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DECIPHERING THE SIGNALING NETWORK LANDSCAPE OF 

BREAST CANCER IMPROVES DRUG SENSITIVITY PREDICTION  
 

One-liner: Single-cell proteomics coupled to perturbations improves accuracy of breast tumor drug 

sensitivity predictions and reveals mechanisms of sensitivity and resistance. 
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HIGHLIGHTS  
 Mass cytometry study of signaling responses of 62 breast cancer cell lines and five lines from 

healthy tissue to EGF stimulation with or without perturbation with five kinase inhibitors. 

 Single-cell signaling features and mechanistic signaling network models predicted drug sensitivity.  

 Mechanistic signaling network models deepen the understanding of drug resistance and sensitivity 

mechanisms. 

 We identify drug sensitivity-predictive genomic features via proxy signaling phenotypes.  

 

 

 

ABSTRACT 
Although genetic and epigenetic abnormalities in breast cancer have been extensively studied, it remains 

difficult to identify those patients who will respond to particular therapies. This is due in part to our lack of 

understanding of how the variability of cellular signaling affects drug sensitivity. Here, we used mass 

cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines 

from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF 

in the presence or absence of five kinase inhibitors. These data – on more than 80 million single cells from 

4,000 conditions – were used to fit mechanistic signaling network models that provide unprecedented 

insights into the biological principles of how cancer cells process information. Our dynamic single-cell-based 

models more accurately predicted drug sensitivity than static bulk measurements for drugs targeting the 

PI3K-MTOR signaling pathway. Finally, we identified genomic features associated with drug sensitivity by 

using signaling phenotypes as proxies, including a missense mutation in DDIT3 predictive of PI3K-inhibition 

sensitivity. This provides proof of principle that single-cell measurements and modeling could inform 

matching of patients with appropriate treatments in the future. 
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INTRODUCTION 
The aim of precision medicine is to use molecular markers of disease to enable tailored treatments. 

Currently, precision medicine is applied most often at the genetic level, in large part because genomic and 

transcriptomic measurements are scalable and cost effective. For example, tumors with the BCR-ABL 

fusion are usually successfully treated with imatinib mesylate (Gleevec), breast cancer with HER2 

overexpression is treated with trastuzumab (Herceptin), and melanomas that express BRAFV600E are treated 

with vemurafenib (Zelboraf) (An et al., 2010; Garbe and Eigentler, 2018; Garrett and Arteaga, 2011). 

However, in treatment of breast cancer, patient-drug matching fails in a subset of patients, and, despite 

extensive characterization of genetic and epigenetic abnormalities in breast cancer, only a few targeted 

therapies are available (Coates et al., 2015; Network, 2012; Nik-Zainal et al., 2016; Pereira et al., 2016). 

Even a well-established biomarker like the amplification of HER2 only partially predicts the tumor response: 

Only about half of all patients with HER2-amplified metastatic breast cancer respond to trastuzumab 

(Garrett and Arteaga, 2011).  

Cancer cell lines have long been used as models for the human disease and to identify genomic features 

that correlate with and ultimately predict drug response (Barretina et al., 2012; Ghandi et al., 2019; Iorio et 

al., 2016; Neve et al., 2006). One aim of precision medicine is to identify and target the driver genomic 

alterations. Distinguishing passenger mutations from driver mutations remains challenging, however, some 

rare abnormalities are clearly oncogenic (Marcotte et al., 2016). Despite recent success in identifying driver 

alterations (Marcotte et al., 2016; Moghaddas Gholami et al., 2013), genomic information remains an 

incomplete predictor of drug sensitivity even in cell lines (Costello et al., 2014; Niepel et al., 2013). Genetic 

markers alone likely fail to predict drug response because genomic alterations have complex effects at the 

regulatory network and phenotypic level, and multiple drug resistance mechanisms at the level of signaling 

networks have been described (Lee et al., 2012; Yaffe, 2019). Phenotype-proximal readouts such as protein 

levels and post-translational modifications, which better reflect the status of the cell, are potentially better 

predictors of drug sensitivity than genomic sequence (Barrette et al., 2018; Beal et al., 2019; Fey et al., 

2015; Fröhlich et al., 2018), especially when characterizing the response to a perturbation (Eduati et al., 

2017; Hass et al., 2017; Meric-Bernstam et al., 2012; Niepel et al., 2013).  

Many genetic and epigenetic alterations that drive cancer progression map to signaling pathways that 

control the key processes of growth, division, death, fate, metabolism, and motility (Forbes et al., 2011). 

Indeed, kinases and phosphatases involved in cellular signaling are the targets of some of the most effective 

anti-cancer therapeutics (e.g., HER2, EGFR, RAF) and some of the most promising future targets as well 

(e.g., PKC, p38, PI3K). However, the complex and redundant nature of the signaling network renders 

prediction of the effects of genomic alterations on the signaling state and drug sensitivity non-trivial. 

Furthermore, single-cell heterogeneity has been linked to fractional killing and drug resistance (Cooper and 

Bakal, 2017; Miura et al., 2018).  

To develop a system to predict drug sensitivity, we used mass cytometry to map the single-cell signaling 

landscape of 62 breast cancer cell lines and five lines developed from healthy tissue. We quantified 34 

markers over a 60-minute stimulation with the growth factor EGF in the presence or absence of five different 

kinase inhibitors. The generated breast cancer landscape revealed considerable heterogeneity in signaling 

responses at both the population and single-cell levels. Based on these multiparametric mass cytometric 

measurements, we built cell line-specific signaling network models. The cell line-specific models 

outperformed the state-of-the-art predictor based on transcriptomics data for PI3K-MTOR-targeting drugs. 

Finally, we identified genomic aberrations predictive of drug response that were not identified without the 

signaling characterization. Our analyses provide mechanistic insights into drug sensitivity and resistance 

mechanisms and suggest novel opportunities for patient stratification and combinatorial therapy. 
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RESULTS 

THE PROTEOMES OF BREAST CANCER AND NORMAL BREAST CELL LINES 

Since signaling networks are complex systems that can exhibit emergent properties, dynamic 

measurements under multiple conditions are required to model them effectively. As response to 

perturbation is known to be heterogeneous at the single-cell level and this heterogeneity is linked to drug 

resistance (Cooper and Bakal, 2017; Miura et al., 2018), we applied mass cytometry, using 35 antibodies 

(Sup. Table 1), to measure single-cell responses to EGF stimulation in the presence or absence of kinase 

inhibitors over a 10-points, 60-minute time course (Fig. 1, Sup. Table 2). The kinase inhibitors selected 

target key signaling nodes and are well-characterized and widely used: CI-1040 was the first MEK inhibitor 

to begin clinical development, pictilisib is a pan-PI3K inhibitor, rapamycin selectively inhibits mTOR, 

lapatinib inhibits both EGFR and HER2, and enzastaurin inhibits PKC (Allen et al., 2003; Folkes et al., 2008; 

Graff et al., 2005; Li et al., 2014; Xia et al., 2002) (Sup. Table 3). The resulting perturbation dataset includes 

quantitative information on 29 phosphorylation events covering the major signaling pathways, total protein 

abundance, DNA synthesis, and protein cleavage.  

We characterized the signaling landscapes of a panel of human breast cancer cell lines and cell lines from 

healthy breast tissue (Marcotte et al., 2016) (Sup. Table 4 and 5). The panel includes 62 cell lines generated 

from human breast tumors; 30 of these cell lines are basal-like and 32 are luminal-like, of which nine are 

known to overexpress HER2. These cell lines reflect the heterogeneity found in patient tumors, and both 

transcriptomic and genomic (single-nucleotide polymorphisms, SNPs, and copy number variations, CNVs) 

data are available for each cell line (Heiser et al., 2012; Marcotte et al., 2016; Neve et al., 2006). Importantly, 

for 48 of the cell lines in the panel, sensitivities (IC50 values) to 334 drugs have been measured (Picco et 

al., 2019; Yang et al., 2013). In total, we analyzed 4,000 samples and more than 80 million single cells (Fig. 

1), making it the most comprehensive signaling response dataset to date. 

Since there has been no systematic characterization of protein abundances for these cell lines, we first 

conducted a quantitative proteomic analysis of all cell lines in the panel using data-independent acquisition 

mass spectrometry. We quantitatively detected 9,031 proteins in cell lines grown without EGF stimulation. 

The proteomes of the five normal cell lines were very similar to each other (mean Pearson’s correlation 

coefficient for normal lines r = 0.94, across all lines r = 0.87) and clustered together (Sup. Fig. 1A). The 

good quantitative accuracy of the data is exemplified by the high correlation between levels of Ku70 and 

levels of Ku80 in all cell lines (Sup. Fig. 1B); the levels of these two proteins, which form a dimer involved 

in DNA double-strand break repair, are tightly controlled (Feng and Chen, 2012; Guo et al., 2019). The vast 

majority of detected proteins (7,328 proteins, 81%) were differentially abundant in at least one tumor cell 

line in comparison to the levels in the normal lines (Sup. Fig. 1C). On average, 2,600 proteins were 

differentially abundant when individual cancer cell lines were compared to the normal proteome; luminal 

cell lines had significantly more differentially expressed proteins than basal lines (Sup. Fig. 1D). In 

agreement with previous reports (Pozniak et al., 2016; Tyanova et al., 2016; Yanovich et al., 2018), the 

proteomes of luminal and basal cell lines mostly clustered together within each group and the separation 

between the two groups was mostly driven by the differential expression of proteins involved in metabolic 

processes and other known proteins such as FOXA1, Vimentin, CD44, HER2, MET, and EGFR (Sup. Fig. 

1C, E, and F). The proteins that were differentially expressed between tumor and normal cell lines were 

enriched for breast-cancer-associated proteins and for GO-terms linked to cellular signaling (Sup. Fig. 1C 

and G), in agreement with prior knowledge that misregulated signaling plays an important role in cancer 

(Sanchez-Vega et al., 2018; Yaffe, 2019). 
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FIGURE 1. THE PROTEOMES OF BREAST CANCER AND NORMAL BREAST CELL LINES 
Experimental and computational approach. 

THE SIGNALING LANDSCAPE OF BREAST CANCER CELL LINES 
After analyzing static bulk proteomes of the cell lines, we exploited the dynamic single-cell data after EGF 

stimulation in order to examine the signaling responses by averaging phospho-protein levels across cells. 

Twenty-one of the measured markers significantly changed over time (ANOVA, adj. p-value ≤ 0.05). p-

MEKS221, p-ERK, p-AKTS473, and p-S6 responded as expected (Fig. 2A) (Klinger et al., 2014; Pennock and 

Wang, 2003). A detailed examination of ERK-MAPK pathway markers revealed delayed peak times and 

signal amplification for proteins progressively more distal from the stimulus (Fig. 2B). Although abundances 

of most phosphorylated proteins increased upon stimulation, p-RB and p-4EBP1 levels decreased (Fig. 

2A). 

In individual cell lines, there were considerable differences in fold changes of all 34 measured markers 

upon EGF stimulation (Fig. 2C). Most cell lines responded strongly to EGF stimulation, but some did not 

respond at all and some even had lower levels of phosphorylation upon EGF stimulation (DU4475, BT-474, 

ZR-75-B, and MDA-MB-175-VII cells). These differences were not due to differences in initial levels of 

phosphorylation (Sup. Fig. 2A). Overall, p-NF-B varied the least, and p-S6 and p-4EBP1 varied the most. 

Depending on the cell line, p-4EBP1 increased (HCC2218, MCF12A, HCC1599 cells) or decreased (MDA-

MB-468, HCC1954, HCC1187 cells). In many cell lines there was no change in p-S6, but in 16 cell lines 

there was at least a 2-fold increase. Furthermore, phosphorylation of the STATs was highly cell line specific. 

Much of the inter-cell line heterogeneity was correlated. For example, p-ERK and p-p90RSK levels were 

correlated as were the two AKT phosphorylations, presumably due to common regulatory mechanisms. 

However, in certain cell lines this was not the case, hinting at differential regulatory mechanisms (Sup. Fig. 

2B and C). Signaling dynamics varied between cell lines as well. In most lines, p-ERK peaked at 9 minutes 

and then decreased (Fig. 2B), but in some lines it had very different dynamics. For example, in T47D cells, 

levels plateaued at 9 minutes. Similar heterogeneity was observed for p-AKTS473, p-p90RSK, p-S6, and p-

MKK4.  

When the responses of all 67 cell lines were averaged, most of the measured markers changed significantly 

upon treatment with at least one of five kinase inhibitors when compared to EGF stimulation alone (20 

markers, Fig. 2D). We observed an overall decrease in phosphorylation upon kinase inhibition, although 

certain markers increased, and all the inhibitors had the expected effects. For example, inhibition of EGFR 

resulted in reduced phosphorylation in the STAT, ERK-MAPK (p-MEKS221, p-ERK, p-p90RSK, p-CREB), 

and PI3K-AKT (both p-AKT sites, p-GSK3, p-S6K, p-S6) pathways. Interestingly, both levels and dynamics 

of the known signal integrator S6 changed significantly upon inhibition of all five pathways (Fig. 2D and E). 

Analyses of average responses showed some intriguing behaviors. For instance, MEK inhibition induced 

an increase in levels of p-AKT but a decrease in p-S6K. Inhibition of PKC resulted in higher phosphorylation 

levels of several markers, including p-AMPK, p-p38, and p-AKTT308, possibly due to the release of the 

PKC-mediated inhibition of the kinase GSK3.  

Notably, there was more heterogeneity between cell lines upon perturbation with kinase inhibitors than with 

EGF stimulation alone (Fig. 2C): The average standard deviation of the median fold change was 

significantly higher at 60 minutes upon treatment with all inhibitors than with EGF stimulation alone 

(ANOVA, adjusted p-value = 0.026). In some lines, the expected targets of inhibitors did not respond. 

Among the most interesting cases given the canonical signaling pathways were the cell lines in which ERK 

phosphorylation was observed despite the presence of the MEK inhibitor (e.g., T47D, HCC2218, HCC1599, 

CAL148 cells), GSK3 inhibition was observed although a PKC inhibitor was present (MCF12A, HCC2185, 

MCF10F cells), and p-AKTS473 phosphorylation was observed despite PIK3 inhibition (HCC2118, HCC1599  
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Figure 2: The Signaling Landscape of Breast Cancer Cell Lines
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FIGURE 2. THE SIGNALING LANDSCAPE OF BREAST CANCER CELL LINES 
(A) Median intensity ratios of markers to time point zero for markers with significant differences over time 

in response to stimulation with EGF when responses of the 67 cell lines are averaged. Adjusted p-values 

relative to time zero are represented by the dot size and the box thickness. 

(B) Ratio of signal at stimulation time vs. signal at time zero for indicated markers averaged over the 67 

cells lines. The schematic depicts how signal is transmitted through the pathway. The error bars represent 

the standard error, and the asterisks the adjusted p-values (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). 

(C) Ratios of marker abundance at a given time point compared to time zero, ordered by increasing 

stimulation time, marker, and treatment, in all 67 cell lines clustered based on their signaling signature. 

PAM50 tumor subtype classifications and luminal/basal classifications are overlaid. Data are from two 

independent experiments combined by linear interpolation. The bar graph to the left of heat map shows 

marker standard deviations across cell lines; the dotted line shows the treatment average. The single cell 

data underlying the regions numbered 1 and 2 are shown in panel F. 

(D) Median intensity ratios of markers significantly altered by the indicated kinase inhibitors compared to 

EGF stimulation alone. Adjusted p-values relative to time zero are represented by the dot size and the box 

thickness.  

(E) Ratios of phospho-S6 signal at the indicated EGF stimulation time vs. signal at time zero averaged over 

the 67 cells lines in the presence of the indicated kinase inhibitors. The error bars represent the standard 

error.  

