers removed: t(116) = −6.6, 283

p < .001, d = 0.8, BF > 100), indicating a large reduction of directed exploration, 284

relative to the spatial task. At the same time, there was an increase in temperature (τ) 285

in the conceptual task (Z = 6.9, p < .001, r = −.61, BF > 100; outliers removed: 286

t(105) = 6.9, p < .001, d = 0.8, BF > 100), corresponding to an increase in random, 287
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Figure 3. Modeling results. a) Predictive accuracy of each model, where 1 is a perfect
model and 0 is equivalent to chance. Each dot is a single participant, with lines indicating
the difference between models. Tukey boxplot shows the median (line) and 1.5 IQR, with
the group mean indicated as a diamond. b) Protected Exceedence Probability (pxp),
which provides a hierarchical estimate of model prevalence in the population (corrected
for chance). c) Simulated learning curves. Each line is the averaged performance over
10,000 replications, where we sampled participant parameter estimates and simulated
behavior on the task. The pink line is the group mean of our human participants,
while the black line provides a random baseline. d) GP parameter estimates from the
conceptual (x-axis) and spatial (y-axis) tasks. Each point is the mean estimate for a
single participant and the dotted line indicates y = x. Outliers (using the larger Tukey
criteria for the two tasks) are excluded from the plot but not from the rank correlations.

undirected exploration. Despite these differences, we find some evidence of correlations 288

across tasks for directed exploration (rτ = .18, p = .002, BF = 13; outliers removed: 289

r = .15, p = .109, BF = .73) and substantial evidence for correlations between random 290

exploration across domains (rτ = .43, p < .001, BF > 100; outliers removed: r = .30, 291

p = .002, BF = 23). 292

Thus, participants displayed correlated and similar levels of generalization in both 293

tasks, but with markedly different patterns of exploration. Whereas participants 294

engaged in typical levels of directed exploration in the spatial domain (replicating 295

previous studies [19,69]), they displayed reduced levels of directed exploration in the 296

conceptual task, substituting instead an increase in undirected exploration. Again, this 297

is not due to a lack of effort, because participants made substantially longer search 298

10/36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914556doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914556
http://creativecommons.org/licenses/by-nc-nd/4.0/


BF=0.10

0

20

40

60

Conceptual
Task

Spatial
Task

P
ar

tic
ip

an
t E

rr
or

 (
M

A
E

)

a BF=0.13

3

6

9

Conceptual
Task

Spatial
Task

C
on

fid
en

ce

b

Conceptual Task Spatial Task

0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

Participant Estimate

M
od

el
 E

st
im

at
e

GP

BMT

c Conceptual Task Spatial Task

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

3

4

5

6

7

Participant Confidence (rank order)

G
P

 U
nc

er
ta

in
ty

 (
ra

nk
 o

rd
er

) GP

d

Figure 4. Bonus Round. a) Mean absolute error (MAE) of judgments in the bonus
round, where each dot is a single participant and lines connect performance across
tasks. Tukey boxplot show median and 1.5× IQR, with the diamonds indicating group
mean and the dashed line providing a comparison to chance. Bayes factor indicates
the evidence against the null hypothesis for a paired t-test. b) Average confidence
ratings (Likert scale: [0,10]). c) Comparison between participant judgments and model
predictions (based on the parameters estimated from the search task). Each point is
a single participant judgment, with color lines representing the predicted group-level
effect of a mixed effect regression (Table S2 and ribbons show the 95% CI (undefined
for the BMT model, which makes identical predictions for all unobserved options). d)
Correspondence between participant confidence ratings and GP uncertainty, where both
are rank-ordered at the individual level. Black dots show aggregate means and 95% CI,
while the colored line is a linear regression.

trajectories in the conceptual domain (see Fig S4a). Rather, this indicates a 299

fundamental difference in how people represent or reason about spatial and conceptual 300

domains in order to decide which are the most promising options to explore. 301

Bonus Round 302

In order to further validate our behavioral and modeling results, we analyzed 303

participants’ judgments of expected rewards and perceived confidence for 10 unobserved 304

options they were shown during the final “bonus” round of each task (see Methods and 305

Fig. 1c). Participants made equally accurate judgments in both tasks (comparing mean 306

absolute error to the ground truth: t(128) = −0.2, p = .827, d = 0.02, BF = .10; Fig. 307

4a), which were far better than chance (conceptual: t(128) = −9.2, p < .001, d = 0.8, 308

BF > 100; spatial: t(128) = −8.4, p < .001, d = 0.7, BF > 100) and correlated between 309

tasks (r = .27, p = .002, BF = 20). Judgment errors were also correlated with 310

performance in the bandit task (r = −.45, p < .001, BF > 100), such that participants 311

who earned higher rewards also made more accurate judgments. 312

Participants were equally confident in both domains (t(128) = −0.8, p = .452, 313

d = 0.04, BF = .13; Fig. 4b), with correlated confidence across tasks (r = .79, p < .001, 314

