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Abstract 

The massive amount of data generated from genome sequencing have given rise to several 

mutation predictor tools although no mutation database or predictor tool have been developed 
specifically for the transmembrane region of membrane proteins.  
We present TMSNP, a database that currently contains information from 2624 pathogenic and 
195964 non-pathogenic reported mutations located on the TM region of membrane proteins. The 
computed conservation parameters and annotations on these mutations were used to train a 
machine-learning model that classifies TM mutations as pathogenic or non-pathogenic. The 
presented tool improves considerably the prediction power of commonly used mutation predictors 

and additionally represents the first mutation prediction tool specific for TM mutations.  
TMSNP is available at  http://lmc.uab.es/tmsnp/  
Contact: mireia.olivella@esci.upf.edu 

Introduction  

Membrane proteins represent 25% of all human proteins (Dobson, et al., 2015; Gromiha and Ou, 
2014) and perform essential roles in cellular functions. Approximately 50-60% of TM proteins 

are drug targets for various diseases (Almeida, et al., 2017; Overington, et al., 2006) and 90% of 
membrane proteins present disease-associated missense mutations that may affect protein folding, 
stability and function (Kulandaisamy, et al., 2019). Whole genome and exome sequencing have 
revealed that missense mutations that are mendelian and rare disease-causing are more frequent 
than previously thought and collectively affect millions of patients worldwide (Chong, et al., 
2015). Thus, there is an urgent need to understand the relation between genotype and phenotype 
in order to identify disease causing genetic variants within candidate variants. Variant 
prioritization tools such as SIFT (Sim, et al., 2012) or Polyphen-2 (Adzhubei, et al., 2010) are 

widely used to predict the effect of mutations based on evolutionary conservation and expected 
impact on structure and function. Although the transmembrane region of membrane proteins 
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differs from globular proteins in terms of sequence-structure conservation (Olivella, et al., 2013), 
amino acid distribution and inter-residue interactions (Mayol, et al., 2018), no mutation prediction 
tool have been specifically developed for the transmembrane region of membrane proteins. Here 

we present TMSNP (accessible at http://lmc.uab.es/tmsnp/), a database and a mutation predictor 
server trained and adapted to the specific features of transmembrane proteins using the 
information of the position and amino acid change encoded in Pfam alignments to predict 
pathogenicity of TM missense mutations.  

Methods 

We took i) all human membrane proteins tagged as reviewed, ii) the ranges of residues that form 

TM segments, and iii) position annotations from the Uniprot (McGarvey, et al., 2019; UniProt, 
2019). Pathogenic missense mutations located in these human TM segments were taken from 
ClinVar (Landrum, et al., 2014) and SwissVar (Mottaz, et al., 2010), and only those annotated as 
disease-causing/pathogenic for a mendelian disorder were kept. We also retrieved non-pathogenic 
missense mutations and its population allele frequency from GnomAD (Karczewski, et al., 2019). 
The obtained pathogenic and non-pathogenic missense mutations were used to classify human 
TM proteins as “pathogenic proteins”, when at least one disease-causing pathogenic mutation has 

been reported for this protein and as “non-pathogenic proteins”, elsewhere. Multiple sequence 
alignments of all human TM domains were taken from Pfam database (El-Gebali, et al., 2019). 
For each missense mutation we computed the following parameters: (i) amino acid type and 
frequencies of the wild type (wt) and mutated amino acids, (ii) score associated to wt/mutant 
amino acid change in the PHAT 75/73 substitution matrix, specific for membrane proteins (Ng, 
et al., 2000) and (iii) the entropy of the information content (Pei and Grishin, 2001).  

We discarded missense mutations in proteins for which no pathogenic disease-causing 

mutations have been reported, those likely involved in complex diseases or recessive inheritance 
(Eilbeck, et al., 2017). This permitted to select missense mutations whose pathogenicity can be 
linked to protein function and/or structure alteration. We performed homology reduction by 
discarding homologous mutations in the same position in the Pfam alignment. The filtered dataset 
contained 2704 pathogenic and 19292 non-pathogenic TM mutations and was subsequently 
subsampled to obtain a balanced dataset. This was done by selecting non-pathogenic mutations 
with the highest population allele frequency from GnomAD (Karczewski, et al., 2019), to ensure 
that these were neutral mutations. The resulting balanced dataset matrix had 5408 missense 