(F) Values for 1) p-ERK signal in MCF12A cells upon EGF stimulation and 2) p-ERK signal in MCF12A cells 

upon EGF stimulation in the presence of the MEK inhibitor normalized to the average signal at time point 

zero and plotted against time. The medians correspond to those in the heat map shown in panel C and are 

indicated by thick lines. The 25% and 75% quantiles are indicated by the boxes. The whiskers extend 

between the median and ± (1.58 * inter-quantile range). Values beyond the whiskers are plotted individually.  

cells). In another example, inhibition of mTOR strongly inhibited phosphorylation of S6 in most cell lines at 

60 minutes (mean decrease of 1.65 fold), but in MCF10F and HCC2185 cells (Fig. 2C and E). Overall, 

inhibition of EGFR resulted in the most unexpected behaviors in individual cell lines: We observed strong 

EGFR-dependent phosphorylation of S6 in MDA-kb2 cells and EGFR-independent phosphorylation of 

STAT3 and p90RSK in 184B5 and HCC202 cells, respectively. These phenotypes might be the result of 

either acquired resistance to the inhibitor or compensatory mechanisms.  

When single cells from individual cell lines were evaluated, we generally observed homogenous responses 

to perturbations, and bimodal responses were rare. Cellular variability (quantified as the coefficient of 

variation of the different marker levels) decreased with EGF stimulation time but increased upon kinase 

inhibition (Sup. Fig. 2D and E). This phenomenon was apparent, for example, for p-ERK in MCF12A cells 

(Fig. 2F). There were differences among the cell lines, however. For instance, whereas p-S6 cellular 

variability typically decreased over time post EGF addition, this did not hold true for HCC1500 cells (Sup. 

Fig. 2F). In summary, some signaling patterns are clearly conserved across cell lines, but there were no 

two cell lines where the responses to inhibition were the same, revealing the width of the signaling 

landscape in breast cancer cell lines.  

CELL LINE-SPECIFIC SIGNALING NETWORK MODELS 
Next, we used the generated data to train cell line-specific mechanistic signaling network models as a step 

toward understanding the signaling landscape of breast cancer cell lines. We began with the markers 

targeted by our antibody panel, expanded and connected the network using prior knowledge available in 

Omnipath (Türei et al., 2016) (Sup. Table 6, Sup. Fig. 3A), and built a dynamic mechanistic model using 

logic-based ordinary differential equations (Sup. Fig. 3B). For the cell line-specific signaling network 

models, we fit a node-specific speed factor () that describes how rapidly the signal is relayed to that node 

via all upstream edges and an edge-specific transmission parameter (A.B) that non-linearly describes how 
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much of the signal is relayed from node A to node B (Fig. 3A). Multiple steps are condensed into each of 

these parameters to increase scalability and to efficiently model multiple pathways together, which is 

required to use the complete set of markers. As a consequence, neither nor A.B are directly interpretable 

in a biochemical sense; however, they provide measures of pathway activity. For example, a small node-

specific speed factor cannot be interpreted as describing an enzyme with slow kinetics but would be 

expected for nodes with slow or minimal responses to a perturbation.  

We tested the fits of models to the data using the root mean square error (RMSE); the lower the RMSE 

value the better the fit (Hengenius et al., 2014). The models fit the data very well with an average error of 

only 5%, which is in the same range as biological replicate average error of 4% (Fig. 3B). A few markers in 

some cell lines showed considerable error (0.3% of the marker and cell line combinations have a RMSE > 

15%, and 5% with RMSE > 10%, e.g. 20% for p-S6K in AU565 cells and 17% for p-S6 in MPE600 cells), 

likely because the prior knowledge network is incomplete. Importantly, a single model for all cell lines 

performed poorly (data not shown), probably because it does not account for the observed heterogeneity 

between cell lines. The models captured both dynamics and inhibitor effects, as exemplified by the model 

for BT483 cells: The model describes accurately p-p90RSK time-dependent response to stimulation as well 

as its MEK-dependence (Fig. 3C). Clustering of the cell lines based on  and  partly recapitulated the 

major clusters obtained based on the response to stimulation (Fig. 2E, Sup. Fig. 3C). This suggests that 

our models – with only 107 model parameters – recapitulate the underlying 1,995 median points of 

information (markers x time points x treatments) in a condensed manner.  

The average network across all cell lines, although not informative about cell-line heterogeneity, provides 

a compact view of how breast cancer cells process information (Fig. 3D). The most active pathways (as 

assessed by phosphorylation levels) have large signal transmission parameters. The highest was for the 

GSK3·PIP3 edge (mean 3.14); this connection was one of the most consistently active across cell lines 

as it had the smallest coefficient of variation (CV = 67%, Sup. Fig. 3D). Other very active connections were 

PI3K·PIP3, EGF·EGFR, AKT·MEKS221, PIP3·AKTS473, p38·STAT1, ERK·MKK3, and ERK·MKK6. 

Furthermore, under the studied conditions, the activation of p38, S6, and CREB occurred mostly 

independently from their known activators MKK3, MKK6, and p90RSK (Fig. 3D), respectively (Remy et al., 

2010; Roux et al., 2007; Xing et al., 1996). 

The node-specific speed parameter  is an indicator of reaction dynamics. Among the nodes with rapid 

dynamics in most cell lines were EGFR, PI3K, PIP3, PAK, and PKC (Fig. 3D). In contrast, SMAD2, SMAD3, 

AMPK, the STATs, SRC, MKK3, MKK6, and p53 nodes generally had slow dynamics (Fig. 3D). The 

parameter  is highly cell line dependent with a mean CV of 164%. The most conserved  was that for the 

GSK3 to PIP3 edge with a CV of 67% (Sup. Fig. 3D). The parameters weakly correlated across cell lines 

(Pearson’s correlation, r = 0.17, Sup. Fig. 3E), reflecting the heterogeneous signaling landscape. Models 

of some cell lines were more correlated, indicative of quite similar dynamics (r = 0.61 for HCC1428 and 

MDA-MB-362 cells), whereas others were very different (r = -0.15 for HCC1599 and EFM-192A cells, Sup. 

Fig. 3E). Transmission parameters, , were significantly less variable than across cell lines (16 of 88 had 

a CV under 100%, Sup. Fig. 3D and F).  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.21.907691doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.907691


B D

6-1

Model parameter 
mean

50

Model feature

F

E

Model input
Measured
Not measured

Treatments κAB

τAA

B τB

C

R
oo

t m
ea

n 
sq

ua
re

 e
rro

r (
R

M
SE

)

Biological 
variance

ModelRandom 
model

A
Model
Replicate A
Replicate B

B τΒ
Si

gn
al

 in
 B

τΒ > τB

Time

κA.B

B

Si
gn

al
 in

 B

Time

A

B τB

κA.B

B

A

A A

Speed factor

● Stimulation
Stim. + iMEK●

κA.B > κA.B

Edge parameter

184A1 MDA-MB-157

●

●
●
●

● ● ●

●

●

●

●
● ● ● ●

●
●

0.9

1.2

1.5

1.8

p-
ER

K 
ra

tio
 to

 s
tim

ul
at

io
n 

tim
e 

0

0 20 40 60
Stimulation time [min]

●Stimulation Stim. + iMEK●

184A1

●

●
● ●

● ●
●

●

●

●
●

● ●

● ●
● ●

●

●
●

● ●

●
●

0.9

1.2

1.5

1.8

p-
AK

TS4
73

 ra
tio

 to
 s

tim
ul

at
io

n 
tim

e 
0

0 20 40 60

●
●

Stimulation
Stim. + iEGFR
Stim. + iPI3K
●

●

●

●
●

●
●

● ● ● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

0.9

1.2

1.5

1.8

p-
AK

TS4
73

 ra
tio

 to
 s

tim
ul

at
io

n 
tim

e 
0

0 20 40 60
Stimulation time [min]

T47D

SMAD

SERUMEGF

EGFR

EGFRFB PI3K

PIP3

AKT

AKTS473

AMPKα

AKTT308

mTOR PDPK1

S6K

NF-κB CREB

MSK MK2

H3

4EBP1 p53STAT1

RB Cas3cleaved

GSK3β

STAT3

STAT5 PKC

BTK FAK MKK4

PAKSRC

MEKS221

MEK

ERK

MKK3/6

p38

p90RSK

S6

RAS

JNK

E

F

EGF

EGFR

PI3K

PIP3

AKTS473

●

●

●
●

●
● ●

●
●

●

●

●

● ● ●

●
●

0 20 40 60
Stimulation time [min]

MEKS221

MEK

ERK

FAK

●●
●●
●●
●●
●●
●●●●

●●
●●
●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●

●●●●

●●

●●
●●
●●●●●●
●●●●
●●

●●

●●●●
●●
●●

●●●●
●●
●●
●●●●

●●

●●●●
●●●●●●●●●●●●

●●

●●
●●

●●
●●
●●●●
●●

●●
●●
●●
●●
●●●●●●
●●●●●●

●●

●●●●

●●

●●
●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●
●●
●●
●●●●
●●●●●●
●●●●●●●●●●

●●
●●●●
●●
●●●●●●●●●●●●
●●●●●●

●●●●
●●
●●●●
●●
●●

0.00

0.25

0.50

0.75

Stimulation time [min]
0 20 40 60

p-
p9

0R
SK

 s
ca

le
d 

si
gn

al
 in

 B
T4

83

RMSEmodel = 0.08
RMSEbiological variance = 0.04

0.00

0.25

0.50

0.75

TreatmentData

●Stimulation Stim. + iMEK●

●
●

Stimulation
Stim. + iEGFR
Stim. + iPI3K
●

0.9

1.2

1.5

1.8

p-
ER

K 
ra

tio
 to

 s
tim

ul
at

io
n 

tim
e 

0

50

Model feature

Stimulation time [min]

MEKS221

MEK

ERK

FAK

EGF

EGFR

PI3K

PIP3

AKTS473

Figure 3: Cell-Line Specific Signaling Models
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FIGURE 3. CELL-LINE SPECIFIC SIGNALING MODELS 

(A) Illustrations of the effects of  (speed parameter, top) and  (edge parameter, bottom) on signal strength 

and dynamics in node B. The value of node A (input) changes over time from 0 to 1, and the signal of B is 

plotted as a function of time in the different modeled contexts depicted in the schematic. 

(B) Marker and cell line RMSE of a random model, the cell line-specific models, and the biological variance. 

The biological variance was computed as the average RMSEs between the medians and the two biological 

replicates for each marker and cell line. The thick lines indicate the median; the boxes and whiskers 

represent the 25% and 75% quantiles and the medians ± (1.58 * inter-quantile range), respectively. Data 

beyond the whiskers are plotted as dots. 

(C) Representative fit for the 85th percentile of the RMSE for the p-p90RSK signal upon stimulation with 

EGF without (black) and with MEK inhibition (yellow) in BT483 cells. The scaled signals for the biological 

replicates A and B are plotted as triangles and crosses, respectively. The fitted model is plotted as a 

continuous line. 

(D) The mean values for  and of the mechanistic signaling network models for all 67 cell lines are 

represented as a signaling network. The color and thicknesses of edges indicate parameter values on a 

low-to-high scale (gray-red, thin-thick) and the node colors indicate parameter values on a low-to-high 

scale (gray-red). Modeled but not measured nodes are represented by dotted boxes, the model inputs are 

green, and intervention points are marked by an image of a drug capsule. 

(E) p-ERK signal over an EGF stimulation time course for 184A1 cells (left) and MDA-MB-157 cells (right) 

under the indicated conditions. The ratios of median signal to signal at time point zero are plotted. Error 

bars are standard errors of the median of single cells. The schematics in each plot show excerpts from the 

cell-line specific signaling model, represented as in panel D.  

(F) p-AKTS473 signal over an EGF stimulation time course for T47D cells (left) and 184A1 cells (right) under 

the indicated conditions. The ratios of median signal to that at time point zero are plotted. Error bars are 

the standard errors of the median of single cells. The schematics show relevant excerpts from the cell-line 

specific signaling model, depicted as in panel D.    

Since MEK is a clinical target of many drugs and MEK-independent ERK activation is a known resistance 

mechanism (Grimaldi et al., 2017; Kim and Giaccone, 2018; Simard et al., 2015), we examined MEK 

pathway activity. In most cell lines this pathway was active; however, there were some striking differences. 

For example, in 184A1 cells, ERK activation was mostly MEK dependent, whereas in MDA-MB-157 cells it 

was mostly FAK dependent (Fig. 3E). Our data are in line with previous reports that show that MDA-MB-

157 cells are relatively resistant to BRAF-targeted drugs (PLX-4720 and dabrafenib) in comparison to the 

other cell lines (Picco et al., 2019; Yang et al., 2013). Cell line-specific differences were also observed in 

the generally active PI3K pathway: In T47D cells, the phosphorylation of AKTS473 depended strongly on 

PI3K, whereas in 184A1 cells the dependency was less pronounced (Fig. 3F). This is consistent with the 

fact that T47D cells are sensitive to PI3K inhibition (Picco et al., 2019; Yang et al., 2013), 184A1 was not 

included in this study. These cell line-specific differences could be indicative of opportunities for intervention 

or patient stratification.  

PREDICTION OF DRUG SENSITIVITY USING DYNAMIC PREDICTORS 
We used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset which includes IC50 values for 334 

drugs in 48 of the cell lines in our panel (Picco et al., 2019; Yang et al., 2013), to assess whether our 

dynamic models accurately predicted drug sensitivity. We used machine learning to predict the IC50 values 

using either static or dynamic predictors (Fig. 4A). The static predictors, describing the steady state and 

acquired in absence of perturbation, included protein abundance measurements (log2 fold change to the 

normal), RNA-seq data, and the non-linear logic-based model described in the previous section, 

parametrized by the  and model parameters. Since the  and parameters of the cell line-specific logic 

signaling network models are time- and treatment-independent, these parameters do not provide direct 

information on which pathways are active in specific conditions or on the covariance over time and are thus 
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considered as static. The dynamic predictors, describing the perturbed state include 46 interdependent 

matrices, one for each individual combination of treatment and time point (Sup. Table 2), and include the 

median marker expression, the variability of marker expression at the single-cell level, and the edge flux. 

The edge fluxes are computed from the model parameters ( and ) and the median marker expression for 

a specific condition (treatment and time point) and represent the activity transferred between each node 

pairs similarly to metabolic fluxes.  

To predict drug sensitivity, we employed the Macau algorithm. Macau is a machine-learning approach 

based on scalable Bayesian multi-relational factorization with side information using Markov chain Monte 

Carlo (Simm et al., 2017; Yang et al., 2018) (Fig. 4A). We defined as a performance score the Pearson’s 

correlation between predicted and measured IC50 (in a cross-validation scheme, where predicted cell-lines 

are not used for training) and identified significantly predicted drug sensitivity by requiring an FDR of less 

than 15% and a performance score greater than 0.3. Based on these criteria, RNA levels (Marcotte et al., 

2016) were predictive for the cell line sensitivity to  149 drugs (45%). Compared to RNA levels, variability 

of marker expression at the single-cell level, the edge flux, and median marker expression performed worse 

as predictors across drugs with various mechanisms (19, 9, and 6 drug sensitivities accurately predicted, 

respectively) (Fig. 4B). Use of protein abundance data, model parameters (, , or an RNA-seq dataset 

reduced to 34 dimensions with sparse principal component analysis (Erichson et al., 2018) predicted no 

sensitivities accurately (Fig. 4B, Sup. Fig. 4A and data not shown). As expected, larger IC50 ranges and 

less missing data yielded more significant predictions (Sup. Fig. 4B).  