BF > 100) suggesting some participants were consistently more confident than others. 315

Ironically, more confident participants also had larger judgment errors (r = .31, p < .001, 316
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BF = 91) and performed worse in the bandit task (r = −.28, p = .001, BF = 28). 317

Using parameters estimates from the search task (excluding the entire bonus round), 318

we computed model predictions for each of the bonus round judgments as an out-of-task 319

prediction analysis. Whereas the BMT invariably made the same predictions for all 320

unobserved options since it does not generalize (Fig. 4c), the GP predictions were 321

correlated with participant judgments in both conceptual (mean individual correlation: 322

r̂ = .35; single sample t-test of z-transformed correlation coefficients against µ = 0: 323

t(128) = 11.0, p < .001, d = 1.0, BF > 100) and spatial tasks (r̂ = .43; t(128) = 11.0, 324

p < .001, d = 1.0, BF > 100). This correspondence between human judgments and 325

model predictions was also confirmed using a Bayesian mixed effects model, where we 326

again treated participants as random effects (bparticipantJudgment = .25, 95% HPD: [0.20, 327

0.31]; see Table S2 for details). 328

Not only was the GP able to predict judgments about expected reward, but it also 329

captured confidence ratings. Fig 4d shows how the highest confidence ratings 330

corresponded to the lowest uncertainty estimates made by the GP model. This effect 331

was also found in the raw data, where we again used a Bayesian mixed effects model to 332

regress confidence judgments onto the GP uncertainty predictions 333

(bparticipantJudgment = −0.02, 95% HPD: [-0.03, -0.01]; see Table S2). 334

Thus, participant search behavior was consistent with our GP model and we were 335

also able to make accurate out-of-task predictions about both expected reward and 336

confidence judgments using parameters estimated from the search task. These 337

predictions validate the internal learning model of the GP, since reward predictions 338

depend only on the generalization parameter λ. All together, our results suggest domain 339

differences were not due to differences in how participants computed or represented 340

expected reward and uncertainty, since they were equally good judging their uncertainty 341

in the bonus rounds for both domains. Rather, these diverging patterns of search arose 342

from differences in exploration, where participants substantially reduced their level of 343

exploration directed towards uncertain options in the conceptual domain. 344

Discussion 345

Previous theories of cognitive maps [21,32–34] have argued that reasoning in abstract 346

domains follows similar computational principles as in spatial domains, for instance, 347

sharing a common approach to computing similarities between experiences. These 348

accounts imply that the shared notion of similarity should influence how people 349

generalize from past outcomes, and also how they balance between sampling new and 350

informative options as opposed to known options with high expected rewards. 351

Here, we investigated to what extent learning and searching for rewards are governed 352

by similar computational principles in spatial and conceptual domains. Using a 353

within-subject design, we studied participant behavior in both spatially and 354

conceptually correlated reward environments. Comparing different computational 355

models of learning and exploration, we found that a Gaussian Process model that 356

incorporated distance-based generalization, and hence a cognitive map of similarities, 357

best predicted participants behavior in both domains. This model also generated 358

human-like learning curves and made accurate out-of-task predictions about participant 359

reward estimations and confidence ratings in a final bonus round. The model evidence 360

for distance-based decision making in non spatial domains was in line with our 361

behavioral results. Performance was correlated across domains and benefited from 362

higher outcome correlations between similar bandit options. Subsequent choices tended 363

to be more local than expected by chance, and similar options where more likely to be 364

chosen after a high reward than a low reward outcome. 365

In addition to revealing similarities, our modelling and behavioral analyses provided 366
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a diagnostic lens into differences between spatial and conceptual domains. Whereas we 367

found similar levels of generalization in both tasks, patterns of exploration were 368

substantially different. Although participants showed clear signs of directed exploration 369

(i.e., seeking out more uncertain options) in the spatial domain, this was notably 370

reduced in the conceptual task. However, as if in compensation, participants increased 371

their random exploration in the conceptual task. This implies a reliable shift in 372

sampling strategies but not in generalization. Thus, even though the computational 373

principles underpinning reasoning in both domains are indeed similar, how these 374

computations are mapped onto actions can vary substantially. Moreover, participants 375

obtained more rewards and sampled more locally in the spatial domain. We also find a 376

one-directional transfer effect, where experience with the spatial task boosted 377

performance on the conceptual task, but not vice versa. These findings shed new light 378

onto the computational mechanisms of generalization and decision making, suggesting a 379

universality of generalization and a situation-specific adaptation of decision making 380

policies. 381

Several questions about the link between cognitive maps across domains remain 382

unanswered by our current study and are open for future investigations. One question is 383

whether participants adapted their exploration strategies due to domain-specific 384

cognitive or representational differences, or rather, if the conceptual domain was simply 385

harder, causing participants to revert to a less taxing form of random exploration. Our 386

pre-task training phase (Fig. 1c) giving participants familiarity with the spatial and 387

conceptual stimuli certainly reduced this effect, but some performance differences 388

remained. In addition, evidence that domain differences are not a mere consequence of 389

differences in difficulty comes from participant performance in the bonus round. We 390

found no differences in their predictions and uncertainty estimates about unseen options. 391

