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ABSTRACT

Bisulfite sequencing (BS-seq) is a popular method for measuring DNA methylation in basepair-
resolution. Many BS-seq data analysis tools utilize the assumption of spatial correlation among the
neighboring cytosines’ methylation states. While being a fair assumption, most existing methods
leave out the possibility of deviation from the spatial correlation pattern. Our approach builds on a
method which combines a generalized linear mixed model (GLMM) with a likelihood that is specific
for BS-seq data and that incorporates a spatial correlation for methylation levels. We propose a novel
technique using a sparsity promoting prior to enable cytosines deviating from the spatial correlation
pattern. The method is tested with both simulated and real BS-seq data and compared to other
differential methylation analysis tools.

Keywords DNA methylation · Bayesian analysis · Spatial correlation

1 Introduction

DNA methylation is an epigenetic modification of the DNA where a methyl group is attached to a cytosine of the DNA.
This phenomenon is essential for normal function of eukaryotic cells, and abnormal DNA methylation levels have
been linked to diseases and cancer. DNA methylation is known to be a spatially correlated phenomena. In some cases,
however, one or more cytosines in a local neighbourhood can deviate from the spatial correlation pattern due to e.g.
transcription factor binding [4].

Many of the tools for differential methylation analysis assume spatial correlation without allowing cytosines to deviate
from a common spatial correlation pattern. This inflexibility can lead us to not detecting all the possibly differentially
methylated cytosines and could muddle the evidence for the non-deviating cytosines as well. For example RADMeth
[3], which uses beta-binomial regression and weighted Z test and M3D [8] where maximum mean discrepancies over
the regions are used for p-value calculation do not support finding deviating cytosines. One of the tools that could take
such deviation into account is BiSeq [7] which has a hierarchical procedure, where defined CpG clusters are first tested
by taking the spatial correlation into account and then trimming the found differentially methylated regions (DMRs) by
removing the not differentially methylated cytosines from the regions. Even though spatial correlation is assumed in the
first testing phase and preprocessing of the data includes smoothing, the second step allows for controlling location-wise
false discovery rate (FDR). Also, BiSeq tool divides a DMR into smaller regions if the sign of the methylation difference
changes.

In [5] we proposed a novel method LuxUS, that assumes spatial correlation for cytosines in a genomic window of
interest. However, the method does not support detecting deviating cytosines and it calculates one Bayes factor for the
whole genomic window. Here we present a different formulation of the spatial correlation that enables the analysis of
deviating cytosines by introducing weight variables di for each cytosine i in the genomic window. The weight variable
will tell whether the corresponding cytosine follows the general spatial correlation pattern or not. Horseshoe priors [2]
are often used to enhance sparsity of the coefficients in generalized linear models, where the number of covariates in the
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Figure 1: Plate diagram of the LuxHS model. Rectangles represent input data such as design matrices or fixed
hyperparameters. White and grey circles represent latent and observed variables respectively.

model is very high and it is assumed that many of them have little effect on the predicted variable. Here we utilize
horseshoe prior in the definition of the weight variables di. The statistical testing, i.e. calculation of Bayes factors, is
done for each cytosine separately.

2 Methods

In this section the LuxHS model and analysis workflow is described. The model consists of a data generating process
and a generalized linear mixed model, which models the methylation proportions by taking into account covariates,
replicate effects and spatial correlation. After this the fitting of the model parameters and the method for testing for
differential methylation is explained.

The first step of workflow in LuxHS analysis is to divide the data set of interest into genomic windows, which are
then analysed one at a time with possibility of parallelisation. A simple preanalysis method for this purpose was
proposed by Halla-aho and Lähdesmäki [5]. The cytosines are divided into genomic windows based on their genomic
distance and a maximum number of cytosines in a window while filtering out cytosines with low coverage. Genomic
windows with too low average coverage can also be filtered out. For windows with high enough coverage, an F-test is
performed to quantify the significance for the variable of interest. The F-test p-value threshold is set to a moderate value
to refrain from filtering out too many prospective genomic windows. The windows that passed the F-test phase are
further processed into LuxHS input format. The model parameters are fitted, after which statistical testing is performed.
Finally, the found differentially methylated cytosines can be combined into DMRs for which a follow-up analysis, such
as gene-enrichment analysis, can be performed.