Whereas RNA-seq data accurately predicted sensitivities of more cell lines to drugs than other static inputs, 

there was no enrichment for drugs targeting common pathways (Fig. 4C). In contrast, the drug sensitivities 

accurately predicted by the dynamic predictors (edge flux, cellular variability, and median marker 

expression) were significantly enriched for drugs targeting parts of the modeled network (Fisher’s exact 

test, Fig. 4B). The edge flux most accurately predicted sensitivities of cell lines to drugs targeting the PI3K-

MTOR signaling pathway (Fig. 4C). For instance, sensitivities to ipataserib and pictilisib were better 

predicted by the edge flux than by the RNA-seq-based model, and only the edge flux predicted sensitivities 

to pictilisib with significant accuracy (Fig. 4D and Sup. Fig. 4C). In contrast, cellular variability and median 

marker expression were the most accurate predictors of sensitivities to drugs targeting the WNT and EGFR 

signaling pathways, respectively (Fig. 4B).  

For the 46 interdependent edge flux matrices, we plotted how many combinations of inhibitor treatment and 

time (i.e., conditions) were predictive of drug sensitivity (Fig. 4B). In general, only a few conditions were 

predictive of sensitivity to a given drug (median of 1 condition per drug, Sup. Fig. 4A). The edge flux was 

the most consistent predictor across conditions (median of 7 conditions per drug, e.g., the AKT-targeting 

drugs ipatasertib and afuresertib). The median marker expression and cellular variability were also 

predictive of sensitivity to some drugs across conditions; however, these predictors were not accurate when 

only the stimulation condition was considered, demonstrating the importance of perturbation experiments 

(Sup. Fig. 4A). 

For different drugs, the predictors that were accurate differed. Sensitivities of just two drugs (CP724714 

and AZD7762) of the 33 significantly predicted by the dynamic predictors were accurately predicted by two 

predictors (cellular variability and median marker expression), showing that the predictors provide 

orthogonal information (Fig. 4B). For ten drugs (AS601245, AZD6482, DMOG, enzastaurin, fulvestrant, 

navitoclax, NU7441, pictilisib, and taselisib), sensitivities were accurately predicted only by the dynamic 

predictors. Thus, the characterization of the signaling landscape improved drug sensitivity prediction of 

selected kinase inhibitors. 
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FIGURE 4. PREDICTION OF DRUG SENSITIVITY USING DYNAMIC PREDICTORS 
(A) Computational approach to predict drug sensitivity and identify predictive features.  

(B) Upper: Sensitivities that are predicted with significant accuracy by at least one dynamic predictor are 

shown (FDR 15% and performance score > 0.3, multiple hypothesis correction for the predicted drug 

measurements, n = 409) in rows versus the predictors in columns. Cellular variability and median were 

used as both static (stimulation time zero) and dynamic predictors, shown separately. The bubble color 

indicates the number of times the drug sensitivity was predicted with significant accuracy (for 46 

combinations of treatment and time). The bubble size is proportional to the performance score of the best 

predictor. If the bubble circumference is light gray, sensitivity was not accurately predicted. Drugs are 

arranged by their target pathways (key to the far right); significantly predicted pathways are marked with a 

colored box and p-values are shown at top right (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; Fisher’s exact test).  

Parentheses following the drug names give the version of the GDSC screen, if ambiguous. Lower: Number 

of accurately predicted drugs per predictor is reported as a bar plot.  

(C) Performance score plotted against the significance for predictions using the RNA-seq (top) and edge 

flux (bottom) predictors. Color code indicates putative target pathways. Thresholds for significance are 

indicated by dashed lines (FDR 15% and performance score > 0.3).  

(D) Plots of measured and predicted IC50 values for the cell lines for which data are available from the 

GDSC dataset.  Left: Ipataseritib sensitivity was best predicted by the edge flux at 7 minutes stimulation in 

presence of the PKC inhibitor. Right: Pictilisib sensitivity was not significantly predicted with RNA-seq data. 

The error bars represent the standard deviation from the 5-fold cross-validation. 

FEATURES AFFECTING DRUG SENSITIVITY PREDICTIONS 
We next identified the features, such as the median expression of a phosphorylated protein, that are 

important for the drug-sensitivity prediction (Fig. 4A, right side). We extracted feature importance directly 

from the drug sensitivity models using a procedure similar to that used to retrieve loadings for linear models. 

We calculated an effect size per drug for each feature and computed the significance of each effect size 

(Fig. 4A). The effect size is a measure of the contribution of a particular feature to the accurate drug 

sensitivity prediction. We defined features with positive effects as those higher in resistant cell lines and not 

in sensitive ones; features with negative effects were those higher in sensitive but not resistant cell lines. 

Features that significantly contributed to overall accuracy of prediction of sensitivity and resistance (effect 

size > 0.01 or < -0.01 and 5% FDR) were identified by averaging across all models for all drugs (Fig. 5A 

and Sup. Fig. 5A). The edge flux has more predictive features than other predictors (11 of the 15 most 

predictive features, Fig. 5B). For example, three of the edges connecting PKC to the signaling network in 

the contextual model are among the 15 most predictive features, with the edge from BTK to PKC being the 

most predictive feature. The most predictive feature is GAPDH. Whereas GAPDH median levels were 

predictive of sensitivity, its cellular variability was predictive of resistance. The opposing effects of median 

levels and cellular variability were also observed for other proteins such as Ki-67, p-MKK4, and p-MEKS221 

(Sup. Fig. 5A and B).  

Next, we repeated the same analysis but instead of averaging across all drugs we averaged across groups 

of drugs targeting selected biological pathways (Fig. 5C, Sup. Fig. 5C and D). This approach minimized 

contributions of off-target effects and provided insights into drug-class specific effects. While most features 

with a significant predictive effect were correlated with sensitivity (e.g., BTK·PKC) or resistance (e.g., 

p38·MK2) across all drug classes (Fig. 5A and Sup. Fig. 5A), we observed drug class-specific patterns in 

which certain features are predictive only for drugs targeting a certain pathway (Fig. 5C, Sup. Fig. 5C and 

D). We also identified features that are sometimes predictive of sensitivity and sometimes of resistance, 

depending on the targeted pathway. For example, the AKT,RAS·MEKS221 edge flux (the parameter 

controlling MEK activation, which integrates both the positive influence of RAS and the negative influence 

of AKT) correlated with sensitivity to drugs targeting EGFR and PI3K-MTOR signaling and resistance to  
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FIGURE 5. FEATURES THAT INFLUENCE DRUG SENSITIVITY PREDICTIONS 
(A) Significant effect size features of the cellular variability (nodes) and edge flux (edges) predictors are 

represented on the signaling network.  The colors represent the mean effect sizes over all conditions and 

drugs. The edge thicknesses are proportional to the absolute values of the mean effect sizes (FDR 1%). 

(B) Effect size distributions for the most predictive 16 features across the three dynamic predictors.  The 

horizontal lines represent the medians and the 25% and 75% quantiles. The color of the distribution 

indicates the predictor. The effect size threshold (0.01) is indicated by the dashed line. *p ≤ 0.05, **p ≤ 0.01, 

***p ≤ 0.001. 

(C) Mean pathway-specific effect size features of the edge flux with drugs binned according to the target 

pathway in rows and features shown in columns (FDR 5%). Both the features and target pathways were 

hierarchically clustered. Mean effect sizes are indicated on a low-to-high color scale. For each class the 

lowest adjusted p-value of all side-by-side comparisons is indicated by the dot size and the box thickness. 

The group “Other” contains all the drugs not falling into another group. 

(D) Effect size distributions for four selected features showing pathway-specific effects. The selected 

predictors and features are indicated in each case. The significant threshold of 0.01 minimum effect size is 

plotted as a dashed line. The horizontal lines indicate the median and the 25% and 75% quantiles. 

AKT,RAS·MEKS221 represents the parameter controlling MEK activation and it integrates both positive RAS 

and negative AKT influence. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

drugs targeting ERK-MAPK and IGF1R signaling (Fig. 5C and D). Although not predictive for overall drug 

sensitivity or resistance, p90RSK correlated with sensitivity to drugs targeting several specific pathways 

(Fig. 5A and C, Sup. Fig. 5A, C, and D): Its activation through ERK (ERK·p90RSK) was predictive of 

sensitivity to PI3K-MTOR pathway-targeted drugs, p90RSK·S6 of sensitivity to drugs targeting EGFR 

signaling, and its cellular variability of resistance to ERK-MAPK signaling drugs (Fig. 5D and Sup. Fig. 5E). 

In other examples, the cellular variability of p-STAT1 was particularly predictive for a subset of drugs that 

target PI3K-MTOR, and the median level of p-AMPK was predictive of sensitivity to PI3K-MTOR inhibition 

(Sup. Fig. 5C and D). An interesting instance is the extent to which the cellular variability of the proliferation 

marker Ki-67 predicted resistance across drug classes (Fig. 5D and Sup. Fig. 5E). Large Ki-67 variability 

was predictive of sensitivity to EGFR signaling drugs. Importantly, cellular variability of Ki-67 was most 

predictive for drugs targeting DNA replication. This supports the “proliferation rate paradox”: that is, the 

finding that many chemosensitive human cancers have low proliferation rates (Mitchison, 2012). Interesting 

identified trends comprise the dependence on the source of activation (e.g., ERK, PI3K, and PKC, Fig. 5A) 

and the opposite effects on closely related pathways of some features (e.g. ERK·p90RSK opposite effects 

on EGFR and ERK-MAPK signaling, Fig. 5D). In sum, these findings confirm the utility of integration of 

dynamic perturbation data by mathematical modeling and show how identical signaling features can be 

predictive of sensitivity and resistance depending on the context. 

RESISTANCE AND SENSITIVITY TO PI3K AND EGFR INHIBITION 
Finally, we used the dynamic predictors to probe mechanisms of drug resistance and sensitivity. We 

focused on inhibition of two clinically relevant targets, EGFR and PI3K, considered essential to basal and 

luminal breast cancers, respectively (Marcotte et al., 2016). The median marker expression after treatment 

with the PI3K inhibitor for 60 minutes predicted the sensitivities of cell lines to the FDA-approved lapatinib, 

an inhibitor of EGFR and HER2 used in combination therapy for HER2-positive breast cancer (Giampaglia 

et al., 2010), with significant accuracy (Fig. 4B). We identified the features significantly predictive of lapatinib 

resistance or sensitivity for all dynamic predictors, since they all performed quite well in predicting lapatinib 

sensitivity (Fig. 4B and Sup. Fig. 6A). Consistent with previous reports (Campbell et al., 2004; Zhang et al., 

2011), alternative activation of PI3K (SERUM·PI3K, in contrast to EGF-dependent PI3K activation via 

EGFR·PI3K and RAS·PI3K) and SRC correlated with resistance, and strong EGFR/HER2 activity 

(SERUM·EGFR, modeling the EGF-independent EGFR activation) correlated with sensitivity (Fig. 6A). 

Strikingly, the median expression levels of one of the two phosphorylated forms of AKT correlated with 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.21.907691doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.907691


 

18 
 

resistance and the other with sensitivity. The variabilities of p-STAT5 and p-STAT3 were more predictive of 

sensitivity than were the median levels of expression (Fig. 6A and Sup. Fig. 6A); median expression of the 

phosphorylated forms of STAT5 and STAT3 were previously reported to be predictive of lapatinib, 

canertinib, and afatinib sensitivity (Gschwantler-Kaulich et al., 2016). Interestingly, p-MK2 median 

expression correlated with sensitivity, and the p38·MK2 and ERK·MK2 edge fluxes strongly correlated with 

resistance and sensitivity, respectively. These results are indicative of the importance of MK2 in the 

response of cells to lapatinib.  

The edge flux was the only predictor that accurately identified cell lines sensitive to pictilisib, a pan-PI3K 

inhibitor (Fig. 4B, D and Sup. Fig. 4B). S6K activation by mTOR (mTOR·S6K), activation of STAT1 and 

STAT3 (EGFR·STAT3, SRC·STAT3, and EGFR·STAT1), and phosphorylation levels of S6K, STAT1, and 

STAT3 were sensitivity predictors, whereas induction of the oncogene-induced senescence pathway 

(p38·p53) was predictive of resistance (Sup. Fig. 6B). ERK pathway activation and cellular variability of the 

phosphorylated STATs were predictive of sensitivity to pictilisib (Sup. Fig. 6B), PI3K-MTOR inhibitors (Fig. 

5C, Sup. Fig. 5C and D), and the PI3K-inhibitor taselisib (Sup. Fig. 6C). Pictilisib-specific effects were also 

observed: cellular variabilities of p-p53 were predictive of sensitivity to pictilisib but not to taselisib or the 

PI3K-MTOR drug group and EGFR·PKC was only prominently predictive of resistance to pictilisib (Fig. 5C, 

Sup. Fig. 6B and C). Off-target effects or differences in targets or mechanism could explain such drug-

specific characteristics, and these must be considered when designing clinical trials. 

Using dynamic predictors, we were also able to predict sensitivities of drugs that do not directly target a 

protein present in our network, likely because these drugs indirectly affect the network. For example, cellular 

variability was the only predictor of response to fulvestrant (Fig. 4B), a selective estrogen receptor degrader 

used to treat hormone receptor-positive breast cancer (Nathan and Schmid, 2017). Estrogen signaling 

interplays with both the ERK-MAPK and the PI3K-MTOR signaling pathways (Tanos et al., 2012), which 

were monitored by the antibodies in our mass cytometry panel. An analysis of feature importance revealed 

that EGFR, SRC, and ERK play defining roles in the response to this drug (Sup. Fig. 6D). Hence, our 

predictors can be used even when the direct targets are not measured, as long as they are regulated 

through the signaling pathways that we model.  

The identification of genomic aberrations correlating with drug response is an essential step toward 

efficacious personalized medicine; genomic aberrations could serve as biomarkers and help revealing the 

mechanisms of drug resistance. However, their identification is challenging, and the effect sizes often 

limited (Garnett et al., 2012; Menden et al., 2018). Indeed, a direct quantitative trait locus (QTL) analysis 

(Clément-Ziza et al., 2014) of sensitivity to dasatinib, fulvestrant, lapatinib, pictilisib, taselisib, and uprosertib 

identified only one copy number variant (CNV) and one single nucleotide polymorphism (SNP) associated 

with sensitivity: TCF3 for dasatinib and FNBP1 (rs1023000) for uprosertib, respectively (Fig. 6C, green 

highlights on the right heat map). This was in spite of the restriction of the search space to the COSMIC list 

of oncogenes (736 SNPs and 518 CNVs in 706 oncogenes) (Sondka et al., 2018) and a 30% FDR 

threshold(Eduati et al., 2017). We wondered if by taking advantage of the signaling characterization we 

could improve the QTL performance; therefore, we ran QTL analyses on 46 signaling features predictive of 

sensitivity to dasatinib, fulvestrant, lapatinib, pictilisib, taselisib, and uprosertib (Sup. Table 7, Fig. 6C). The 

analysis revealed associations between signaling features and 55 SNPs and 38 CNVs (Fig. 6C). For 

instance, A1CF/ASAH2B CNV status was predictive of the lapatinib-predictive p38·MK2 edge flux (Fig. 6C 

and D) and the rs2305037 SNP (CBLB gene) of p-STAT3 cellular variability (Sup. Fig. 6E). Interestingly, 

although we did not identify any genomic aberrations linked to lapatinib sensitivity directly, the signaling 

characterization enabled to discover that cell lines with amplification in A1CF/ASAH2B or those 

homozygous for rs2305037 were generally more resistant to lapatinib (Fig. 6E and F). Furthermore, we 

identified ten genomic aberrations linked to the median expression levels of p-MKK3 and p-MKK6, which  
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FIGURE 6. RESISTANCE AND SENSITIVITY TO PI3K AND EGFR INHIBITION  
(A) Significant effect-size features of the median (nodes) and edge flux (edges) predictors represented on 

the signaling network for lapatinib (FDR 15% and effect size > 0.01 or < -0.01). The effect sizes are indicated 

using color (nodes and edges) and the edge thicknesses are proportional to the absolute values of the 

effect sizes. An image of a drug capsule highlights the putative drug target. In each case the conditions 

with the highest performance scores are plotted: PI3K inhibitor 60 minutes and starvation for medians and 

edge fluxes, respectively. The data in region labeled B is shown in that panel. 