This means that participants generalized and managed to track the uncertainties of 392

unobserved options similarly in both domains. However, they did not or could not 393

leverage their representations of uncertainty for performing directed exploration as 394

effectively in the conceptual task. Similar changes in exploration strategies without a 395

change in generalization have also been observed in risky search domains, where 396

participants flexibly shifted from eagerly seeking out uncertainty in a positive reward 397

condition to actively avoiding uncertainty in conditions where negative outcomes had to 398

be avoided [72]. 399

Exploration differences could also have been influenced by task constraints which 400

were different in the two tasks. In the conceptual task only a single stimulus out of the 401

64 available options was displayed, while the entire set of available options was displayed 402

in the spatial task. This may have made the conceptual task more difficult and played a 403

role in inducing a shift to a simpler, random exploration strategy. Previous work used a 404

task where both spatial and conceptual features were simultaneously presented [73, i.e., 405

conceptual stimuli were shuffled and arranged on a grid], yet only spatial or only 406

conceptual features predicted rewards. However, differences in the saliency of spatial 407

and conceptual features meant participants were highly influenced by spatial features, 408

even when they were irrelevant. This present study was designed to overcome these 409

issues by presenting only task-specific features. Spatial relationships may also be easier 410

to learn in principle, due to the extended nature of our awareness of the world around 411

us, whereas conceptual stimuli are more commonly experienced one at a time, such as a 412

single idea in a sequential train of thought. Currently, our model can capture but not 413

fully explain these differences in search behavior, since it treats both domains as 414

equivalent generalization and exploration problems. 415

Our model also does not account for attentional mechanisms [74] or working memory 416

constraints [75,76], which may play a crucial role in influencing how people integrate 417

information differently across domains. Indeed, the “stretchy birds” paradigm used 418
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by [9] as evidence for a common neural representation of spatial and conceptual 419

knowledge required several hours of training before being measured in the scanner. 420

Similar shifts from directed to random exploration have also been observed under direct 421

cognitive load manipulations, such as by adding working memory load [77] or by 422

limiting the available decision time [78]. 423

Another interesting finding is the one directional transfer from the spatial to the 424

conceptual domain but not vice versa. This finding supports the argument that spatial 425

representations have been “exapted” to other more abstract domains [6–8]. For example, 426

experience of different resource distributions in a spatial search task was found to 427

influence behavior in a word generation task, where participants exposed to sparser 428

rewards in space generated sparser semantic clusters of words [79]. Thus, while both 429

spatial and conceptual knowledge are capable of being organized into a common 430

map-like representation, there may something special or central about spatial 431

encoding [80], producing domain differences in terms of the ease of learning such a map 432

and asymmetries in the transfer of knowledge. 433

Finally, our current experiment only looked at similarities between spatial and 434

conceptual domains if the underlying structure was the same in both tasks. Future 435

studies could expand this approach across different domains such as logical 436

rule-learning, numerical comparisons, or semantic similarities. Additionally, structure 437

learned in one domain could be transferable to structures encountered in either the 438

same domain with slightly changed structures or even to totally different domains with 439

different structures. A truly all-encompassing model of generalization should capture 440

transfer across domains and structural changes. Even though several recent studies have 441

advanced our understanding of how people transfer knowledge across graph 442

structures [81], state similarities in multi-task reinforcement learning [82], and target 443

hypotheses supporting generalization [83], whether or not all of these recruit the same 444

computational principles and neural machinery remains to be seen. 445

Conclusion 446

We used a rich experimental paradigm to study how people generalize and explore both 447

spatially and conceptually correlated reward environments. While people employed 448

similar principles of generalization in both domains, we found a substantial shift in 449

exploration, from more uncertainty-directed exploration in the spatial task to more 450

random exploration in the conceptual domain. These results enrich our understanding 451

of the principles connecting generalization and search across different domains and pave 452

the way for future cognitive and neuroscientific investigations into principles of 453

generalization and search across domains. 454

Methods 455

Participants and Design 456

140 participants were recruited through Amazon Mechanical Turk (requiring a 95% 457

approval rate and 100 previously approved HITs) for a two part experiment, where only 458

those who had completed part one were invited back for part two. In total 129 459

participants completed both parts and were included in the analyses (55 female; mean 460