2.1 Model

Plate diagram of the model is presented in Fig. 1. The analysis of an experiment with NR samples is performed for a
genomic window with NC cytosines at a time. The total sequencing read counts for each cytosine are stored in NBS,tot
out of which NBS,C (both vectors of length NC ·NR) were methylated. If the experimental parameters for each sample
are available, they can be stored in vectors BSeff, BS∗eff and seqerr, each of length NR, which correspond to bisulfite
conversion efficiency, incorrect bisulfite conversion efficiency and sequencing error. If the experimental parameters
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Figure 2: The probability tree for observing a C or T in bisulfite sequencing data when the true methylation state is
methylated or unmethylated.

are not known, they can be set to correspond to a perfect experiment with no sequencing error and perfect bisulfite
conversion efficiency.

The methylated cytosine count NBS,C,i for observation i, i = 1, ..., NR ·NC , follows binomial distribution

NBS,C,i ∼ Binomial(NBS,tot,i, pBS,C,i) (1)

with success probability, e.g. probability of observing a C in bisulfite sequencing experiment, pBS,C,i, which is calculated
as

pBS,C,i = θi((1− seqerr,i)(1− BSeff,i) + seqerrBSeff,i)

+(1− θi)((1− seqerr,i)(1− BS∗eff,i) + seqerrBS∗eff,i),

where θi is the methylation proportion for the observation i, i = 1, ..., NC · NR. seqerr,i, BSeff,i and BS∗eff,i are the
experimental parameters for the replicate corresponding to index i. The equation follows the probability tree in Fig. 2.
This is the same data generating process as in LuxGLM [1] for non-methylated and methylated cytosines. Methylation
proportions are estimated using the generalized linear mixed model of the form

Y = Xb + ZRuR + e, (2)

where term Xb is fixed effect, ZRuR is replicate random effect and e is noise term with distribution e ∼ N(0, σ2
EI)

and prior σ2
E ∼ Gamma(αE , βE). The number of covariates in the fixed effect term is NP . Each of the cytosines has

its own set of fixed effect coefficient vector bj of length NP , j = 1, ..., NC , and thus b = [bT1 , . . . ,b
T
NC

]T has length
NC · NP . The design matrix X size is (NC · NR) × (NC · NP ) and it has the individual cytosine design matrices
as block matrices in the diagonal. The fixed effect coefficients have prior distribution b ∼ N(0,Σb), where Σb is
a covariance matrix. Matrix ZR is the random effect design matrix of size (NC · NR) × NR and the vector uR of
length NR contains the effects for each replicate. The effects have a normal prior distribution uR ∼ N(0, σ2

RI), where
σ2
R ∼ Gamma(αR, βR) is the variance term for the replicate random effect.

The spatial correlation structure is brought to the model through the fixed effect coefficients’ covariance matrix Σb.
Using indexing notation bj,k, j = 1, ..., NC , k = 1, ..., NP , to distinguish coefficients for each cytosine and covariate,
Σb can be expressed as

Σb =


σ2
b cov(b1,1, b1,2) · · · cov(b1,1, bNC ,NP )

cov(b1,2, b1,1) σ2
b · · · cov(b1,2, bNC ,NP )

...
...

. . .
...

cov(bNC ,NP , b1,1) cov(bNC ,NP , b1,2) · · · σ2
b

 , (3)

where the covariance terms are

cov(bj,k, bj′,k′) =

σ2
b · exp

(
−|cj−cj′ |

`2

)
· dj · dj′ , if k = k′

0 , if k 6= k′,
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which gives the coefficients of different covariates zero covariance to fulfill linear model requirements. In the
computation of the covariance terms, the cytosine locations cj and cj′ and the lengthscale parameter ` with prior
` ∼ Gamma(α`, β`) are used. The coefficient variance σ2

b is set to the value 15. Weight variables dj and dj′ tell whether
the corresponding cytosine follows the correlation pattern along with its neighboring cytosines. The weight variables
can have values ranging from 0 to 1, and they have the ability to scale down the covariance terms cov(bj,k, bj′,k′).