(B) Values for the edge flux p38·MK2 (at stimulation time zero) plotted against lapatinib IC50 for different 

cell lines (n = 42). Each data point represents a cell line.  

(C) Upper: Heat map of the effect size of the selected signaling features (columns) and the six selected 

drugs (rows) for 48 cell lines. The drug’s target pathway and predictors are overlaid. The effect sizes are 

indicated on a low-to-high color scale. The adjusted p-value and effect size thresholds are indicated by the 

dot size and the box thickness. Lower left: Heat map of the maximal difference in selected signaling features 

(columns) among genomic statuses (rows) in 64 and 61 cell lines for filtered CNV and SNP, respectively. 

Both the signaling features and the genomic features were hierarchically clustered. SNP or CNV status is 

overlaid. Only genomic features with at least one significant link resulting from the QTL analyses are 

reported, and the adjusted p-values are indicated by the dot size and the box thickness. Lower right: Heat 

map of maximal differences in IC50 values (–ln) for dasatinib, fulvestrant, lapatinib, pictilisib, taselisib, and 

uprosertib (columns) among genomic statuses (rows) in 42 and 40 cell lines for CNVs and SNPs, 

respectively. The adjusted p-value of the QTL analysis using the IC50 values directly and using an ANOVA 

on the genomic features identified through the signaling are indicated by the dot size and the box thickness 

in green and black, respectively. In both the lower left and right heat maps, the maximal differences are 

indicated on a low-to-high color scale capped at two and three, respectively. The data in regions labeled B, 

D, E, and F are shown in those panels. 

(D) Values of the edge flux p38·MK2 (at stimulation time zero) plotted against CNV status of A1CF/ASAH2B 

(n = 64 cell lines). Thick lines indicate medians, the dashed line indicates the arbitrary threshold for high 

activity, boxes indicate the 25% and 75% quantiles, and whiskers extend between the median and ± (1.58 

* inter-quantile range). Each data point represents a cell line, and the color intensity indicates the 

amplification status on a low-to-high scale (blue-gray-red, ANOVA followed by Tukey honest significant 

differences computation: *p ≤ 0.3, **p ≤ 0.15, ***p ≤ 0.05). 

(E) IC50 values (–ln) for lapatinib plotted against CNV status of A1CF and ASAH2B (n = 42 cell lines). Plots 

and statistical analysis are as in panel E, except that the dashed line indicates the arbitrary threshold for 

sensitivity (1).  

(F) IC50 values (–ln) for lapatinib plotted against SNP status of rs2305037 (CBLB gene, n = 40 cell lines). 

Plots and statistical analysis are as in panel E, except that the dashed line indicates the arbitrary threshold 

for sensitivity (1) and that colors indicate the SNP status.  

were, in turn, predictive of lapatinib resistance (Fig. 6A). Two of these genomic aberrations (EP330 and 

PPM1D) showed potential in differentiating lapatinib response (Sup. Fig. 6F). In addition, CNVs of PRDM2 

and MACC1 were linked to fulvestrant sensitivity through their link to p-MKK4 median expression and the 

MSK·NF-B edge flux, respectively (Sup. Fig. 6G). Additionally, the contextualized feature ERK·MK2 was 

associated with the SNP rs697221, causing a missense change in the sequence of the gene DDIT3. 

ERK·MK2 was predictive of sensitivity to all three PI3K targeted inhibitors studied (pictilisib, uproseritib, and 

taselisib). Overall through the signaling characterization, we identified 21 genomic aberrations predictive of 

drug sensitivity (none were identified for dasatinib, Fig. 6C, black highlights on the right heat map). Thus, 

performing the QTL on the signaling phenotype can identify SNPs and CNVs predictive of drug sensitivity 

in cases where the correlation to drug sensitivity was too weak to be identified directly. 
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DISCUSSION 
Here, we report the largest single-cell signaling dataset collected to date: We used mass cytometry to 

interrogate signaling in a panel of 62 breast cancer cell lines and five cell lines generated from normal tissue 

with or without stimulation with EGF and in the presence or absence of five kinase inhibitors. We also 

characterized the proteomes of these cell lines in unstimulated conditions. Although clustering of the 

proteomic data from unstimulated cells resulted in accurate separation of the cancerous lines into luminal 

and basal phenotypes, in both the signaling and model parameter clustering there was not a clear 

basal/luminal separation. We did, however, observe a luminal-enriched cluster of cell lines that were less 

responsive to kinase inhibitor treatment than the average cell line. Cell line-specific network models showed 

that PI3K pathway activation and rapid EGFR negative feedback characterize these non-responsive cell 

lines. The proteomic profiling data also showed that phosphorylation and collagen-mediated activation of 

receptor tyrosine kinases were down-regulated at the level of protein expression in the luminal lines relative 

to the basal lines. This suggests that in the luminal lines activities of kinases are less dependent on 

extracellular input than in the basal lines; this may be due to receptor overexpression in basal lines. We 

expected that subtypes would be more important in defining the signaling landscape, especially considering 

the large differences observed at the levels of protein, RNA expression, and genomic sequence. This lack 

of separation may reflect the targeted nature of our measurements or that there is actually a continuum of 

phenotypes rather than a clear luminal/basal separation.  

The logic-based signaling network models that we built for each cell line served a double purpose. Firstly, 

model building condensed 1,995 points of information into 107 features, allowing visualization and enabling 

use of the models as predictors. Secondly, the models allowed the investigation of cell-line differences and 

provided insights into signaling mechanisms. We were surprised to find that the model parameters did not 

predict the responses to drugs, whereas the edge flux did mostly independent on the specific condition. 

This could be because the edge flux, maintains the correlation structure and although condition specific, 

integrates information about all conditions, and consequently information content does not change as a 

function of time or treatment as drastically as for the other predictors. The information transfer through the 

network as captured by the edge flux is important in defining a specific cellular state. 

It was not surprising that the edge flux was not highly predictive for all drugs, since most drugs target 

processes not monitored by our antibody panel. The predictive accuracy of the edge flux was similar to or 

better than RNA-seq, despite of the almost 300-fold difference in the number of fitted features. Importantly, 

although we measured some cell-cycle markers, we did not model them. The edge flux was not predictive 

of sensitivities of drugs that interfere with the cell cycle, whereas median and cellular variability predictors 

were. 

Using the edge flux, we were able to break down complex relationships between signaling and drug 

sensitivity. We showed that PKC is among the most important hubs, governing both sensitivity and 

resistance to many drugs. PKC is known to have complex functions in cancer progression (Garg et al., 

2014). Interestingly, although PKC inputs (SERUM·PKC, EGFR·PKC, SRC·PKC, and BTK·SRC) were 

quite variable across cell lines, downstream activity, as assessed by model parameters, was similar across 

cell lines. Importantly, conservation at the model parameter level did not mean that the edge flux was highly 

conserved, as each edge flux strongly depended on all the upstream nodes. We also observed intriguing 

differential effects of ERK: The tumor suppressor activity of ERK was MEK dependent and involved 4EBP1 

activation, whereas the tumor-promoting activity was FAK dependent and involved MSK1 and MSK2 

activation.  

Features correlating with sensitivity have potential in patient stratification. For example, cellular variability 

of p-STAT5 and p-STAT3 were predictive of lapatinib sensitivity and could therefore be used as a 
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stratification marker. This is consistent with previous reports that inhibition of phosphorylation of JNK and 

STAT5 by lapatinib was observed only in sensitive cell lines (Gschwantler-Kaulich et al., 2016). PI3K 

mutational status is often not predictive of response to PI3K-targeted drugs. For example, only a subset of 

patients with mutant PI3K responded to pictilisib in clinical trials (Krop et al., 2016; Schmid et al., 2016; 

Schöffski et al., 2018). The edge flux and the median marker expression suggest important roles of p-MKK4 

and p-STAT3 in defining pictilisib sensitivity; both have potential as markers for improving patient 

stratification. 

Features correlating with resistance could aid in selection of efficacious combination therapies. Information 

on variability at the single-cell level allowed us to predict susceptibility to navitoclax, fulvestrant, NU7441, 

and AS601245, drugs for which other predictors were not informative. We observed a correlation between 

high EGFR- and RAS-independent activation of PI3K (SERUM·PI3K) to fulvestrant resistance, which 

suggests a potential combination therapy for fulvestrant resistance of fulvestrant with a PI3K inhibitor. 

Indeed,  fulvestrant, which is used in endocrine therapy, was recently shown to be effective in 

postmenopausal women with endocrine-resistant, hormone receptor-positive, and HER2-negative 

advanced breast cancer when used in combination with a PI3K inhibitor (Baselga et al., 2017). Furthermore, 

the correlation of fulvestrant resistance to p-p38 and p-SRC cellular variability suggests that a combination 

of fulvestrant with either a p38 or a SRC inhibitor would be effective in treatment of ER-positive breast 

cancer. For lapatinib, the median expression of p-SRC was predictive of resistance; therefore, it would be 

interesting to test the effects of a combination therapy of lapatinib with a SRC inhibitor.  

Our study thus makes a case for further expanding drug sensitivity predictors in the clinic with single-cell 

measurements, and we expect that a comprehensive signaling network model, which includes more 

markers covering more signaling pathways and integrates signaling single-cell heterogeneity, will further 

increase drug sensitivity prediction accuracy. Furthermore, the statistical power will improve with additional 

cell lines. Measurements of patient samples would be very difficult, firstly due to sample heterogeneity and 

secondly due to the complexity of cultivating patient-derived cells. Hence, translation of this knowledge to 

cheap, scalable, and robust biomarkers such as genomic signatures is needed before this type of modeling 

will impact patient care. As a proof-of-concept, we identified genomic aberrations that correlated with our 

drug-sensitivity predictive signaling features. For instance, through the lapatinib-predictive median 

expression levels of p-MKK3 and p-MKK6 we identified the known lapatinib sensitivity predictive EP300 

CNV (Mahmud et al., 2019) and the interesting PPM1D CNV, which encodes a serine threonine 

phosphatase amplified in approximately 8% of breast cancers (Lambros et al., 2010). Furthermore, the 

lapatinib-predictive p38·MK2 edge flux linked amplification of the breast cancer oncogene A1CF (Yan et 

al., 2017), and of ASAH2B to lapatinib resistance. Interestingly, the long non-coding ASAH2B-2 was 

recently shown to promote breast cancer cell growth via the PI3K pathway (Li et al., 2018), supporting our 

findings. Furthermore, the fulvestrant sensitivity-predictive MSK·NF-B edge flux could be linked to the 

breast-cancer proposed biomarker MACC1 (Huang et al., 2013). Importantly, the same genomic 

aberrations were not directly predictive of drug sensitivity, showing the importance of the signaling 

characterization. Signaling characterization likely identifies non-linear relationships between drug sensitivity 

and the genomic aberrations. Our findings are consistent with the notion that multiple, potentially highly 

patient-specific mutations converge on common pathways. Thus, individual effects of mutations that we 

found to be associated with signaling features on drug sensitivity may have been too weak to yield 

statistically significant associations. However, multiple mutations together or different mutation in different 

patients may have modified the same pathways, which enabled us to detect pathway – drug sensitivity 

associations. 

In summary, single-cell dynamic measurements of the cellular signaling response to stimulation and 

perturbation were used to construct logic-based mathematical models of cell signaling in cell lines from 
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normal and cancerous breast tissue. The generated mechanistic signaling network models were predictive 

of resistance and sensitivity of cell lines to PI3K-MTOR and other drugs. Additionally, we identified genomic 

aberrations predictive of drug sensitivity though our signaling characterization. We envision that an 

approach similar to that introduced here will eventually deliver a robust drug-patient match.  

METHODS 

CELL CULTURE 
Cells were obtained from suppliers or collaborators listed in Supplementary Table 4. With the exception of 

BT-474 cells, all were grown according to the supplier’s recommendation, and the maximum passage 

number was kept low (<15). Culture conditions are provided in Supplementary Table 5. All cells were free 

of Mycoplasma. For passaging, cells were incubated with 0.25% trypsin (Gibco) at 37 °C for 1 to 9 minutes 

depending on the cell line. 

STIMULATION 
Cells were plated either in 150-mm or 100-mm dishes to achieve about 60% confluency at the time of 

analysis (maximum number of passages: 15). Cells were grown for 48 to 72 hours and then washed twice 

with PBS before starving them in serum-free medium without additives overnight before fixation for the time 

point zero profiling, stimulation, or treatment with inhibitor. For stimulation, EGF (Peprotech) and fetal 

bovine serum (FBS, Gibco) were added to final concentrations of 100 ng/ml and 10% v/v, respectively. For 

analysis of cells in the unstimulated state, starvation medium was replaced by complete medium. For 

experiments with inhibitor, the inhibitor was added 15 minutes before the addition of EGF and FBS. 

Inhibitors were diluted into starvation medium at approximately 100 fold the reported IC50 (Supplementary 

Table 3). At 1 hour before a time point, 5-iodo-2’-deoxyuridine was added to the medium at the final 

concentration of 4 μM. At 5 minutes before a time point, the dish was washed and then incubated with 2X 

TrypLE™ Express (Life Technologies) to induce cell detachment. At the time point, dishes were scraped 

and paraformaldehyde (PFA, from Electron Microscopy Sciences) was added to the cell suspension to 

1.6% v/v, and cells were incubated at room temperature for 10 minutes. If EGF stimulation was not 

necessary, cells were harvested and crosslinked with PFA either immediately after or 15 minutes after 

inhibitor addition. PFA was then quenched with 40% w/v bovine serum albumin (BSA, Sigma) and after 

centrifugation, methanol chilled to -20 °C was used to resuspend the cells for long-term storage at -80 °C. 

Two individual experimental replicates (referred to as A and B) with partly overlapping time points 

(Supplementary Table 2) were performed for each cell line. For each replicate, the experimental procedures 

were performed on different days. 

For the proteomic samples, cells were grown and collected in parallel with the replicates A and B. The third 

biological replicate (referred to as C) was grown independently and was passaged two more times to test 

for proteome stability over a limited number of cell divisions.  Cells were plated in 150-mm dishes, grown 

for 48 to 72 hours, washed twice with PBS before addition of fresh complete growth medium overnight, 

washed, incubated with TrypLE™, and scraped. The sample was then washed with cold starvation medium, 

re-suspended in cold PBS, and sodium deoxycholate (DOC, from Sigma-Aldrich) was added to a final 5% 

w/w. The lysis was completed by on-ice sonication (2x30 seconds) and snap freezing in liquid nitrogen, 

before long-term storage at -80 °C. 
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MASS CYTOMETRY SAMPLE PREPARATION AND MEASUREMENT 

ANTIBODY CONJUGATION 

The isotope-labeled antibodies (Supplementary Table 1) were generated using the MaxPAR antibody 

conjugation kit (Fluidigm) using the manufacturer’s standard protocol. After conjugation, antibody 

concentrations were determined based on absorbance at 280 nm. Candor PBS Antibody Stabilization 

solution was used to dilute antibodies prior to long-term storage at 4 °C.  Antibody target specificity was 

previously confirmed (Lun et al., 2017) and optimal concentrations were determined by titration. 