age=35, SD=9.5). Participants were paid $4.00 for each part of the experiment, with 461

those completing both parts being paid an additional performance-contingent bonus of 462

up to $10.00. Participants earned $15.6 ± 1.0 and spent 54 ± 19 minutes completing 463

both parts. There was an average gap of 18 ± 8.5 hours between the two parts of the 464

experiment. Informed consent was obtained from all participants. 465
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We varied the task order between subjects, with participants completing the spatial 466

and conceptual task in counterbalanced order in separate sessions. We also varied 467

between subjects the extent of reward correlations in the search space by randomly 468

assigning participants to one of two different classes of environments (smooth vs. rough), 469

with smooth environments corresponding to stronger correlations, and the same 470

environment class used for both tasks (see below). 471

Materials and Procedure 472

Each session consisted of a training phase, the main search task, and a bonus round. At 473

the beginning of each session participants were required to complete a training task to 474

familiarize themselves with the stimuli (spatial or conceptual), the inputs (arrow keys 475

and spacebar), and the search space (8× 8 feature space). Participants were shown a 476

series of randomly selected targets and were instructed to use the arrow keys to modify 477

a single selected stimuli to match the target (i.e., adjusting the stripe frequency and 478

angle of a Gabor patch or moving the location of a spatial selector, Fig. 1c). The space 479

bar was used to make a selection and feedback was provided for 800ms (correct or 480

incorrect). Participants were required to complete at least 32 training trials and were 481

allowed to proceed to the main task once they had achieved at least 90% accuracy on a 482

run of 10 trials (i.e., 9 out of 10). See Fig S3 for analysis of the training data. 483

After completing the training, participants were shown instructions for the main 484

search task and had to complete three comprehension questions (Figs S11-S12) to 485

ensure full understanding of the task. Specifically, the questions were designed to ensure 486

participants understood that the spatial or conceptual features predicted reward. Each 487

search task comprised 10 rounds of 20 trials each, with a different reward function 488

sampled without replacement from the set of assigned environments. The reward 489

function specified how rewards mapped onto either the spatial or conceptual features, 490

where participants were told that options with either similar spatial features (Spatial 491

task) [19,84] or similar conceptual features (Conceptual task) [20,56] would yield similar 492

rewards. Participants were instructed to accumulate as many points as possible, which 493

were later converted into monetary payoffs. 494

The tenth round of each sessions was a “bonus round”, with additional instructions 495

shown at the beginning of the round. The round began as usual, but after 15 choices, 496

participants were asked to make judgments about the expected rewards (input range: 497

[1,100]) and their level of confidence (Likert scale from least to most confident: [0,10]) 498

for 10 unrevealed targets. These targets were uniformly sampled from the set of 499

unselected options during the current round. After the 10 judgments, participants were 500

asked to make a forced choice between the 10 options. The reward for the selected 501

option was displayed and the round continued as normal. All behavioral and 502

computational modeling analyses exclude the last round, except for the analysis of the 503

bonus round judgments. 504

Spatial and Conceptual Search Tasks 505

Participants used the arrow keys to either move a highlighted selector in the spatial task 506

or change the features (tilt and stripe frequency) of the Gabor stimuli in the conceptual 507

task (Fig S1). On each round, participants were given 20 trials to acquire as many 508

cumulative rewards as possible. A selection was made by pressing the space bar, and 509

then participants were given feedback about the reward for 800 ms, with the chosen 510

option and reward value added to the history at the bottom of the screen. At the 511

beginning of each trial, the starting position of the spatial selector or the displayed 512

conceptual stimulus was randomly sampled from a uniform distribution. Each reward 513

observation included normally distributed noise, ε ∼ N (0, 1), where the rewards for 514

15/36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914556doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914556
http://creativecommons.org/licenses/by-nc-nd/4.0/


each round were scaled to a uniformly sampled maximum value in the range of 80 to 95, 515

so that the value of the global optima in each round could not be easily guessed. 516

Participants were given feedback about their performance at the end of each round 517

in terms of the ratio of their average reward to the global maximum, expressed as a 518

percentage (e.g., “You have earned 80% of the maximum reward you could have earned 519

on this round”). The performance bonus (up to $10.00) was calculated based on the 520

cumulative performance of each round and across both tasks. 521

Bonus Round Judgments 522

In both tasks the last round was a “bonus round”, which solicited judgments about the 523

expected reward and their level of confidence for 10 unrevealed options. Participants 524

were informed that the goal of the task remained the same (maximize cumulative 525

rewards), but that after 15 selections, they would be asked to provide judgments about 526

10 randomly selected options, which had not yet been explored. Judgments about 527

expected rewards were elicited using a slider from 1 to 100 (in increments of 1), while 528

judgments about confidence were elicited using a slider from 0 to 10 (in increments of 529