The correlation weight variable dj for cytosine j = 1, ..., NC is calculated through transformation

dj = 1− f(d̃j), (4)

where transformation function f(x) is a generalized logistic function

f(x) = A+
K −A

(C +Q · exp(−B · x))
1
ν

, (5)

where A = 0, K = 1, C = 1, Q = 10, B = 5 and ν = 0.5. This transformation ensures that the resulting dj have
values from range [0, 1]. The auxiliary variable d̃j has a horseshoe prior with the modification of the normal priors for
d̃j being restricted to the positive side, defined as

d̃j ∼ N+(0, τ2 · λ2j ), (6)

where the global shrinkage parameter τ and local shrinkage parameters λj have positive Cauchy hyperpriors τ ∼
C+(0, 1), and λj ∼ C+(0, 1). The level of sparsity of vector d̃ = [d̃1, . . . , d̃NC ]T containing d̃j , j = 1, ..., NC , can
be controlled with the choice of hyperprior for τ .

Finally, the methylation proportions θi in Eq. 2 are calculated with the sigmoid function

θi =
1

1 + exp(−Yi)
. (7)

2.2 Fitting the model parameters with Stan and testing differential methylation

The model is implemented with probabilistic programming language Stan, and the Stan program is used for sampling
from the posterior distribution. Stan offers both Hamiltonian Monte Carlo (HMC) and automatic differentation
variational inference (ADVI) approaches for obtaining posterior samples and either one can be used for LuxHS. As
variational inference approaches are often faster than Markov chain Monte Carlo (MCMC) methods such as HMC, they
are a potential alternative to MCMC in computationally heavy tasks.

After obtaining samples for the model parameters, Bayes factors can be calculated for each cytosine to describe the
evidence for two alternative models. The testing is done cytosine-wise, which enables deviating Bayes factor values
inside a genomic window. There are two versions of the differential methylation test, with the type 1 test having a base
model M0 : bj,k = 0 and an alternative model M1 : bj,k 6= 0, subscript j corresponding to the cytosines j = 1, ..., NC
and subscript k corresponding to the covariate of interest. The type 2 test has a base model M0 : bj,k − bj,k′ = 0 and an
alternative model M1 : bj,k − bj,k′ 6= 0, subscripts k and k′ corresponding to the covariates of interest. Corresponding
Bayes factors (BF) are used for the testing. As exact Bayes factors are intractable, Savage-Dickey estimates of the BFs
are used instead. S-D estimate for the type 1 test is

BF ≈ p(bi,j = 0|M1)

p(bi,j = 0|M1,D)
, (8)

where D is the data. The numerator is calculated using the normal prior for b ∼ N(0,Σb) and the denominator is
estimated from the obtained samples using kernel density estimation. The type 2 test S-D estimate is formed similarly.

3 Results

In this section we present the results for real and simulated BS-seq data sets. We first analyze whole genome bisulfite
sequencing (WGBS-seq) data from [6] and demonstrate that LuxHS can identify differentially methylated cytosines as
well as individual cytosines whose methylation state deviate from the general spatial correlation pattern. With simulated
data (for which we know the ground truth) we quantitatively evaluate LuxHS performance and compare with other
state-of-the-art methods.
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Figure 3: Histogram of the log(BF) values for the colon cancer data set. The y-axis of the histogram is in log-scale.

3.1 Real bisulfite sequencing data

The colon cancer data set by Hansen [6] was used for testing LuxHS. The data set consists of six paired colon cancer
and healthy colon tissue samples. The preanalysis step was run on data from chromosome 22 with the same settings as
for LuxUS [5], and it resulted with 4728 genomic windows that passed the coverage and F-test criteria. Those genomic
windows covered 86189 cytosines in total. For these windows, LuxHS analysis was performed. The LuxHS BF value
distribution consisting of all 86189 cytosines is shown in Fig. 3. The histogram demonstrates that large majority of
the Bayes factors had value smaller than 10 (or log(BF ) ≤ 1), but there are also a few cytosines with high BF values
indicating differential methylation. In total 5334 cytosines had BF> 3. To filter the results even further, a threshold for
the minimum average difference between the case and control sample methylation states can be applied. In comparison,
LuxUS analysis resulted in 593 windows (covering 10324 cytosines) with BF> 3, more detailed description of the
results can be found from [5].