BARCODING AND STAINING PROTOCOL 
The crosslinked and methanol-permeabilized cells were washed once with CSM (PBS with 0.5% w/v BSA, 

2 mM EDTA) and once with PBS. Cells were incubated in PBS containing a barcoding reagent designed 

for a 126-well barcoding, containing four out of the nine metals used. Palladium (105Pd, 106Pd, 108Pd, 110Pd, 

Fluidigm) was used in conjunction with the chelating agent bromoacetamidobenzyl-EDTA (Dojindo); indium 

(113In, 115In, Fluidigm), yttrium, rhodium, and bismuth (89Y, 103Rh, 209Bi, Sigma Aldrich) were chelated to 

maleimido-mono-amide-DOTA (Macrocyclics). The samples were randomly distributed across the wells 

and incubated for 30 minutes at room temperature at 100 nM metal concentrations except for bismuth (20 

nM), indium isotope 113 (200 nM), and rhodium (2 μM). After incubation, the sample was washed four times 

with CSM (Bodenmiller et al., 2012), pooled, and stained with the metal-conjugated antibody mix at 4 °C 

for 1 hour. The antibody mix was removed by washing cells three times with CSM. For DNA staining, iridium-

containing nucleic acid intercalator (191Ir and 193Ir, Fluidigm) diluted in PBS with 1.6% PFA was added to 

the cells to a final concentration of 500 µM, and cells were incubated at 4 °C overnight. The following day, 

the intercalator solution was removed, cells washed sequentially with CSM, PBS, and ddH2O and stained 

for cell volume with 12.5 μg/ml bis(2,2’-bipyridine)-4’-methyl-4-carboxybipyridine-ruthenium-N-succidimyl 

ester-bis(hexafluorophosphate) (96Ru, 98-102Ru, 104Ru, Sigma Aldrich) in 0.1 M sodium hydrogen carbonate, 

pH 8.3 (Sigma Aldrich) for 10 minutes at room temperature. Subsequently, samples were washed once 

each with CSM, PBS, and ddH2O. After the last washing step, cells were resuspended in cell running buffer 

(Fluidigm) and EQTM Four Element Calibration Beads (Fluidigm) were added in a 1:10 ratio (v/v). 

Subsequently, samples were filtered through a 35-μm strainer just before the mass-cytometry 

measurement. 

MASS CYTOMETRY ANALYSIS 

Samples were analyzed on an upgraded CyTOF2 (Fluidigm) using the Super Sampler (Victorian Airship) 

introduction system. The manufacturer’s standard operation procedures were used for acquisition at a cell 

rate of ~300 cells per second. After the acquisition, all FCS files from the same barcoded sample were 

concatenated as previously described (Bodenmiller et al., 2012), data were then normalized, and bead 

events were removed (Finck et al., 2013). A doublet-filtering scheme and single-cell deconvolution 

algorithm (Zunder et al., 2015) were used to achieve doublet removal and for de-barcoding of cells into 

their corresponding wells. Subsequently, data were processed using Cytobank (Kotecha et al., 2010). 

Additional gating on the DNA channels (191Ir and 193Ir) was used to remove remained doublets, debris, and 

contaminating particulates. FCS files were exported and loaded into R for downstream analysis (flowCore 

Bioconductor/R-package).  

Firstly, compensation for channel crosstalk was performed using single-stained polystyrene beads 

(Chevrier et al., 2018). Secondly, samples that were measured multiple times were combined and medians 

and the coefficients of variation (cellular variability) were computed. Thirdly, median signal intensities per 

channel were arcsinh-transformed (asinh(x+1), flowCore Bioconductor/R-package). Fourthly, to control for 

batch effects, all cell lines were processed, stained, and measured together with five samples that served 

as technical replicates. The technical replicates were generated in large batches from two cell lines (HCC70 
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and MDA-MD-453) prepared at different time points to ensure negative and positive controls for each 

measured marker. The simultaneous processing enabled direct quantitative comparisons within a cell line 

and the technical replicates enabled identification of batch effects and were used in batch-correction quality 

control. Both the t-SNE algorithm (Van Der Maaten and Hinton, 2008) (Rtsne R-package) and principal 

component analysis (PCA, sparsepca R-package) were used for identification of batch effects. While the 

cellular variability showed no detectable batch effect, the median showed an overall loss in signal strength 

between the first fifteen measured cell lines and the rest (likely due to antibody aging). Centering the two 

batches to the common average (total) for each median value (xcentered = x -batch +total) prevented the 

formation of batch-specific clusters by both PCA and t-SNE. Fifthly, the biological replicates (time course A 

and B, which had only partially overlapping time points) were integrated into one consensus measurement.  

The two time courses were centered by subtracting the means of the individual time courses and addition 

of the overall mean. Finally, the unmeasured time points were linearly interpolated using the R function 

approxfun (the same process was used for missing or slightly different time points) and the averages 

between the two biological replicates were computed. For the time point 60 minutes, sampled only in time 

course B, the value for the time course B was taken directly without extrapolating a value for the second 

time course. 

IDENTIFICATION OF GENERAL TRENDS 
To characterize the general signaling response across all 67 cell lines we performed a two-way ANOVA 

comparing treatment and time (with an interaction term). The obtained p-values were corrected for multiple 

hypothesis testing using the Benjamini and Yekutieli multiple hypothesis correction, and, if relevant, the 

significant relationships (FDR 5%) were further characterized using Tukey honest significant differences 

computation. The increase in heterogeneity following inhibition was quantified by comparing the average 

standard deviation of the median fold change at 60 minutes with ANOVA followed by Benjamini and 

Yekutieli multiple hypothesis correction for the six treatments. 

MASS SPECTROMETRY SAMPLE PREPARATION AND MEASUREMENT 

DIGESTION 
Cell lysates from independent biological replicates were aliquoted in equivalent volumes containing 100 μg 

of proteome sample (quantified with a BCA assay). The samples were then reduced with 5 mM Tris(2-

carboxyethyl)phosphine (ThermoFisher Scientific) for 30 minutes at 37 °C and then alkylated in the dark for 

30 minutes at 25 °C with 40 mM iodoacetamide (Sigma Aldrich). Samples were diluted with 0.1 M 

ammonium bicarbonate (Sigma Aldrich) to a final concentration of 1% DOC before overnight digestion at 

37 °C with lysyl endopeptidase (Wako Chemicals) and sequencing-grade porcine trypsin (Promega) at an 

enzyme-substrate ratio of 1:100 for both. Trypsin was inactivated by adding formic acid (AppliChem) to a 

final concentration of 1% v/v, and the precipitated DOC was removed by centrifugation. The acidified 

peptide mixtures were loaded into 96-well elution plates (Waters), desalted, and eluted with 80% 

acetonitrile. Samples were dried in a vacuum centrifuge, solubilized in 0.1% formic acid, and analyzed by 

mass spectrometry. 

SPECTRAL LIBRARY SAMPLE PREPARATION 
The spectral libraries were obtained from all cell lines with at least three biological replicates (12 cell lines) 

or with eight fractions from two independent cell line pools. The cell lines pools were composed of 27 and 

28 cell lines, respectively. The four central fractions were measured twice. The fractionation was performed 

using the Pierce™ high pH, reversed-phase peptide fractionation kit (Thermo Fisher Scientific), and iRT 

peptides (Byognosis AG) were added. 
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PEPTIDE SEPARATION 
Digested samples were analyzed on an Orbitrap Q Exactive Plus mass spectrometer (Thermo Fisher 

Scientific) equipped with a nano-electrospray ion source and a nano-flow LC system (Easy-nLC 1000, 

Thermo Fisher Scientific). Peptide separation was performed on a 40 cm x 0.75 μm i.d. column (New 

Objective, PF360-75-10-N-5) in-house packed with 1.9-µm C18 beads (Dr. Maisch Reprosil-Pur 120) and 

heated to 50 °C. Buffer A was 0.1% w/v formic acid, and buffer B was 0.1% w/v formic acid in acetonitrile. 

The flow rate was 300 nL/min. The gradient was as follows (buffer B in buffer A): linear from 5% to 25% 

over 100 minutes, 25% to 40% over 10 minutes, and 40% to 90% over 5 minutes, finishing with isocratic 

90% for 5 minutes.  

SPECTRAL LIBRARY DATA-DEPENDENT ACQUISITION 
For the spectral library, the 55 samples were analyzed by shotgun LC-MS/MS data dependent acquisition 

(DDA) by injection of 1 μL peptide digests at a concentration of 1 μg/μL. The MS1 spectra were acquired 

from 350 to 1,500 m/z at a resolution of 70,000, and the 20 most intense precursors exceeding 1,300 ion 

counts were selected for fragmentation at 25 eV normalized collision energy. The MS2 spectra were 

acquired at a resolution of 17,500 with maximally 100,000 ions, collected for 55 ms maximally. All multiply 

charged ions triggered MS-MS scans followed by a 30-second dynamic exclusion, and singly charged 

precursor ions and ions of undefinable charged states were excluded from fragmentation. 

PEPTIDE IDENTIFICATION AND SPECTRAL LIBRARY GENERATION 
The DDA spectra were searched against the canonical Human Uniprot fasta database (version August 

2018) using the Sequest HT database search engine in Protein Discoverer (version 2.2.0.388, Thermo 

Fisher Scientific). We allowed for up to two missed cleavages, excluded cleavage of KP and RP peptide 

bonds and applied a full tryptic digestion rule. Cysteine carboxyamidomethylation (+57.021 Da) and 

methionine oxidation (+15.995) were allowed as static and dynamic modifications, respectively. 

Monoisotopic peptide tolerance was set to 10 ppm, and fragment mass tolerance to 0.02 Da. The identified 

proteins were filtered using the high peptide confidence setting (1% false discovery rate (FDR) on peptide 

level). For generation of the spectral library the DDA spectra analyzed as described above were imported 

in the software Spectronaut Pulsar (11.0.18108.11.30271 Asimov, Biognosys AG) (Bruderer et al., 2015).  

DATA-INDEPENDENT ACQUISITION 

After addition of iRT peptides (Biognosys AG), 1 μL of peptide digest from each biological replicate was 

injected independently at a concentration of 1 μg/μL and measured in data-independent acquisition (DIA) 

mode. The DIA-MS method was as previously described (Piazza et al., 2018). Briefly, an MS1 survey scan 

was performed from 350 to 1,500 m/z at a resolution of 70,000 with AGC target of 3×106 and a 120-ms 

injection time. The twenty variable-width windows optimized to equally distribute the number of precursor 

ions had a 1 m/z overlap. MS2 spectra were acquired at a resolution of 35,000 with a fixed first mass of 

150 m/z and an AGC target of 1×106. In order to mimic DDA fragmentation, the normalized collision energy 

was 25 eV based on the doubly charged center m/z of the isolation window. The maximum injection times 

were automatically chosen to maximize parallelization resulting in an approximate 3-second duty cycle. 

DIA-MS TARGETED DATA EXTRACTION 
Targeted data extractions of DIA-MS acquisitions were performed with Spectronaut Pulsar 

(11.0.18108.11.30271 Asimov, Biognosys AG) with default settings (Bruderer et al., 2015). Retention time 

prediction was set to dynamic with correction factor 1 for XIC extraction window determination. Non-linear 

calibration was used for retention time correction, and MS2 level interference correction was enabled 

(Bilbao et al., 2015). The FDR was set to 1% at peptide precursor level and was estimated with mProphet 

(Reiter et al., 2011). The method compares time-resolved MS/MS maps measured with the DIA-MS method 

as previously described (Gillet et al., 2012). 
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QUANTIFICATION 
Subsequently the data were analyzed with MSstats (using Tukey's median polish, R package version 

3.10.6) for differential protein abundance in comparison to five cell lines derived from normal breast tissue 

(184A1, 184B5, MCF 10A, MCF 10F, and MCF 12A) (Choi et al., 2014). For quantification, only proteotypic 

peptides, which are uniquely present in the sequence of one protein, were used. The default settings for 

SpectronauttoMSstatsFormat and the dataProcess functions were used with the exception that the 

normalization was provided by Spectronaut Pulsar and zero intensities were censored. For each cell line 

comparison, MSstats (with the groupComparison function) was used to determine model-based estimates 

of fold changes. The adjusted p-values were determined using the Benjamini-Hochberg method to control 

the FDR at the cut-off level of 0.05 (Benjamini and Hochberg, 1995). Proteins with a fold change of at least 

2 were considered as differentially abundant. For plotting, -Inf, NA, and Inf values were set to the dataset’s 

minimum, zero, and maximum, respectively.  

BREAST CANCER-ASSOCIATED PROTEINS 
The list of curated breast carcinoma-related genes was downloaded from the human disease discovery 

platform Disgenet (http://www.disgenet.org/, curated_gene_disease_associations.tsv file, downloaded on 

April 12, 2018) (Piñero et al., 2017). We included in the list genes annotated to the following breast-cancer 

disease categories: 'Malignant neoplasm of breast', 'Breast Cancer, Familial', 'Hereditary Breast and 

Ovarian Cancer Syndrome', 'Breast Carcinoma', 'Breast Neoplasms, Male', 'Invasive Ductal Breast 

Carcinoma', 'Inflammatory Breast Carcinoma', and 'Breast Diseases'. The list includes a total of 53 genes 

among which 38 are associated with significant changes in protein abundance in one or multiple cell lines. 

GENE ONTOLOGY ENRICHMENT ANALYSIS 
The Gene Ontology (GO) enrichment analysis was performed using the GOATOOLS Python-based library 

(Klopfenstein et al., 2018). The background set corresponds to all human proteins 

(https://www.ncbi.nlm.nih.gov/genome/51, genome annotation file downloaded on May 12, 2015). The 

option propagate_counts was set to False to avoid propagation of the annotations of a gene from the 

assigned GO category to all parent GO terms. The p-value was calculated using Fisher's exact test and 

then adjusted for multiple testing using the Benjamin-Hochberg correction method (Benjamini and 

Hochberg, 1995). We next calculated the specificity of the enriched GO terms by computing their 

information content (IC) as follows: IC = −log (frequency), where frequency is the number of genes 

annotated to the current GO term divided by the total number of associations between genes and GO terms 

in the full branch. The semantic similarity between all the enriched GO terms was then calculated as the 

inverse of the semantic distance (number of branches separating the terms). The IC and semantic similarity 

values were finally used to filter the list of GO-enriched categories selecting the more informative GO term 

(highest IC) among pairs of terms showing a semantic similarity higher than 0.5. To visualize the results of 

the functional enrichment analysis across the 62 tumor-derived cell lines, GO terms with a number of 

associated genes larger than 500 or smaller than 100 as well as terms commonly enriched in less than 10 

cell lines were excluded to reduce the complexity and the redundancy of the plot while preserving the 

biological outcome. 

SIGNALING MODEL 
We utilized the logic-based ordinary differential equation (ODE) formalism (Terfve et al., 2012) to model the 

signaling network of each cell line. This is a semi-mechanistic approach that combines perturbation data 

with prior knowledge, such as protein-protein interactions. The goal was to describe the signal transduction 

upon perturbation through protein activation cascades. 
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LOGIC-BASED DYNAMIC MODELS 
First, we built a prior knowledge network (PKN) that contains nodes (protein markers); signed, directed 

edges (interactions of the proteins from Omnipath); and logical gates (AND, OR) reported in a simple 

interaction file (SIF) that contains three columns: source node, interaction type (activation or inhibition), and 

target node (Türei et al., 2016) (Sup. Fig. 3A and Sup. Table 6). This PKN was built around the measured 

and perturbed proteins in the experiments and was used for all cell lines. Next, the PKN was translated into 

a dynamic ODE model using the CNORode modeling package (https://github.com/saezlab/CNORode) that 

is part of the CellNOpt family (Terfve et al., 2012). The node i property xi  [0,1], i = 1 … N in the network, 

the differential equation was written as in Equation 1.  