mutations (50% pathogenic and 50% non-pathogenic) and 569 variables (569V dataset; see 
http://lmc.uab.es/tmsnp/569Vdataset). A subset from the 569V dataset that only uses the four 
most contributive variables associated to conservation (see Supp Table 1): initial frequency, final 
frequency, matrix score and entropy was also constructed (4V dataset). Thus, the Uniprot 
accession code and the Pfams code variables were not used in this dataset. For each Uniprot code 
in the 569V and 4V dataset, mutations were split in a training set (80%) that was used to build 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.913764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.913764


machine-learning models, while the remaining 20% of the samples were used in external-
validation. Although homologous mutations (i.e. same amino acid change in the same Pfam 
alignment position) were previously excluded in the 569V and 4V dataset, we wanted to exclude 

any possible bias due to the presence of homologous proteins in the validation set. Using the 569V 
dataset, mutations with the same Pfam code were used exclusively in either the training (80%) or 
the validation set (20%) (569V Exclusive Pfams dataset). Consequently, mutations with the same 
Uniprot code were also used in either the training set or validation set. 

Machine-learning models were built in Python 3 using Flame modeling framework 
(https://github.com/phi-grib/flame), which is based on Scikit-learn library (http://scikit-
learn.sourceforge.net). We used conformal prediction framework as applicability domain 

technique (Norinder, et al., 2014). Various predictive models using different settings on the 
algorithm, applicability domain, and dataset were built and were internally validated using K-fold 
(K=5) cross-validation.  

TMSNP web application tool was constructed on a Python 3.6.6 backend with the Flask 1.0.2 
framework (http://flask.pocoo.org). TMSMP and the corresponding datasets used for training and 
testing the predictor are compiled automatically using Python scripts that access data from 
Databases in a MySQL database, thus facilitating regular updates.  

Results 

TMSNP currently contains a database of 2704 pathogenic and 192566 non-pathogenic mutations 
located in the TM segments of human membrane proteins (see Figure 1). Pathogenic and non-
pathogenic mutations in disease associated membrane proteins were used to develop an algorithm 
in machine learning models using Random Forest (Supp. Table 2 and Supp. Table 3). The three 
models (569V, 4V, 569V exclusive PFAMs) show excellent performance, although the 569V 

dataset increases both the quality statistics and the confidence in predictions (reflected in the 
higher coverage). The small loss in accuracy in the two other models is attributed to the 
contribution to propensity to pathogenicity for each protein, which is associated to the Uniprot 
code. We chose to implement Random Forest algorithm on 569V dataset because of better results 
in external validation. Because better significance comes at a cost of a lower coverage, for a given 
SNP, TMSNP returns the unambiguous class prediction at the higher confidence possible. The 
predictions with a confidence below 0.25 are considered outside the domain of applicability. 
Table 1 shows the comparison between TMSNP models (569V dataset) generated at three levels 

of significance and SIFT and Polyphen-2 mutation prediction tools. Lower significance at the 
conformal predictor increases the performance at a cost of lower coverage. When compared to 
SIFT and Polyphen-2, the prediction power of TMSNP for TM missense mutations has similar 
sensitivity but remarkably higher specificity, resulting in a significant predictive power 
improvement reflected in the Matthews correlation coefficient value (Russell 2012).  
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TMSNP is a free regularly updated web server that presents two main functionalities: (i) a 
database of reported pathogenic and non-pathogenic mutations in TM segments of membrane 
proteins (ii) a mutation prediction tool able to predict pathogenicity and its confidence interval 

for previously non-reported TM missense mutations. The prediction algorithm developed 
specifically for membrane proteins allows to considerably improve the prediction power 
compared to current mutation predictor servers. 
 