The number of cytosines for which the weight variables d were below 0.5 was 464. The Figure 4 demonstrates the
differences between LuxUS and LuxHS results for a genomic window chr22:27014415-27015343. LuxUS gives one
BF value (1.480) for the whole window, which suggests that there is no statistically significant differential methylation
in the region. In contrary, LuxHS gives a Bayes factor for every cytosine separately while at the same time achieving
two important goals: utilizing spatial correlation across the whole window of interest, and simultaneously detecting
individual cytosines that deviate from this correlation pattern. Consequently, LuxHS is able to adapt to changes in the
data swiftly. In the lowest panel of Fig. 4 it can be seen how LuxHS finds the cytosines for which the methylation
states especially for the case samples are lower than in general in the window, and gives those cytosines lower weight
parameter d values.

3.2 Simulated data

The data simulation was done using the LuxHS model, using variances σ2
E = 1, σ2

B = 0.25 and σ2
R = 0.69. The

experimental design of the simulations included an intercept term and a case-control binary covariate. The used
coefficient mean µB values were [−1.4, 1], [−1.4, 1.8],[−1.4, 2.3] and [−1.4, 2.8], corresponding to methylation state
differences between the case and control groups ∆θ values 0.2, 0.4, 0.5 and 0.6 respectively. The data is generated for
type 1 tests. The number of total reads NBS,tot for the methylated counts generation and the number of replicates NR

5
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Figure 4: Results for a genomic region chr22:27014415-27015343. The top panel shows the methylation state data (as
fractions NBS,tot/NBS,C) for the cytosines included in this genomic region. The cases have been plotted with purple and
controls with orange, each replicate pair with a marker of its own. In the middle panel the LuxUS BF for the same
region is plotted with the dashed blue line. The red line shows the threshold of BF value 3. The black dots are the
LuxHS Bayes factors for each cytosine. The lowest panel shows the posterior mean of the samples for d, red line is
plotted at value d = 0.5.

both had values 6, 12 and 24. For each combination of µB , NBS,tot and NR we generated 100 data sets (each containing
a genomic window of width 1000bp with 10 cytosines at randomly chosen locations) with and without differential
methylation. The deviating cytosines had both opposite differential methylation status and deviating methylation state.
We simulated data sets with 0, 1 and 2 deviating cytosines per data set. In this section we will refer to the number of
deviating cytosines as ND.

LuxHS model was compared to four other models and tools: LuxUS [5], LuxUS applied separately to every cytosine
(cytosine random effect removed from the model), RADMeth [3] and BiSeq [7]. Also, LuxHS models estimated with
HMC and ADVI approaches are compared. BiSeq and RADMeth were ran with default settings. We decided not to
present the BiSeq results, as BiSeq did not perform very well with the simulated data. This is perhaps due to the small
size of the simulated genomic regions. The comparison was done with Receiver Operating Characteristic (ROC) curve
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Table 1: AUROC values for the simulated data set with one deviating cytosine (ND = 1) with best value for each
simulation setting in bold.

µB = [−1.4, 1] µB = [−1.4, 2.3]
LuxHS LuxHS LuxUS RADMeth LuxHS LuxHS LuxUS RADMeth

NR NBS,tot HMC ADVI sep LuxUS (NaN values) HMC ADVI sep LuxUS (NaN values)
6 6 0.528 0.532 0.488 0.587 0.565 (29) 0.821 0.809 0.747 0.836 0.808 (46)
12 6 0.622 0.62 0.592 0.654 0.648 (0) 0.894 0.874 0.856 0.872 0.839 (31)
24 6 0.682 0.674 0.666 0.732 0.676 (20) 0.959 0.947 0.947 0.893 0.887 (30)
6 12 0.539 0.543 0.522 0.565 0.569 (0) 0.835 0.811 0.783 0.836 0.796 (10)
12 12 0.612 0.601 0.588 0.66 0.614 (10) 0.917 0.904 0.899 0.883 0.871 (10)
24 12 0.708 0.704 0.699 0.714 0.698 (0) 0.975 0.967 0.967 0.896 0.899 (40)
6 24 0.59 0.584 0.569 0.618 0.59 (10) 0.828 0.812 0.792 0.812 0.791 (10)
12 24 0.664 0.656 0.641 0.688 0.651 (30) 0.906 0.894 0.894 0.852 0.839 (10)
24 24 0.75 0.747 0.74 0.767 0.727 (10) 0.974 0.969 0.97 0.891 0.884 (30)

Table 2: AUROC values for the simulated data set with two deviating cytosines (ND = 2) with best value for each
simulation setting in bold.