  [Equation 1] 

i is the responsiveness parameter of the node xi, and a larger value results in a faster response to change 

in the node. Bi is the continuous Boolean function: Bi : [0,1]N -> [0,1]. This function accounts for the AND 

and OR gates of the incoming edges on node i (Wittmann et al., 2009).  fij(x) is the transfer function from 

node j to node i; it describes how node i depends on node j, here we use a version of the previously 

described Hill-type function (Eduati et al., 2017) as shown in Equation 2. 

 [Equation 2] 

This function has a sigmoidal-shape characterized by the free parameters ij and nij. The trajectories are 

constrained in the [0-1] interval. The extreme case of 0 means that the corresponding node is inactive or 

inhibited, and 1 means that the node is fully activated. In order to compare the experimental measurements 

with the simulation results, the data were scaled to the [0-1] interval. Each marker was scaled separately 

across all cell lines and conditions, but different markers were not compared due to differences in sensitivity. 

First, the median data were scaled to the 0-1 range using the 99% interquartiles, as described in Equation 

3.   

 [Equation 3] 

Then values >1 or <0 were set to 1 and 0, respectively. For each experimental condition, the corresponding 

states in the model were adjusted. For instance, application of the stimulation was modeled by setting the 

input nodes to 1, and inhibition was modeled by setting the inhibited nodes to 0.  

CELL LINE-SPECIFIC PARAMETER ESTIMATION 
All the cell-line models were built from the same PKN, and 67 cell line-specific ODE models were generated. 

In these models there were four types of unknown parameters:  

1. Initial conditions for unmeasured states, totaling 11 parameters 

2. A node responsiveness parameter for each node (i), totaling 40 parameters 

3. The edge parameter n, totaling 88 parameters  

4. The edge parameter , totaling 88 parameters 
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In order to reduce complexity, we fixed the values of the n parameters to 3, since they influence the outputs 

the least. Then we trained the ODE models using the CNORode package, following the standard approach 

with minor improvements. In short, the package relies on the MEIGOR optimization toolbox to find the 

parameter values that results in the best fit (measured by the root mean squared error, RMSE) (Terfve et 

al., 2012). We applied L2 regularization in the optimization as previously introduced to the CNORode 

(Eduati et al., 2017) to cope with non- identifiability of estimated parameters and to reduce overfitting. We 

evaluated five cell-line models for tuning the regularization parameter. The value of 1x10-5 for the 

regularization parameter resulted in a good balance between sparsity and fit (data not shown). Each model 

was trained using the global optimiser enhanced Scatter Search (eSS) together with the Dynamic Hill 

Climbing local search algorithm with 10 optimizations, 20 minutes each (as implemented in the MEIGOR 

package). After the optimization, the model simulation was plotted against the data to evaluate the fitting 

quality. To control for the model quality both the r2 as well as the root mean square error (RMSE) were 

evaluated. The biological variance was computed as the RMSE between the median and the single 

biological replicates. The random model was made the same way as the cell line models for all cell lines, 

but parameters were randomly generated and not optimized. 

MUTATION MATRIX 

To determine the mutational status, the SNP-specific genotype as defined by the Illumina HumanOmni1-

Quad v1.0 Multi-UseManifest File (http://emea.support.illumina.com/downloads/humanomni1-

quadv1_mu_product_files.html, downloaded on July 18, 2019) was mapped to the NCBI 37.1 (GRCh37) 

genome build taking into account ambiguous IUPAC notations and indel information. Subsequently, a cell 

line × SNP mutation matrix was constructed, where elements denote the fraction of alleles for which the 

cell line genotype mismatches the reference genotype for the respective SNP. Finally, two gene-level 

mutation matrices were obtained by first mapping the SNP entries to genes using the pyensembl package 

(Ensembl release 55) and then counting the values exceeding the threshold q (q = 0.5 for a “dominant” 

matrix and q = 1 for a “recessive” one) for each cell line and gene. 

DRUG SENSITIVITY PREDICTION 
We predicted the response (-ln IC50) using Macau for each drug (409 vectors of -ln IC50 values for 347 

individual compounds) in 48 cell lines (training) with data available in the GDSC dataset (Simm et al., 2017; 

Yang et al., 2013). A 5-fold cross-validation and 40 iterations were used to obtain an average prediction 

performance (performance score) and an adjusted p-value for each predictor (Benjamini and Hochberg, 

1995). As input for the drug response prediction we selected the RNA-seq filtered for exons (Marcotte et 

al., 2016), the protein abundance ratio, the estimated parameters (model parameters), the single-cell 

coefficient of variation (cellular variability), the median marker expression (median), and the edge flux.  

EDGE FLUX 

The edge fluxes were computed as the time-dependent edge strengths, or in other words the transfer 

function from node j to node i determined as describe by Equation 2, for each specific condition (treatment 

and time). This equation describes how much a node is influenced by its upstream nodes at a certain time 

and treatment condition. The edge flux value depends on the model parameters as well as on the activity 

of the influencing/upstream nodes (x, Equation 3) and can be seen as the signaling flux of the edges at a 

specific time and treatment condition. For the AND-gated edges, the edge flux is the product of two f-

functions (Equation 2). For instance, AKT,RAS·MEKS221 integrates positive RAS as well as negative AKT 

influence and is therefore influenced by both fAKT(xAKT) and fRAS(xRAS) as follows:  AKT,RAS·MEKS221 = (1-

fAKT) * fRAS.  
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MACAU 
Macau is a matrix factorization algorithm based on Markov chain Monte Carlo (MCMC) sampling that 

incorporates information in rows and/or columns to improve the accuracy of the predictions (Simm et al., 

2017). Cell line-specific information was transformed into a matrix of L latent dimension (set to 10 as we 

only used cell line features) by a link matrix. Drug response was then computed by a matrix multiplication 

of the two latent matrices, from drug (Ldrug) and cell lines (Lcell) sides. Macau employs Gibbs sampling to 

sample both the latent vectors and the link matrix, which connects the additional information to the latent 

vectors. For MCMC sampling, we chose a burn in of 400 samples, then collected 600 samples. After 

collection of each sample, we predicted drug response by multiplying the two latent matrices and then 

averaged across all 600 samples. We used a 5-fold cross-validation and iterated 40 times for an average 

prediction performance (performance score) (Simm et al., 2017; Yang et al., 2018). For prediction of 

responses of cells lines not part of the training exercise, we used the same strategy except that inside the 

cross validation loop we predicted not on the test set but on the 19 hold-out cell lines. 

FEATURE IMPORTANCE 

 The procedure for estimating the feature importance was as follows: 

1. For every MCMC sample, we: 

a. Extracted the latent vector Vdrug 1 for a given drug number 1. This latent vector represented 

a subset of Ldrug for a specific drug 1. 

b. Extracted the link matrix of the cell-line side, Linkcell. 

c. Computed the element-wise multiplication: Vdrug 1 * Linkcell . The resulting matrix represents 

the feature importance of the predictors for each latent dimension. 

2. For each predictor, averaged across all L latent dimensions, we: 
a. Took the average feature importance across all cross validations and over 40 iterations. 

b. Generated random permutations of the feature importance matrix for all drugs 1,000 times, 

where we shuffled the predictors for each cell line independently. We then derived an 

empirical null distribution for each feature importance value. If the value was positive, we 

defined the p-value as the number of cases in the null distribution greater than the value of 

interest divided by the number of permutations. If the value was negative, we defined the 

p-value as the number of cases in the null distribution smaller than the value of interest 

divided by the number of permutations.  

FEATURES PREDICTIVE OF OVERALL SENSITIVITY 
To determine features that significantly predicted overall sensitivity we performed an ANOVA with H0: effect 

size > 0.01 or < -0.01 across all drugs and conditions for the predictors: median, cellular variability, and 

edge flux. The obtained p-values were corrected for multiple hypothesis using Benjamini and Yekutieli 

(features * 2). 

FEATURES PREDICTIVE OF PATHWAY SPECIFIC SENSITIVITY 
Drugs were binned in different classes according to the target pathway (Yang et al., 2013). Upon selection 

of ten interesting classes we looked for features predictive for these specific dug classes with an ANOVA 

with H0: effect size > 0.01 or < -0.01. The obtained p-values were corrected for multiple hypothesis testing 

using Benjamini and Yekutieli (features * 2), and the significant relationships (FDR 5%) were further 

dissected using Tukey honest significant differences computation. 
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IDENTIFICATION OF PREDICTIVE GENOMIC ABERRATIONS 

RANDOM FOREST QTL MAPPING 

Mapping of quantitative trait loci (QTLs) was conducted using random forest ensemble learning (Michaelson 

et al., 2009), an approach that has been shown to outperform legacy and other multi-locus QTL mapping 

methods (Michaelson et al., 2010). Briefly, a random forest classifier was trained on genetic markers to 

predict relevant signaling features, and resulting marker selection frequencies were used as a measure for 

the strength of the respective QTL. Separate analyses were conducted for genotype matrices assembled 

from publicly available SNP (for 61 cell lines) and CNV (for 64 cell lines) data obtained using Illumina 

HumanOmni1-Quad BeadChips (Marcotte et al., 2016). Gene-level CNV data was discretized by 

thresholding CBS-segmented log-R ratios at -0.2 and 0.2. Genetic markers were filtered for mutations in 

cancer-driver genes (Forbes et al., 2011; Sondka et al., 2018). Markers with missing values for more than 

half of the cell lines and markers with a major allele frequency larger than 0.9 were excluded, resulting in 

736 SNPs and 518 CNVs. The proportion of genotypic variance included in the estimated population-

structure covariates was set to 0.75. Mapping scores were computed by training 10 random forests 

(representing independent imputations of missing marker values), each comprising 1,000 trees. To 

determine the significance of identified QTLs, an empirical null distribution of marker selection frequencies 

was estimated by repeating this step 5,000 times for 100 independent phenotype vector shuffles, totaling 5 

billion randomized trees per analyzed experimental condition. The product of zero-clipped permutation 

importance (PI) and average increase in node purity (RSS), normalized across traits, was used as a readout 

for feature importance. Finally, empirical p-values adjusted for multiple testing were computed and checked 

for convergence by plotting them against the number of batches at varying intervals (Benjamini and 

Hochberg, 1995). All computations were conducted using modified versions of the RFQTL and 

RandomForest R packages and executed in parallelized fashion on local cloud infrastructure (Michaelson 

et al., 2010). Due to the small dataset used we selected a permissive adjusted p-value cutoff of 0.3. The 

same method, cutoffs, and selection of genomic aberrations were used for a QTL analysis on the IC50 

values (–ln) for pictilisib, fulvestrant, and lapatinib in 42 and 40 cell lines for the CNVs and SNPs, 

respectively.  

COMPARISON OF THE TWO QTL APPROACHES 
The genomic features (independently for SNP and CNV) passing the 0.3 adjusted p-value cutoff were 

subsequently tested for effects on the drug sensitivity (IC50 values (–ln) for pictilisib, fulvestrant, and 

lapatinib) by using ANOVA. The ANOVA was performed only when the genomic feature identified by QTL 

was linked to a signaling feature predictive of the sensitivity of the specified drug (p-value ≤ 0.005 and effect 

size ≥ ± 0.02, see the section “Feature Importance”). The p-values obtained by the ANOVA were then 

corrected for multiple hypothesis testing for each drug individually (Benjamini and Hochberg, 1995). 
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SUPPLEMENTARY FIGURE 1. THE PROTEOMES OF BREAST CANCER AND NORMAL 

BREAST CELL LINES 
(A) Clustering of the measured samples based on the 2,762 consistently quantified proteins. Color intensity 

on the white-red scale indicates log2 raw protein abundance values. The prediction analysis of microarray 

50 (PAM50) classifications of each cell line, the curated luminal/basal classifications, cell line, and the 

measurement batch are shown. The data represent three independent experiments.  

(B) Values of Ku70 abundance plotted versus Ku80 abundance for all cancer cell lines. The function y = x 

is indicated by a dashed line and the coefficient of determination is reported. 

(C) Clustering of the cell lines based on protein levels. Color intensity on the blue-to-red scale indicates 

log2 protein abundance ratio in cancer cell lines relative to normal cell lines. Hierarchical clustering of the 

cell lines based on the 9,031 identified proteins and GO enrichment categories of the 24 identified clusters 

are shown. Clusters with significant enrichment (adjusted p-value < 0.05) for at least one biological process 

are highlighted in different colors, and significant terms are summarized. The prediction analysis of 

microarray 50 (PAM50) classifications of each cell line and the curated luminal/basal classifications are 

also shown.  

(D) Number of differentially expressed proteins plotted against luminal/basal classification (33 and 29 cell 

lines, respectively). Thick lines indicate medians, boxes indicate the 25% and 75% quantiles, whiskers 

extend between the median and ± (1.58 * inter-quantile range). Each data point represents a cell line 

(ANOVA, ***p ≤ 0.001). 

(E) Principle component analysis representation of the log2 protein abundance along the first two 

components (sparsepca R-package). The data for luminal and basal cell lines (33 and 29 cell lines, 

respectively) are blue asterisks and yellow points, respectively. The first component separates cell lines by 

classification and explains 11.5% of the variance in the data. 

(F) Protein abundances for VIM, CD44, FOXA1, ERBB2, MET, and EGFR plotted against luminal/basal 

classification (33 and 29 cell lines, respectively). These proteins are six of the 1,946 significantly 

differentially expressed proteins (ANOVA with multiple hypothesis correction for the number of quantified 

proteins with Benjamini and Yekutieli: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). Thick lines indicate medians, 

boxes indicate the 25% and 75% quantiles, whiskers extend between the median and ± (1.58 * inter-quantile 

range). Each data point corresponds to a cell line. 

(G) Median q-values for the enriched GO-terms plotted against the number of cell lines in which the GO 

term is significant. Bubble size is proportional to the median percentage of proteins changing within the GO 

term and in blue and green are the biological process and molecular function categories, respectively.  
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Supplementary Figure 2: The Signaling Landscape of Breast Cancer Cell Lines
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SUPPLEMENTARY FIGURE 2. THE SIGNALING LANDSCAPE OF BREAST CANCER CELL 

LINES 
(A) Heat map of marker abundances, ordered by increasing stimulation time and treatment, in all 67 cell 

lines. The cell lines were clustered based on their signaling signature. PAM50 tumor subtype classification 

and luminal/basal classification are overlaid. Data are from two independent experiments combined by 

linear interpolation. 

(B) Pearson’s correlation between p-ERK and p-p90RSK ratios to EGF stimulation time zero across the 67 

cell lines. A vertical dashed line indicates the median. p-ERK and p-p90RSK are usually highly correlated, 

presumably due to the underlying regulatory mechanisms; however, in some cell lines this relationship is 

not observed and in HCC1937 cell line abundances are anti-correlated.  

(C) Pearson’s correlation between the ratio of the two AKT phosphorylation sites (p-AKTS473 and p-AKTT308) 

and EGF stimulation time zero across the 67 cell lines. A vertical dashed line indicates the median. 

Strikingly, in some lines the abundances are strongly anti-correlated, as in HDQ-P1 and EVSA-T. 

(D) Ratios of single-cell coefficient of variation of markers with significant differences over time in all 67 cell 

lines. The adjusted p-value is indicated by the dot size and the box thickness. 