1), with the endpoints labeled ‘Least confident’ and ‘Most confident’. After providing 530

the 10 judgments, participants were asked to select one of the options they just rated, 531

and subsequently completed the round like all others. 532

Environments 533

All environments were sampled from a GP prior parameterized with a radial basis 534

function (RBF) kernel (Eq 4), where the length-scale parameter (λ) determines the rate 535

at which the correlations of rewards decay over (spatial or conceptual) distance. Higher 536

λ-values correspond to stronger correlations. We generated 40 samples of each type of 537

environments, using λrough = 2 and λsmooth = 4, which were sampled without 538

replacement and used as the underlying reward function in each task (Fig S2). 539

Environment type was manipulated between subjects, with the same environment type 540

used in both conceptual and spatial tasks. 541

Models 542

Bayesian Mean Tracker 543

The Bayesian Mean Tracker (BMT) is a simple but widely-applied associative learning
model [68,85,86], which is a special case of the Kalman Filter with time-invariant
reward distributions. The BMT can also be interpreted as a Bayesian variant of the
Rescorla-Wagner model [55], making predictions about the rewards of each option j in
the form of a normally distributed posterior:

P (µj,t|Dt) = N (mj,t, vj,t) (10)

The posterior mean mj,t and variance vj,t are updated iteratively using a delta-rule
update based on the observed reward yt when option j is selected at trial t:

mj,t = mj,t−1 + δj,tGj,t [yt −mj,t−1] (11)

vj,t = [1− δj,tGj,t] vj,t−1 (12)

where δj,t = 1 if option j was chosen on trial t, and 0 otherwise. Rather than having a
fixed learning rate, the BMT scales updates based on the Kalman Gain Gj,t, which is
defined as:

Gj,t =
vj,t−1

vj,t−1 + θ2ε
(13)
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where θ2ε is the error variance, which is estimated as a free parameter. Intuitively, the 544

estimated mean of the chosen option mj,t is updated based on the prediction error 545

yt −mj,t−1 and scaled by the Kalman Gain Gj,t (Eq 11). At the same time, the 546

estimated variance vj,t is reduced by a factor of 1−Gj,t, which is in the range [0, 1] 547

(Eq 12). The error variance θ2ε can be interpreted as an inverse sensitivity, where smaller 548

values result in more substantial updates to the mean mj,t, and larger reductions of 549

uncertainty vj,t. 550

Model Cross-validation 551

As with the behavioral analyses, we omit the 10th “bonus round” in our model 552

cross-validation. For each of the other nine rounds, we use cross validation to iteratively 553

hold out a single round as a test set, and compute the maximum likelihood estimate 554

using differential evolution [87] on the remaining eight rounds. Model comparisons use 555

the summed out-of-sample prediction error on the test set, defined in terms of log loss 556

(i.e., negative log likelihood). 557

Predictive accuracy 558

As an intuitive statistic for goodness of fit, we report predictive accuracy as a
pseudo-R2:

R2 = 1− logL(Mk)

logL(Mrand)
(14)

comparing the out-of-sample log loss of a given model Mk against a random model 559

Mrand. R
2 = 0 indicates chance performance, while R2 = 1 is a theoretically perfect 560

model. 561

Protected exceedance probability 562

The protected exceedance probability (pxp) is defined in terms of a Bayesian model 563

selection framework for group studies [70,71]. Intuitively, it can be described as a 564

random-effect analysis, where models are treated as random effects and are allowed to 565

differ between subjects. Inspired by a Polya’s urn model, we can imagine a population 566

containing K different types of models (i.e., people best described by each model) much 567

like an urn containing different colored marbles. If we assume that there is a fixed but 568

unknown distribution of models in the population, what is the probability of each model 569

being more frequent in the population than all other models in consideration? 570

This is modelled hierarchically, using variational Bayes to estimate the parameters of
a Dirichlet distribution describing the posterior probabilities of each model P (mk|y)
given the data y. The exceedance probability is thus defined as the posterior probability
that the frequency of a model rmk

is larger than all other models rmk′ 6=k
under

consideration:
xp(mk) = p(rmk

> rmk′ 6=k
|y) (15)

[71] extends this approach by correcting for chance, based on the Bayesian Omnibus
Risk (BOR), which is the posterior probability that all model frequencies are equal:

pxp(mk) = xp(mk)(1−BOR) +
BOR

K
(16)

This produces the protected exceedance probability (pxp) reported throughout this 571

chapter, and is implemented using 572

https://github.com/sjgershm/mfit/blob/master/bms.m. 573
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Simulated learning curves 574