µB = [−1.4, 1] µB = [−1.4, 2.3]
LuxHS LuxHS LuxUS RADMeth LuxHS LuxHS LuxUS RADMeth

NR NBS,tot HMC ADVI sep LuxUS (NaN values) HMC ADVI sep LuxUS (NaN values)
6 6 0.554 0.544 0.537 0.568 0.568(36) 0.759 0.73 0.742 0.712 0.685 (53)

12 6 0.618 0.607 0.61 0.622 0.599 (20) 0.858 0.823 0.845 0.75 0.742 (20)
24 6 0.702 0.687 0.697 0.679 0.678 (30) 0.952 0.934 0.95 0.782 0.797 (30)
6 12 0.563 0.538 0.556 0.579 0.564 (1) 0.796 0.769 0.779 0.722 0.721 (30)

12 12 0.599 0.585 0.6 0.606 0.586 (20) 0.897 0.88 0.896 0.757 0.751 (10)
24 12 0.686 0.68 0.692 0.635 0.639 (20) 0.956 0.945 0.958 0.783 0.802 (10)
6 24 0.557 0.555 0.553 0.565 0.538 (30) 0.835 0.808 0.825 0.738 0.729 (10)

12 24 0.648 0.641 0.651 0.622 0.588 (30) 0.905 0.889 0.906 0.75 0.774 (10)
24 24 0.696 0.695 0.702 0.658 0.639 (30) 0.965 0.957 0.965 0.785 0.787 (10)

statistics for all method. RADMeth runs resulted in a few NaN p-values, which were removed from the AUROC and
TPR calculation. Area Under ROC curve (AUROC) value tables for ND = 1 and ND = 2 in Table 1-2 show that when
the magnitude of differential methylation ∆θ is smaller, LuxUS performs the best. When ∆θ is higher, LuxHS and
LuxUS for each cytosine separately have the highest AUROC values.

Based on the AUROC values, HMC version of LuxHS performs consistently slightly better than ADVI. The strength
of ADVI is its computational efficiency. The mean runtime (over the 200 generated genomic windows) of the HMC
version ranged from 40 to 971 seconds (for µB = [−1.4, 1], NBS,tot = [6, 12, 24] and NR = [6, 12, 24]), while for
ADVI the range is 5− 47 seconds. The computations were run on a computation cluster.

The accuracy of estimating whether a cytosine is deviating or non-deviating from the common spatial correlation pattern
was assessed using the estimated weight variable values dj . The posterior means of all weight variables were computed,
and AUROC and TPRs were determined. The results in Table 3 show, that overall LuxHS can determine the deviance
status accurately, but it seems not to be able to find all of the deviating cytosines. This indicates, that LuxHS rather
gives too high d values than too low.

To investigate how LuxHS behaves when there are no deviating cytosines, such data sets were simulated and LuxHS
analysis was performed along with the other methods it was compared to earlier. The data was simulated with ∆θ = 0.5.
Out of the compared methods, LuxUS had the best AUROC values (see Table 4). LuxHS showed relatively good
performance, demonstrating that the added flexibility of modeling cytosines that can deviate from the general spatial
correlation pattern does not significantly decrease the performance of differential methylation analysis in the case of all
cytosines following the same correlation pattern. Recall that for the cases where one or more of the cytosines deviate
from the spatial correlation pattern LuxHS can reach state-of-the-art performance (see Tables 1-2). Moreover, LuxHS
does not impose small values of weight variables dj where it is not appropriate. There were no dj values smaller than
0.5 for any of the generated genomic windows in any of the simulation settings.
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Table 3: AUROC and true positive rates (TPR) for detecting the deviating cytosines in simulated data sets for LuxHS
(HMC). AUROC was calculated using the posterior means for each dj . For the TPR calculation the jth cytosine is
considered deviating if the posterior mean of dj is smaller than a threshold value. The results for two weight value
thresholds 0.5 and 0.75 are shown in separate columns.