 
Figure 1.  TMSNP recopilates pathogenic and non-pathogenic missense mutations in TM segments of 
membrane proteins from SwissVar, Uniprot and GnomAD. Proteins are split into i) proteins without any 
reported disease-causing mutation and ii) proteins with reported disease-causing mutation. 569 features in 
pathogenic proteins are trained by machine learning methods to develop TMSNP prediction model that 
predicts pathogenicity of TM mutations. 
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Method Sensitivity Specificity MCC Coverage 

TMSNP 
(0.05 significance) 0.92 0.87 0.80 0.43 

TMSNP 
(0.1 significance) 0.89 0.82 0.72 0.63 

TMSNP 
(0.2 significance) 0.83 0.76 0.59 0.89 

Polyhen-2 

0.93 0.35 0.64 

1 

SIFT 

0.88 0.52 0.70 

1 

 
Table 1. Sensitivity, specificity, Matthews correlation coefficient (MCC) and coverage of TMSNP model 
(569V dataset) at various levels of significance in external validation. Comparison to  SIFT and Poyphen-
2  is also presented. MCC is a quality metric which rewards models with balanced sensitivity and 
specificity. Coverage stands for the percentage of samples inside the applicability domain.  
 

Funding 

This work has been supported by the Spanish Ministerio de Ciencia, Innovación y Universidades 
(SAF2015-74627-JIN) (SAF2016-77830-R) .   
 
Conflict of Interest: none declared. 

References 
Adzhubei, I.A., et al. (2010) A method and server for predicting damaging missense mutations, Nat 
Methods, 7, 248-249. 
Almeida, J.G., et al. (2017) Membrane proteins structures: A review on computational modeling tools, 
Biochimica et biophysica acta. Biomembranes, 1859, 2021-2039. 
Chong, J.X., et al. (2015) The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and 
Opportunities, Am. J. Hum. Genet., 97, 199-215. 
Dobson, L., et al. (2015) Expediting topology data gathering for the TOPDB database, Nucleic Acids Res., 
43, D283-289. 
Eilbeck, K., Quinlan, A. and Yandell, M. (2017) Settling the score: variant prioritization and Mendelian 
disease, Nat. Rev. Genet., 18, 599-612. 
El-Gebali, S., et al. (2019) The Pfam protein families database in 2019, Nucleic Acids Res., 47, D427-D432. 
Gromiha, M.M. and Ou, Y.Y. (2014) Bioinformatics approaches for functional annotation of membrane 
proteins, Brief. Bioinform., 15, 155-168. 
Karczewski, K.J., et al. (2019) Variation across 141,456 human exomes and genomes reveals the spectrum 
of loss-of-function intolerance across human protein-coding genes, bioRxiv, 531210. 
Kulandaisamy, A., et al. (2019) Statistical analysis of disease-causing and neutral mutations in human 
membrane proteins, Proteins, 87, 452-466. 
Landrum, M.J., et al. (2014) ClinVar: public archive of relationships among sequence variation and human 
phenotype, Nucleic Acids Res., 42, D980-985. 
Mayol, E., et al. (2018) Inter-residue interactions in alpha-helical transmembrane proteins, Bioinformatics, 
35, 2578-2584.  
McGarvey, P.B., et al. (2019) UniProt genomic mapping for deciphering functional effects of missense 
variants, Hum. Mutat., 40, 694-705. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.913764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.913764


Mottaz, A., et al. (2010) Easy retrieval of single amino-acid polymorphisms and phenotype information 
using SwissVar, Bioinformatics, 26, 851-852. 
Ng, P.C., Henikoff, J.G. and Henikoff, S. (2000) PHAT: a transmembrane-specific substitution matrix. 
Predicted hydrophobic and transmembrane, Bioinformatics, 16, 760-766. 
Norinder, U., et al. (2014) Introducing conformal prediction in predictive modeling. A transparent and 
flexible alternative to applicability domain determination, J Chem Inf Model, 54, 1596-1603. 
Olivella, M., et al. (2013) Relation between sequence and structure in membrane proteins, Bioinformatics, 
29, 1589-1592. 
Overington, J.P., Al-Lazikani, B. and Hopkins, A.L. (2006) How many drug targets are there?, Nature 
reviews. Drug discovery, 5, 993-996. 
Pei, J. and Grishin, N.V. (2001) AL2CO: calculation of positional conservation in a protein sequence 
alignment, Bioinformatics, 17, 700-712. 
Sim, N.L., et al. (2012) SIFT web server: predicting effects of amino acid substitutions on proteins, Nucleic 
Acids Res., 40, W452-457. 
UniProt, C. (2019) UniProt: a worldwide hub of protein knowledge, Nucleic Acids Res., 47, D506-D515. 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.913764doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.913764