We simulated each model by sampling (with replacement) from the set of 575

cross-validated participant parameter estimates, and performing search on a simulated 576

bandit task. We performed 10,000 simulations for each combination of model, 577

environment, and domain (spatial vs. conceptual). 578

Bonus round predictions 579

Bonus round predictions used each participant’s estimated parameters to predict their 580

judgments about expected reward and confidence. Because rewards in each round were 581

randomly scaled to a different global maximum, we also rescaled the model predictions 582

in order to align model predictions with the observed rewards and participant 583

judgments. 584

Statistical tests 585

Comparisons 586

We report both frequentist and Bayesian statistics. Frequentist tests are reported as 587

Student’s t-tests (specified as either paired or independent) for parametric comparisons, 588

while the Mann-Whitney-U test or Wilcoxon signed-rank test are used for 589

non-parametric comparisons (for independent samples or paired samples, respectively). 590

Each of these tests are accompanied by a Bayes factors (BF ) to quantify the relative 591

evidence the data provide in favor of the alternative hypothesis (HA) over the null (H0). 592

Parametric comparison are tested using the default two-sided Bayesian t-test for 593

either independent or dependent samples, where both use a Jeffreys-Zellner-Siow prior 594

with its scale set to
√

2/2, as suggested by [88]. All statistical tests are non-directional 595

as defined by a symmetric prior (unless otherwise indicated). 596

Non-parametric comparisons are tested using either the frequentist 597

Mann-Whitney-U test for independent samples, or the Wilcoxon signed-rank test for 598

paired samples. In both cases, the Bayesian test is based on performing posterior 599

inference over the test statistics (Kendall’s rτ for the Mann-Whitney-U test and 600

standardized effect size r = Z√
N

for the Wilcoxon signed-rank test) and assigning a prior 601

using parametric yoking [89]. This leads to a posterior distribution for Kendall’s rτ or 602

the standardized effect size r, which yields an interpretable Bayes factor via the 603

Savage-Dickey density ratio test. The null hypothesis posits that parameters do not 604

differ between the two groups, while the alternative hypothesis posits an effect and 605

assigns an effect size using a Cauchy distribution with the scale parameter set to 1/
√

2. 606

Correlations 607

For testing linear correlations with Pearson’s r, the Bayesian test is based on 608

Jeffrey’s [90] test for linear correlation and assumes a shifted, scaled beta prior 609

distribution B( 1
k ,

1
k ) for r, where the scale parameter is set to k = 1

3 [91]. 610

For testing rank correlations with Kendall’s tau, the Bayesian test is based on 611

parametric yoking to define a prior over the test statistic [92], and performing Bayesian 612

inference to arrive at a posterior distribution for rτ . The Savage-Dickey density ratio 613

test is used to produce an interpretable Bayes Factor. 614

Outlier removal 615

For the analysis of model parameters, we first report the full results using 616

non-parametric tests, comparing differences in parameter estimates using the Wilcoxon 617
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signed-rank test and correlations using Kendall’s τ . In addition, we also applied a 618

conservative outlier removal procedure based on Tukey’s outlier removal criterion, where 619

we removed values larger than Q3 + 1.5×IQR and ran standard t-tests and Pearson’s 620

correlations. 621

ANOVA 622

We use a two-way mixed-design analysis of variance (ANOVA) to compare the means of 623

both a fixed effects factor (smooth vs. rough environments) as a between-subjects 624

variable and a random effects factor (conceptual vs. spatial) as a within-subjects 625

variable. To compute the Bayes Factor, we assume independent g-priors [93] for each 626

effect size θ1 ∼ N (0, g1σ
2), · · · , θp ∼ N (0, gpσ

2), where each g-value is drawn from an 627

inverse chi-square prior with a single degree of freedom gi
i.i.d∼ inverse-χ2(1), and 628

assuming a Jeffreys prior on the aggregate mean and scale factor. Following [94], we 629

compute the Bayes factor by integrating the likelihoods with respect to the prior on 630

parameters, where Monte Carlo sampling was used to approximate the g-priors. The 631

Bayes factor reported in the text can be interpreted as the log-odds of the model 632

relative to an intercept-only null model. 633
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Supporting information 906