(E) Ratios of single-cell coefficient of variation of markers with significant effects of the indicated kinase 

inhibitors compared to EGF stimulation alone. The adjusted p-value is indicated by the dot size and the box 

thickness.  

(F) Ratios of single-cell coefficient of variation to EGF stimulation time zero, ordered by increasing 

stimulation time and treatment for the 67 cell lines clustered based on their signaling signatures. PAM50 

tumor subtype classification and luminal/basal classification are overlaid. Data are from two independent 

experiments combined by linear interpolation. 
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SUPPLEMENTARY FIGURE 3. CREATION OF CELL-LINE SPECIFIC SIGNALING MODELS 
(A) Prior knowledge network representation. Modeled but not measured nodes are indicated by white 

boxes, the model inputs are green, and intervention points are marked. Black, red, and dotted lines, 

respectively represent positive, negative, and multi-step interactions. 

(B) Computational approach for cell-line specific signaling model generation. 

(C) Clustering of the cell lines based on their model parameters (n = 40)and  (n = 88).  Color intensity 

on the white-yellow-red scale indicates raw parameter values. The PAM50 classification, luminal/basal 

classification, and information on the manually defined signaling cluster are shown. The data represents 

the model fitted on biological replicates. 

(D) The coefficient of variation values for  and  of the mechanistic signaling network models for all 67 cell 

lines are represented on the signaling network. The color and thickness of edges indicate parameter 

values on a low-to-high scale (gray-orange, thin-thick), and the node color indicates parameter values on 

a low-to-high scale (gray-orange). Modeled but not measured nodes are indicated by dotted boxes, the 

model inputs are green, and intervention points are marked. 

(E) Coefficient of variation across all cell lines plotted versus  (green, n = 88) and (blue, n = 40). The 

horizontal lines represent the medians and the 25% and 75% quantiles (Welch two-sample t-test, two-sided, 

***p ≤ 0.001).  

(F) Clustering of the cell lines based on the Pearson’s correlation between  and . Color intensity on a 

blue-white-red scale indicates Pearson’s correlation. The PAM50 classification, luminal/basal classification, 

and information on the manually defined signaling cluster are shown. The data represents the model fitted 

on biological replicates. 
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SUPPLEMENTARY FIGURE 4. PREDICTION OF DRUG SENSITIVITY USING DYNAMIC 

PREDICTORS  
(A) Upper: Drug sensitivities that are predicted by at least one dynamic predictor (FDR 25% and 

performance score > 0.2, multiple hypothesis correction for the 409 drug measurements) are shown in rows 

versus the predictors in columns, ordered by predictor, treatment, and increasing time. The bubble color 

indicates the predictor and size is proportional to the performance score. If the bubble circumference is 

black, the model for that predictor-drug combination was significant (FDR 15% and performance score > 

0.3). Lower: Bar plot shows the number of drugs for which sensitivity was significantly and accurately 

predicted. The target pathway determines the drug arrangement (key at the top).  Parentheses following 

the drug names give the version of the GDSC screen, if ambiguous.  

(B) Left: The number of cell lines for which drug predictions were non-significant (violet) or significantly 

accurate (green). Right: IC50 range in the training dataset for which drug predictions were non-significant 

(violet) or significantly accurate (green).  The horizontal lines represent the medians and the 25% and 75% 

quantiles (n = 409, Welch two sample t-test, two-sided, ***p ≤ 0.001).  

(C) Plots of measured and predicted IC50 values for two predictor, drug, and condition combinations. The 

error bars indicate the standard deviation from the 5-fold cross-validation. 
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SUPPLEMENTARY FIGURE 5. FEATURES THAT INFLUENCE DRUG SENSITIVITY 

PREDICTIONS 
(A) Mean effect size features of the cellular variability and median marker expression are shown. The 

features were hierarchically clustered. Mean effect sizes are indicated on a low-to-high color scale (blue-

gray-red, sensitive-nonsignificant-resistant). The adjusted p-value is indicated by the dot size and the box 

thickness. 

(B) Mean effect size for the median marker expression as predictor plotted against the mean effect size for 

the cellular variability as predictor for matched features (n = 34). Interesting features are labeled.  

(C) Mean pathway-specific effect size features of the cellular variability as a predictor are shown. Drugs are 

binned according to the target pathway in rows, and features are shown in columns. Both the features and 

target pathways were hierarchically clustered. Mean effect sizes are indicated on a low-to-high color scale 

(blue-gray-red, sensitive-nonsignificant-resistant, FDR 5%). For each class the lowest adjusted p-value of 

all side-by-side comparisons is indicated by the dot size and the box thickness. The group “Other” contains 

all the drugs not falling into another group. 

(D) Mean pathway-specific effect size features of the median marker expression as a predictor are shown 

as described in panel C. 

(F) Effect size distributions for four selected features for which pathway-specific effects were observed. The 

selected predictors and features are indicated in each case. The dashed line indicates the significant 

threshold of 0.01 minimum effect size. The horizontal lines indicate the median and the 25% and 75% 

quantiles. Adjusted p-values, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 
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Supplementary Figure 6: Resistance and Sensitivity to PI3K and EGFR Inhibition
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SUPPLEMENTARY FIGURE 6. RESISTANCE AND SENSITIVITY TO PI3K AND EGFR 

INHIBITION 
(A) Effect size vs. –log10 p-value for all features for the conditions with the highest performance score across 

cellular variability (stimulation 7 minutes), median (iPI3K 60 minutes), and edge flux (starvation). Non-

significantly predicted features are drawn opaquely, the predictor is indicated by color, and the thresholds 

for significance as dashed lines (FDR 15% and effect size > 0.01 or < -0.01).  

(B, C, D) Significant effect-size features of the cellular variability (nodes) and edge flux predictors (edges) 

represented on the signaling network for the drugs B) pictilisib, C) taselisib, and D) fulvestrant (FDR 15% 

and effect size > 0.01 or < -0.01). The effect sizes are indicated using color (nodes and edges), and the 

edge thicknesses are proportional to the absolute values of the effect sizes. An image of a drug capsule 

highlights the putative drug target. In each case the conditions with the highest performance scores are 

plotted: B, C) stimulation 9 minutes and PKC inhibitor 7 minutes for cellular variability and edge fluxes, 

respectively; and D) PI3K inhibitor 40 minutes and mTOR inhibitor 7 minutes for cellular variability and edge 

fluxes, respectively. 

(E) Values of the cellular variability of p-STAT3 (at stimulation 7 minutes) plotted against SNP status of 

rs2305037 (RNF213 gene, n = 61 cell lines). Thick lines indicate medians, the dashed line indicates the 

arbitrary threshold for high variability, boxes indicate the 25% and 75% quantiles, whiskers extend between 

the median and ± (1.58 * inter-quantile range). Each data point represents a cell line, and the color indicates 

the SNP status (ANOVA followed by Tukey honest significant differences computation: *p ≤ 0.3, **p ≤ 0.15, 

***p ≤ 0.05). 

(F) IC50 values (–ln) for lapatinib plotted against CNV status of EP300 or PPM1D (n = 42 cell lines). Plots 

and statistical analysis are as in panel E, except that the dashed line indicates the arbitrary threshold for 

sensitivity (1) and that color intensity indicates the amplification status on a low-to-high scale (blue-gray-

red).  

(G) IC50 values (–ln) for fulvestrant plotted against CNV status of PRDM2 or MACC1 (n = 42 cell lines). 

Plots and statistical analysis are as in panel E, except that the dashed line indicates the arbitrary threshold 

for sensitivity (1) and that color intensity indicates the amplification status on a low-to-high scale (blue-gray-

red).  
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SUPPLEMENTARY TABLES  

SUPPLEMENTARY TABLE 1 

METAL 
TAG 

TARGET SUPPLIER CLONE 

La139 p-CREB BD Biosciences J151-21 

Pr141 p-STAT5 Biolegend 47/Stat5(Y694) 

Nd142 p-SRC eBioscience SC1T2M3 

Nd143 p-FAK Cell Signaling Technologies  polyclonal_Fak 

Nd144 p-MEK1/2 Cell Signaling Technologies  166F8 

Nd145 p-MAPKAPK-2 Cell Signaling Technologies  27B7 

Nd146 p-S6K Cell Signaling Technologies  1A5 

Sm147 p-MAP2K3 Assay Biotech polyclonal_16 

Nd148 p-STAT1 Cell Signaling Technologies  Ser727 

Sm149 p-p53 Cell Signaling Technologies  16G8 

Nd150 p-NF-B Biolegend K10-895.12.50 

Eu151 p-p38 BD Biosciences 36/p38 
(pT180/pY182) 

Sm152 p-AMPK Cell Signaling Technologies  40H9 

Eu153 p-AKT(473) Cell Signaling Technologies  D9E 

Sm154 p-ERK1/2 BD Biosciences 20A 

Gd156 Cyclin B1 BD Biosciences GNS-11 

Gd158 p-GSK3 Cell Signaling Technologies  D85E12 

Tb159 GAPDH Thermo Scientific Pierce Antibodies 6C5 

Gd160 p-MKK3-MKK6 Cell Signaling Technologies  D8E9 

Dy161 p-PDPK1 BD Biosciences J66-653.44.22 

Dy162 p-BTK BD Biosciences 24a/BTK 

Dy163 p-p90RSK Cell Signaling Technologies  D5D8 

Dy164 p-SMAD2/3 Cell Signaling Technologies  D27F4 

Ho165 -CATENIN Cell Signaling Technologies  D13A1 

Er166 p-STAT3 BD Biosciences 4/pStat3 

Er167 p-SAPK/JNK Cell Signaling Technologies  G9 

Er168 Ki-67 BD Biosciences B56 

Er170 p-Histone H3 Biolegend  HTA28 

Yb171 p-S6 BD Biosciences N7-548 

Yb172 cleaved PARP BD Biosciences F21-852 

Yb172 Cleaved 
Caspase3 

BD Biosciences C92-605 

Yb173 p-SEK/MKK4 Cell Signaling Technologies  C36C11 

Yb174 p-AKT(308) Cell Signaling Technologies  D25E6 

Lu175 p-RB Cell Signaling Technologies  D20B12 

Yb176 p-4EBP1 Cell Signaling Technologies  236B4 
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SUPPLEMENTARY TABLE 2 

TREATMENT REPLICATE A [MIN] REPLICATE B [MIN] 

Stimulation with EGF and 
FBS 

0, 5.5, 9, 13, 23, 40 0, 7, 9, 17, 30, 60 

Stimulation with EGF and 
FBS + iPI3K 

0, 9, 13, 40 0, 7, 17, 60 

Stimulation with EGF and 
FBS + imTOR 

0, 9, 13, 40 0, 7, 17, 60 

Stimulation with EGF and 
FBS + iEGFR 

0, 9, 13, 40 0, 7, 17, 60 

Stimulation with EGF and 
FBS + iPKC 

0, 9, 13, 40 0, 7, 17, 60 

Stimulation with EGF and 
FBS + iMEK 

0, 9, 13, 40 0, 7, 17, 60 

No stimulation 0 0 

Biological control (cell line 
HCC70) 

0, 15 0, 10 

 

SUPPLEMENTARY TABLE 3 

TARGET 
MOLECUL
E 

INHIBITO
R NAME 

ALTERNATIV
E NAME 

SUPPLIER CATALO
G 
NUMBER 

FINAL 
CONCENTRATIO
N USED IN µM 

PI3K GDC-0941 Pictilisib LC 
Laboratories 

G-9252 0.5 

mTOR Rapamycin Sirolimus LC 
Laboratories 

R-5000 0.01 

EGFR Lapatinib 
 

LC 
Laboratories 

L-4899 1.08 

PKC Enzastauri
n 

LY317615 LC 
Laboratories 

E-4506 3.9 

MEK CI-1040 PD184352 Selleckchem S1020 1.7 
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SUPPLEMENTARY TABLE 4 

CELL LINE 
NAME 

SOURCE REFERENCE 
NUMBER 

GROWTH 
CONDITION 

GDSC 

184A1 Neel Lab (Marcotte et al., 2016) ATCC   CRL-8798 37 ºC, 5% CO2 no 

184B5 ATCC ATCC CRL-8799 37 ºC, 5% CO2 no 

AU-565 ATCC ATCC CRL-2351 37 ºC, 5% CO2 yes 

BT-20 ATCC ATCC HTB-19 37 ºC, 5% CO2 yes 

BT-474 ATCC ATCC HTB-20 37 ºC, 5% CO2 yes 

BT-483 ATCC ATCC HTB-121 37 ºC, 5% CO2 yes 

BT-549 ATCC ATCC HTB-122 37 ºC, 5% CO2 yes 

CAL120 DSMZ ACC 459 37 ºC, 5% CO2 yes 

CAL148 DSMZ ACC 460 37 ºC, 5% CO2 yes 

CAL-51 Neel Lab (Marcotte et al., 2016) ACC-302 37 ºC, 5% CO2 yes 

CAL85-1 DSMZ ACC 440 37 ºC, 5% CO2 yes 

CAMA-1 ATCC ATCC HTB-21 37 ºC, 5% CO2 yes 

DU4475 ATCC ATCC HTB-123 37 ºC, 5% CO2 yes 

EFM-19 Neel Lab (Marcotte et al., 2016) ACC 231 37 ºC, 5% CO2 yes 

EFM-192A DSMZ ACC 258 37 ºC, 5% CO2 yes 

EVSA-T DSMZ ACC 433 37 ºC, 5% CO2 yes 

HBL100 Gray Lab (Heiser et al., 2012) 
 

37 ºC, 5% CO2 no 

HCC1143 DSMZ ACC 517 37 ºC, 5% CO2 yes 

HCC1187 ATCC ATCC CRL-2322 37 ºC, 5% CO2 yes 

HCC1395 ATCC ATCC CRL-2324 37 ºC, 5% CO2 yes 

HCC1419 ATCC ATCC CRL-2326 37 ºC, 5% CO2 yes 

HCC1428 ATCC ATCC CRL-2327 37 ºC, 5% CO2 yes 

HCC1500 ATCC ATCC CRL-2329 37 ºC, 5% CO2 yes 

HCC1569 ATCC ATCC CRL-2330 37 ºC, 5% CO2 yes 

HCC1599 ATCC ATCC CRL-2331 37 ºC, 5% CO2 yes 

HCC1806 ATCC ATCC CRL-2335 37 ºC, 5% CO2 yes 

HCC1937 ATCC ATCC CRL-2336 37 ºC, 5% CO2 yes 

HCC1954 ATCC ATCC CRL-2338 37 ºC, 5% CO2 yes 

HCC202 ATCC ATCC CRL-2316 37 ºC, 5% CO2 yes 

HCC2157 ATCC ATCC CRL-2340 37 ºC, 5% CO2 yes 

HCC2185 Gray Lab (Heiser et al., 2012) 
 

37 ºC, 5% CO2 no 

HCC2218 ATCC ATCC CRL-2343 37 ºC, 5% CO2 yes 

HCC3153 Gray 
 

37 ºC, 5% CO2 no 

HCC38 ATCC ATCC CRL-2314 37 ºC, 5% CO2 yes 

HCC70 ATCC ATCC CRL-2315 37 ºC, 5% CO2 yes 

HDQ-P1 DSMZ ACC 494 37 ºC, 5% CO2 yes 
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Hs 578T ATCC ATCC HTB-126 37 ºC, 5% CO2 yes 

JIMT-1 DSMZ ACC 589 37 ºC, 5% CO2 yes 

KPL-1 Neel Lab (Marcotte et al., 2016) ACC 317 37 ºC, 5% CO2 no 

LY2 Gray Lab (Heiser et al., 2012) 
 