AUROC TPR (0.5) TPR (0.75)
NR NBS,tot

6 12 24 6 12 24 6 12 24
ND = 1, µB = [−1.4, 1]

6 0.788 0.832 0.858 0.095 0.12 0.065 0.37 0.295 0.23
12 0.877 0.882 0.905 0.09 0.105 0.07 0.255 0.29 0.295
24 0.935 0.935 0.938 0.1 0.035 0.055 0.33 0.31 0.25

ND = 1, µB = [−1.4, 2.3]
6 0.774 0.853 0.888 0.14 0.09 0.125 0.315 0.36 0.34
12 0.885 0.930 0.939 0.145 0.13 0.18 0.38 0.345 0.46
24 0.965 0.967 0.983 0.175 0.17 0.19 0.455 0.45 0.535

ND = 2, µB = [−1.4, 1]
6 0.751 0.775 0.763 0.138 0.093 0.073 0.435 0.35 0.218
12 0.791 0.842 0.829 0.095 0.09 0.07 0.305 0.3075 0.268
24 0.869 0.846 0.864 0.075 0.078 0.065 0.275 0.29 0.278

ND = 2, µB = [−1.4, 2.3]
6 0.741 0.786 0.804 0.103 0.11 0.118 0.36 0.318 0.358
12 0.833 0.863 0.869 0.153 0.145 0.11 0.423 0.408 0.313
24 0.893 0.899 0.937 0.15 0.16 0.183 0.458 0.458 0.5

Table 4: AUROC values for the simulated data set with zero deviating cytosines. µB = [−1.4, 2.3] was used for the
simulations. The best AUROC for each simulation setting is shown bolded.

LuxHS LuxHS RADMeth
NR NBS,tot HMC ADVI LuxUS sep LuxUS (NaN values)
6 6 0.865 0.875 0.755 0.943 0.896 (3)
12 6 0.925 0.93 0.863 0.972 0.945 (0)
24 6 0.965 0.965 0.935 0.994 0.977 (30)
6 12 0.874 0.879 0.794 0.941 0.885 (21)
12 12 0.964 0.962 0.915 0.992 0.972 (40)
24 12 0.967 0.961 0.948 0.99 0.973 (10)
6 24 0.848 0.846 0.787 0.906 0.869 (10)
12 24 0.925 0.92 0.889 0.967 0.936 (40)
24 24 0.982 0.978 0.971 0.998 0.986 (20)

4 Discussion

The analysis of real and simulated BS-seq data shows that LuxHS model can detect loci where the methylation state
deviates from the surrounding cytosines. The tests with the simulated data show that the way LuxHS calculates Bayes
factors separately for each cytosine can improve the accuracy when compared to LuxUS or other state-of-the-art
methods, especially if the proportion of deviating cytosines is high.

The proportion of deviating cytosines that can be found in a genomic window could be further tweaked through the
choice of hyperprior for global horseshoe prior τ . For example, the recommendations in [9] could be used if the default
prior does not match the user’s beliefs about the number of deviating cytosines.

The covariance structure with possibility of breaking the correlation pattern might also be advantageous in other
bioinformatic modeling purposes, where a spatial correlation pattern with possibility of deviation is needed. The spatial
correlation structure proposed in here can be easily applied in a general or generalized linear model setting. Another
application could be time series analysis, where consecutive time points are often correlated, but some of the time points
may deviate from the expected correlation pattern e.g. due to an outlier value.

5 Conclusion

In this work we propose a novel method for differential methylation analysis, LuxHS. The tool supports detecting
cytosines, which do not follow the same methylation pattern as its neighboring cytosines. This could happen because of
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e.g. transcription factor binding. The results with simulated and real BS-seq data show, that LuxHS is able to detect
such cytosines and that this feature increases the accuracy of differential methylation analysis, especially when the
number of deviating cytosines or the amount of differential methylation is higher. The tool and usage instructions are
available in GitHub repository in https://github.com/hallav/LuxUS-HS.
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