Figure S1. Gabor stimuli. Tilt varies from left to right from 105◦ to 255◦ in equally
spaced intervals, while stripe frequency increases moving upwards from 1.5 to 15 in log
intervals.
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Figure S2. Correlated reward environments. Heatmaps of the reward environments
used in both spatial and conceptual domains. The color of each tile represents the
expected reward of the bandit, where the x-axis and y-axis were mapped to the spatial
location or the tilt and stripe frequency (respectively).
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Figure S3. Training Phase. a) Trials needed to reach the learning criterion (90%
accuracy over 10 trials) in the training phase, where the dotted line indicates the 32 trial
minimum. Each dot is a single participant with lines connecting the same participant.
Tukey boxplots show median (line) and 1.5x IQR, with diamonds indicating group means.
b) Average correct choices during the training phase. c) Heatmaps of the accuracy
of different target stimuli, where the x and y-axes of the conceptual heatmap indicate
tilt and stripe frequency, respectively. d) The probability of error as a function of the
magnitude of error (Manhattan distance from the correct response). Thus, most errors
were close to the target, with higher magnitude errors being monotonically less likely to
occur.
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Figure S4. Search Trajectories. a) Distribution of trajectory length, separated by
task and environment. The dashed vertical line indicates the median for each category.
Participants had longer trajectories in the contextual task (t(128) = −10.7, p < .001,
d = 1.0, BF > 100), but there were no differences across environments (t(127) = 1.3,
p = .213, d = 0.2, BF = .38). b) Average reward value as a function of trajectory length,
showing how longer trajectories generally resulted in higher rewards (r = .23, p < .001,
BF > 100). Each dot is a mean with error bars showing the 95% CI. c) Distance from
the random initial starting point in each trial as function of the previous reward value.
Each dot is the aggregate mean and the dashed line indicates random chance. Lines
are the fixed effects of a Bayesian mixed-effects model (see Table S1), with the ribbons
indicating the 95% HPD.
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Figure S5. Heatmaps of choice frequency. Heatmaps of chosen options in a) the Gabor
feature of the conceptual task and b) the spatial location of the spatial task, aggregated
over all participants. The color shows the frequency of each option centered on yellow
representing random chance (1/64), with orange and red indicating higher than chance,
while green and blue were lower than chance.
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Figure S6. Additional Modeling Results. a) The relationship between mean perfor-
mance and predictive accuracy, where in all cases, the best performing participants
were also the best described. b) The best performing participants were also the most
diagnostic between models, but not substantially skewed towards either model. Linear
regression lines strongly overlap with the dotted line at y = 0, where participants above
the line were better described by the GP model. c Model comparison split by which
task was performed first vs. second. In both cases, participants were better described on
their second task, although the superiority of the GP over the BMT remains, comparing
only task one (paired t-test: t(128) = 4.6, p < .001, d = 0.10, BF = 1685) or only task
two (t(128) = 3.5, p < .001, d = 0.08, BF = 27).
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Figure S7. GP parameters and performance. a) We do not find a reliable relationship
between λ estimates and performance in either the spatial task (rτ = .13, p = .030,
BF = 1.2; outliers removed: r = −.05, p = .600, BF = .25) or the conceptual task
(rτ = −.22, p < .001, BF > 100; outliers removed: r = .23, p = .012, BF = 4.3; note
the opposite signs of the correlation coefficients). b) Higher beta estimates were strongly
predictive of better performance in both conceptual (rτ = .32, p < .001, BF > 100;
outliers removed: r = .43, p < .001, BF > 100) and spatial tasks (rτ = .31, p < .001,
BF > 100; outliers removed: r = .48, p < .001, BF > 100). c) On the other hand,
high temperature values predicted lower performance in both conceptual(rτ = −.59,
p < .001, BF > 100; outliers removed: r = −.68, p < .001, BF > 100) and spatial tasks
(rτ = −.58, p < .001, BF > 100; outliers removed: r = −.78, p < .001, BF > 100).
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Figure S8. GP exploration bonus and temperature. We check here whether there
exists any inverse relationship between directed and undirected exploration, implemented
using the UCB exploration bonus β (x-axis) and the softmax temperature τ (y-axis),
respectively. Results are split into conceptual (a) and spatial tasks (b), where each dot
is a single participant and the dotted line indicates y = x. The upper axis limits are set
to the largest 1.5×IQR, for both β and τ , across both conceptual and spatial tasks.
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Figure S9. BMT parameters. Each dot is a single participant and the dotted line
indicates y = x. a) We found lower error variance (σ2