37 ºC, 5% CO2 no 

MA-CLS-2 CLS 
 

37 ºC, 5% CO2 no 

MCF10A ATCC ATCC CRL-
10317 

37 ºC, 5% CO2 no 

MCF10F ATCC ATCC CRL-
10318 

37 ºC, 5% CO2 no 

MCF12A ATCC ATCC CRL-
10782 

37 ºC, 5% CO2 no 

MCF7  ATCC ATCC HTB-22 37 ºC, 5% CO2 yes 

MDA-kb2 ATCC ATCC CRL-2713 37 ºC, 100% Air no 

MDA-MB-
134-VI 

ATCC ATCC HTB-23 37 ºC, 100% Air no 

MDA-MB-
157 

ATCC ATCC HTB-24 37 ºC, 100% Air yes 

MDA-MB-
175-VII 

ATCC ATCC HTB-25 37 ºC, 100% Air yes 

MDA-MB-
231 

ATCC ATCC HTB-26 37 ºC, 100% Air yes 

MDA-MB-
361 

ATCC ATCC HTB-27 37 ºC, 100% Air yes 

MDA-MB-
415 

ATCC ATCC HTB-128 37 ºC, 100% Air yes 

MDA-MB-
436 

ATCC ATCC HTB-130 37 ºC, 100% Air yes 

MDA-MB-
453 

ATCC ATCC HTB-131 37 ºC, 100% Air yes 

MDA-MB-
468 

ATCC ATCC HTB-132 37 ºC, 100% Air yes 

MFM-223 DSMZ ACC 422 37 ºC, 5% CO2 yes 

MPE600 Gray Lab (Heiser et al., 2012) 
 

37 ºC, 5% CO2 no 

MX1 CLS 
 

37 ºC, 5% CO2 no 

OCUB-M RIKEN RCB0881 37 ºC, 5% CO2 yes 

SK-BR-3 ATCC ATCC HTB-30 37 ºC, 5% CO2 no 

T47D ATCC ATCC HTB-133 37 ºC, 5% CO2 yes 

UACC3199 ATCC ATCC CRL-2983  37 ºC, 100% Air no 

UACC-812 ATCC ATCC CRL-1897 37 ºC, 100% Air yes 

UACC-893 ATCC ATCC CRL-1902 37 ºC, 100% Air yes 

ZR-75-1 ATCC ATCC CRL-1500 37 ºC, 100% Air no 

ZR-75-30 ATCC ATCC CRL-1504 37 ºC, 100% Air yes 

ZR-75-B Gray Lab (Heiser et al., 2012) 
 

37 ºC, 100% Air no 
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SUPPLEMENTARY TABLE 5 

CELL 
LINE 
NAME 

GROWTH MEDIUM 

184A1 MEBM (Lonza #CC-3151) + MEGM excluding the GA-1000 (Gentamycin-
Amphotericin B) mix (Lonza #CC-4136) + 5 µg/ml holo-Transferrin bovine (Sigma 
#T1283) + 1 ng/ml Cholera Toxin (Sigma #C8052) 

184B5 MEBM (Lonza #CC-3151) + MEGM excluding the GA-1000 (Gentamycin-
Amphotericin B) mix (Lonza #CC-4136) + 1 ng/ml Cholera Toxin (Sigma #C8052) 

AU-565 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

BT-20 EMEM (Sigma #M0643) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 1.5 mg/ml 
Sodium Bicarbonate (Sigma #S5761) 

BT-474 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

BT-483 RPMI-1640 (Gibco #21875) + 20% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 10 µg/ml 
human Insulin (Sigma  #19278) 

BT-549 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 1.125 µg/ml 
human Insulin (Sigma  #19278) 

CAL120 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

CAL148 DMEM (Sigma #D5671) + 20% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) + 0.1 ng/ml murine EGF (PreproTech #3515-09) 

CAL-51 DMEM (Sigma #D5671) + 20% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

CAL85-1 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

CAMA-1 EMEM (Sigma #M0643) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 1.5 mg/ml 
Sodium Bicarbonate (Sigma #S5761) 

DU4475 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

EFM-19 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

EFM-192A RPMI-1640 (Gibco #21875) + 20% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

EVSA-T MEM with Earle's salts (Gibco #31095)  + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

HBL100 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

HCC1143 RPMI-1640 (Gibco #21875) + 20% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 
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HCC1187 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1395 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1419 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1428 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1500 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1569 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1599 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1806 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1937 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC1954 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC202 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC2157 RPMI-1640 (Gibco #21875) + 5% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC2185 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC2218 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC3153 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC38 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HCC70 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 

HDQ-P1 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

Hs 578T DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) + 10 µg/ml human Insulin (Sigma  #19278) 

JIMT-1 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

KPL-1 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

LY2 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

MA-CLS-2 RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) 
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MCF10A MEBM (Lonza #CC-3151) + MEGM excluding the GA-1000 (Gentamycin-
Amphotericin B) mix (Lonza #CC-4136) + 100 ng/ml Cholera Toxin (Sigma 
#C8052) 

MCF10F DMEM/Nutrient Mixture F-12 Ham (Sigma #D6421) + 1x Pen Step (Gibco 
#15140) + 2 mM L-Glutamine (Gibco #25030) + 10 µg/ml human Insulin (Sigma  
#19278) + 20 ng/ml murine EGF (PreproTech #3515-09) + 100ng/ml Cholera 
Toxin (Sigma #C8052) + 500 ng/ml Hydrocortisone (Sigma #H0888) + 5% Horse 
Serum (Gibco #16050) 

MCF12A DMEM/Nutrient Mixture F-12 Ham (Sigma #D6421) + 1x Pen Step (Gibco 
#15140) + 2 mM L-Glutamine (Gibco #25030) + 10 µg/ml human Insulin (Sigma  
#19278)+ 20 ng/ml murine EGF (PreproTech #3515-09) + 100ng/ml Cholera 
Toxin (Sigma #C8052) + 500 ng/ml Hydrocortisone (Sigma #H0888) + 5% Horse 
Serum (Gibco #16050) 

MCF7  EMEM (Sigma #M0643) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 10 µg/ml human 
Insulin (Sigma  #19278) + 1.5 mg/ml Sodium Bicarbonate (Sigma #S5761) 

MDA-kb2 Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
134-VI 

Leboviz's L-15 Medium (Gibco #11415) + 20% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
157 

Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
175-VII 

Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
231 

Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
361 

Leboviz's L-15 Medium (Gibco #11415) + 20% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
415 

Leboviz's L-15 Medium (Gibco #11415) + 15% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) + 10 µg/ml human Insulin (Sigma  
#19278) + 10 µg/ml L-Glutathione reduced (Sigma #G4251) 

MDA-MB-
436 

Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140)  + 10 µg/ml human Insulin (Sigma  
#19278) + 16 µg/ml L-Glutathione reduced (Sigma #G4251) 

MDA-MB-
453 

Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MDA-MB-
468 

Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

MFM-223 MEM with Earle's salts (Gibco #31095)  + 15% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) + 1x Insulin-Transferrin-Selenium (Gibco 
#41400) 

MPE600 DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 

MX1 DMEM/Nutrient Mixture F-12 Ham (Sigma #D6421) + 5% heat inactivated FBS 
(Gibco #10500) + 1x Pen Step (Gibco #15140) + 2 mM L-Glutamine (Gibco 
#25030) 

OCUB-M DMEM (Sigma #D5671) + 10% heat inactivated FBS (Gibco #10500) + 1x Pen 
Step (Gibco #15140) + 0.5 mM Sodium Pyruvate (Gibco #11360) + 2 mM L-
Glutamine (Gibco #25030) 
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SK-BR-3 McCoy's 5A (Sigma #M9309) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) 

T47D RPMI-1640 (Gibco #21875) + 10% heat inactivated FBS (Gibco #10500) + 1x 
Pen Step (Gibco #15140) + 1 mM Sodium Pyruvate (Gibco #11360) + 9.8 µg/ml 
human Insulin (Sigma  #19278) 

UACC319
9 

Leboviz's L-15 Medium (Gibco #11415) + 5% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140)  + 10 µg/ml human Insulin (Sigma  
#19278) + 2 mM L-Glutamine (Gibco #25030) + 5 µg/ml Catalase (Sigma 
#C1345) + 10 µg/ml holo-Transferrin bovine (Sigma #T1283) + 3.6 µg/ml 
Hydrocortisone (Sigma #H0888) 

UACC-812 Leboviz's L-15 Medium (Gibco #11415) + 20% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) + 20 ng/ml murine EGF (PreproTech 
#3515-09) 

UACC-893 Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

ZR-75-1 Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

ZR-75-30 Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 

ZR-75-B Leboviz's L-15 Medium (Gibco #11415) + 10% heat inactivated FBS (Gibco 
#10500) + 1x Pen Step (Gibco #15140) 
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SUPPLEMENTARY TABLE 6 

SOURCE 
NODE 

INTERACTION 
TYPE 

TARGET 
NODE 

PIP3 1 AKTS473 
p53 1 RB 

GSK3 1 RB 

AMPK 1 RB 

p53 1 Cas3cleaved 
SMAD 1 Cas3cleaved 
ERK 1 MSK 
MKK3/6 1 MSK 
MSK 1 H3 
p90RSK 1 H3 
SERUM 1 SMAD 
SERUM 1 AMPK 

AMPK -1 mTOR 

AKT 1 NF-B 
SERUM 1 cAMP 
cAMP 1 PKA 
PKA 1 NF-B 
PKC 1 NF-B 
p38 1 MSK 
MSK 1 NF-B 

PLC2 1 PKC 

MET 1 PLC2 
PKC 1 RAF 
PKC 1 GSK3 
mTOR 1 S6K 
mTOR 1 AKTS473 
PDPK1 1 AKTT308 
AKTS473 1 AKT 
AKTT308 1 AKT 
p38 1 p53 
p38 1 MK2 

GSK3 1 PTEN 

GSK3 1 mTOR 

GSK3 1 -Catenin 
S6K 1 S6 
p90RSK 1 CREB 
p90RSK 1 S6 
ERK 1 MKK3/6 
ERK 1 MK2 
ERK 1 ERKdm2 
RAS 1 PI3K 
BTK 1 PLC2 
AKT 1 mTOR 
AKT 1 GSK3 
AKT 1 RAFS259 
AKT 1 CREB 
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MK2 1 CREB 
PIP3 1 PDPK1 
PDPK1 1 S6K 
PKC 1 MARCKS 
SRC 1 PLC2 
SRC 1 BTK 
SRC 1 FAK 
EGFR 1 PI3K 
EGFR 1 PLC2 
EGFR 1 EGFRFB 
PDPK1 1 MEKS221 
RAF 1 MEKS221 
mTOR 1 4EBP1 

GSK3 1 4EBP1 

ERK 1 4EBP1 
p38 1 4EBP1 
ERK 1 p90RSK 
PI3K 1 SYK 
SYK 1 BTK 
MKK4 1 JNK 
PI3K 1 MAP3Ks 
INSR 1 PI3K 
PI3K 1 PAK 
PAK 1 S6 
MET 1 PI3K 
MET 1 FAK 
BTK 1 STAT5 
EGFR 1 and1 
ERKdm2 -1 and1 
and1 1 RAS 
PTEN -1 and2 
PI3K 1 and2 
and2 1 PIP3 
EGFRFB -1 and3 
EGF 1 and3 
and3 1 EGFR 
RAS 1 and4 
RAFS259 -1 and4 
and4 1 RAF 
MEKS221 1 MEK 
MEK 1 ERK 
SRC 1 p38 
MKK3/6 1 p38 
MKK4 1 p38 
RAS 1 JNK 
FAK 1 ERK 
PAK 1 MKK4 
MAP3Ks 1 MKK4 
EGFR 1 STAT1 
p38 1 STAT1 
EGFR 1 STAT3 
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SRC 1 STAT3 
EGFR 1 STAT5 
SRC 1 STAT5 
EGFR 1 SRC 
PI3K 1 SRC 
SERUM 1 MET 
SERUM 1 PAK 
SERUM 1 INSR 
SERUM 1 EGFR 
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SUPPLEMENTARY TABLE 7 
PREDICTOR TREATMENT TIME [MIN] FEATURE DRUG EFFECT SIZE 

Median EGF 0 Cas3cleaved Pictilisib -0.02739 
Median EGF 0 GAPDH Lapatinib -0.02343 
Median EGF 0 p-MKK4 Pictilisib 0.04569 
Median EGF 0 p-p53 Pictilisib -0.02563 
Median iMEK 60 p-AKTS473 Pictilisib -0.04427 
Median iMEK 60 p-ERK Pictilisib 0.042648 
Median iMEK 60 p-MKK4 Pictilisib 0.05117 
Median iMEK 60 p-p90RSK Pictilisib -0.0549 
Median iPI3K 60 CyclinB Lapatinib 0.050149 
Median iPI3K 60 IdU Lapatinib -0.03789 
Median iPI3K 60 p-AKTT308 Lapatinib 0.047966 
Median iPI3K 60 p-MK2 Lapatinib -0.04315 
Median iPI3K 60 p-MKK3/6 Lapatinib 0.040139 
Median iPI3K 60 p-MKK4 Fulvestrant 0.041781 
Median iPI3K 60 p-p90RSK Pictilisib -0.03437 
Cellular variability EGF 7 p-S6 Lapatinib 0.02795 
Cellular variability EGF 7 p-STAT3 Lapatinib -0.04125 
Cellular variability EGF 7 p-STAT5 Lapatinib -0.06626 
Cellular variability iPI3K 40 CyclinB Fulvestrant 0.032662 
Cellular variability iPI3K 40 Ki-67 Lapatinib -0.05477 
Cellular variability iPI3K 40 p-SMAD Pictilisib -0.04728 
Cellular variability iPI3K 40 p-SRC Pictilisib 0.044885 
Cellular variability iPI3K 7 p-AKTT308 Fulvestrant 0.024168 
Cellular variability iPI3K 7 p-MKK4 Lapatinib 0.022058 
Cellular variability iPI3K 7 p-STAT3 Pictilisib -0.03228 
Edge flux EGF 0 AKTT308·AKT Lapatinib -0.07514 
Edge flux EGF 0 ERK·MK2 Lapatinib -0.06536 
Edge flux EGF 0 MEKS221·MEK Lapatinib 0.048507 
Edge flux EGF 0 mTOR·S6K Lapatinib -0.05844 
Edge flux EGF 0 p38·MK2 Lapatinib 0.095079 
Edge flux EGF 0 p90RSK·S6 Lapatinib -0.05934 
Edge flux EGF 0 PI3K·BTK Lapatinib 0.052703 
Edge flux EGF 0 SRC·BTK Lapatinib 0.059315 
Edge flux EGF 0 AKT,RAS·MEK S221 Lapatinib -0.05518 
Edge flux iMEK 60 EGFR·STAT3 Lapatinib -0.06738 
Edge flux iMEK 60 ERK·MK2 Pictilisib -0.08655 
Edge flux iMEK 60 MKK3/6·p38 Pictilisib -0.04324 
Edge flux iMEK 60 mTOR·S6K Pictilisib -0.04121 
Edge flux iMEK 60 p38·p53 Pictilisib 0.06821 
Edge flux iMEK 60 PI3K·BTK Lapatinib 0.047195 
Edge flux imTOR 7 AKTT308·AKT Lapatinib -0.04717 
Edge flux imTOR 7 MSK·NF-B Fulvestrant 0.04297 

Edge flux imTOR 7 PAK·MKK4 Fulvestrant 0.042304 
Edge flux imTOR 7 PIP3·PDPK1 Fulvestrant -0.05599 
Edge flux imTOR 7 PKC·GSK3 Fulvestrant -0.05353 

Edge flux imTOR 7 SRC·STAT3 Fulvestrant -0.04018 
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