ε ) estimates in the conceptual
task (Wilcoxon signed-rank test: Z = −4.8, p < .001, r = −.42, BF > 100; with
outliers removed: t(119) = −5.5, p < .001, d = 0.6, BF > 100), suggesting participants
were more sensitive to the reward values (i.e., more substantial updates to their means
estimates). Error variance was also weakly correlated(‘rτ = .18, p = .003, BF = 10;
without outliers: r = .28, p = .002, BF = 21). b) As with the GP model reported in
the main text, we also found strong differences in exploration behavior in the BMT.
We found lower estimates of the exploration bonus in the conceptual task (Z = −5.9,
p < .001, r = −.52, BF > 100; without outliers: t(119) = −7.9, p < .001, d = 1.0,
BF > 100). There is ambiguous evidence about correlations between tasks (rτ = .16,
p = .006, BF = 4.8; without outliers:r = .14, p = .141, BF = .59). c) Also in line with
the GP results, we again find an increase in random exploration in the conceptual task
(Z = −6.9, p < .001, r = −.61, BF > 100; without outliers: t(108) = 7.6, p < .001,
d = 0.8, BF > 100). Once more, temperature estimates were strongly correlated
(rτ = .34, p < .001, BF > 100; without outliers r = .33, p < .001, BF = 70).
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Figure S10. Shepard kernel parameters. We also considered an alternative form of
the GP model. Instead of modeling generalization as a function of squared-Euclidean
distance with the RBF kernel, we use the Shepard kernel described in [64], where we
instead use Minkowski distance with the free parameter ρ ∈ [0, 2]. This model is identical
to the GP model reported in the main text when ρ = 2. But when ρ < 2, the input
dimensions transition from integral to separable representations [95]. The lack of clear
differences in model parameters motivated us to only include the standard RBF kernel
in the main text. a) We find mixed evidence for differences in generalization between
tasks (Z = −1.8, p = .039, r = −.15, BF = .32; outliers removed: t(98) = −2.8,
p = .007, d = 0.4, BF = 4.1). There is also marginal evidence of correlated estimates
(rτ = .13, p = .026, BF = 1.3; outliers removed: r = .21, p = .033, BF = 2.0). b)
There is anecdotal evidence of lower ρ estimates in the conceptual task (Z = −2.5,
p = .006, r = −.22, BF = 2.0 ; outliers removed: t(128) = −2.7, p = .008, d = 0.3,
BF = 3.3). The implication of a lower ρ in the conceptual domain is that the Gabor
features were treated more independently, whereas the spatial dimensions were more
integrated. However, the statistics suggest this is not a very robust effect. These
estimates are also not correlated (rτ = −.02, p = .684, BF = .12; outliers removed:
r = −.04, p = .653, BF = .22). c) Consistent with all the other models, we find
systematically lower exploration bonuses in the conceptual task (Z = −5.5, p < .001,
r = −.49, BF > 100; outliers removed: t(121) = −6.6, p < .001, d = 0.8, BF > 100).
There is ambiguous evidence of a correlation across tasks (rτ = .14, p = .021, BF = 1.6;
outliers removed: r = .09, p = .338, BF = .32). d) We find clear evidence of higher
temperatures in the conceptual task (Z = −6.3, p < .001, r = −.56, BF > 100; outliers
removed: t(105) = 6.5, p < .001, d = 0.7, BF > 100), with strong correlations across
tasks (rτ = .41, p < .001, BF > 100; r = .32, p < .001, BF = 45)
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Figure S11. Comprehension questions for the conceptual task. The correct answers
are highlighted.
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Figure S12. Comprehension questions for the spatial task. The correct answers are
highlighted.
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Table S1. Mixed Effects Regression Results: Previous Reward

Distance Between Choices Distance from Initial Position

Predictors Est. 95% HPD Est. 95% HPD

Intercept 7.31 7.07 – 7.56 4.04 3.83 – 4.25

PreviousReward -0.06 -0.07 – -0.06 0.02 0.01 – 0.02

Spatialtask 0.57 0.46 – 0.69 -0.20 -0.36 – -0.04

PreviousReward:Spatialtask -0.01 -0.01 – -0.01 0.00 0.00 – 0.01

Random Effects

σ2 0.71 0.88

τ00 7.61 8.55

ICC 0.09 0.09

N 129 129

Observations 44118 441818

Bayesian R2 .509 .118

Note: Both models were implemented in brms with default weak priors [96]. We report
the posterior mean (Est.) and 95% highest posterior density (HPD) interval. σ2 indicates
the individual-level variance and τ00 indicates the variation between individual intercepts
and the average intercept.
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Table S2. Mixed Effects Regression Results: Bonus round judgments

Model Prediction Model Uncertainty

Predictors Est. 95% HPD Est. 95% HPD

Intercept 40 37.52 – 42.41 0.96 0.88 – 1.03

ParticipantJudgment 0.25 0.20 – 0.31 -0.02 -0.03 – -0.01

Spatialtask -2.33 -4.28 – -0.33 -0.14 -0.20 – -0.08

ParticipantJudgment:Spatialtask 0.06 0.01 – 0.10 0.01 0.00 – 0.02

Random Effects

σ2 17.45 0.03

τ00 130.57 0.06

ICC 0.12 0.31

N 129 129

Observations 2580 2580

Bayesian R2 .313 .332

Note: Both models were implemented in brms with default weak priors [96]. We report
the posterior mean (Est.) and 95% highest posterior density (HPD) interval. In the
first model (Model Prediction), participant judgments in the range [1,100] are used to
predict the GP posterior mean, whereas the second model (Model Uncertainty) uses
confidence judgments in the range [1,11] to predict the GP posterior variance. All GP
posteriors are computed based on individual participant λ-values, estimated from the
corresponding bandit task. σ2 indicates the individual-level variance and τ00 indicates
the variation between individual intercepts and the average intercept.
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