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SUMMARY 

 

Monoallelic expression (allelic exclusion) of T and B lymphocyte antigen receptor genes is achieved by the 

assembly of a functional gene through V(D)J recombination on one allele and subsequent feedback 

inhibition of recombination on the other allele. There has been no validated mechanism for how only one 

allele of any antigen receptor locus assembles a functional gene prior to feedback inhibition. Here, we 

demonstrate that replacement of a single Vβ recombination signal sequence (RSS) with a better RSS 

increases Vβ rearrangement, reveals Tcrb alleles compete for utilization in the αβ T cell receptor (TCR) 

repertoire, and elevates the fraction of αβ T cells expressing TCRβ protein from both alleles. The data 

indicate that poor qualities of Vβ RSSs for recombination with Dβ and Jβ RSSs enforces allelic exclusion by 

stochastically limiting the incidence of functional Vβ rearrangements on both alleles before feedback 

inhibition terminates Vβ recombination.   
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INTRODUCTION 

Monoallelic gene expression is common, underlying genomic imprinting and X-chromosome activation in 

many cell types and tissue-specific allelic exclusion of olfactory neuron receptors and lymphocyte antigen 

receptors. Each of these programs has an initiation and a maintenance phase and involves epigenetic-

based transcriptional silencing (Khamlichi and Feil, 2018). Lymphocyte antigen receptor (AgR) allelic 

exclusion involves additional levels of regulation due to obligate assembly of AgR genes through V(D)J 

recombination. In the germline, T cell receptor (TCR) and immunoglobulin (Ig) AgR loci are comprised of 

noncontiguous variable (V), joining (J), and, in some cases diversity (D), gene segments. Within developing 

T and B cells, the RAG1/RAG2 endonuclease cleaves at recombination signal sequences (RSSs) flanking 

V, D, and J segments to generate V(D)J rearrangements that assemble functional Ig and TCR genes 

(Bassing et al., 2002; Schatz and Swanson, 2011). Due to imprecision in repair of RAG DNA double strand 

breaks (DSBs), only about one-third of V(D)J rearrangements assembles an in-frame exon. In the absence 

of any regulation, the frequent assembly of out-of-frame rearrangements and requirement of AgR protein 

expression for T and B cell development dictates that biallelic expression of any TCR or Ig gene can occur 

in at most 20% of lymphocytes (Figure S1A) (Brady et al., 2010b; Mostoslavsky et al., 2004).  However, 

TCRβ (Tcrb), IgH (Igh), and Igκ (Igk) loci exhibit more stringent allelic exclusion that is enforced by the 

assembly of a functional in-frame V(D)J rearrangement on one allele and subsequent feedback inhibition of 

V rearrangements on the other allele (Brady et al., 2010b; Levin-Klein and Bergman, 2014; Mostoslavsky et 

al., 2004; Outters et al., 2015; Vettermann and Schlissel, 2010). Thus, in ~60% of T or B cells only one V-to-

(D)J rearrangement is found at each of these loci, while ~40% of T or B cells exhibit V-to-(D)J 

recombination on both alleles where typically only one rearrangement is in-frame (Figure S1B).  

 

AgR gene assembly and expression are interdependently regulated with T and B cell development. CD4-

CD8- double-negative (DN) thymocytes and pro-B cells induce transcription, accessibility, and compaction 

of Tcrb or Igh loci, respectively (Brady et al., 2010b; Shih and Krangel, 2013). This accessibility allows RAG 

to bind at D and J segments, forming a focal recombination center (RC) in which D-to-J recombination 

occurs (Ji et al., 2010). Subsequently, a single V segment rearranges to a DJ complex on only one allele at 

a time (Brady et al., 2010b; Mostoslavsky et al., 2004; Outters et al., 2015; Vettermann and Schlissel, 
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2010). This V-to-DJ recombination step likely requires V segment accessibility and locus compaction to 

place V segments in spatial proximity with the RC (Brady et al., 2010b; Shih and Krangel, 2013). DSBs 

induced in DN thymocytes or pro-B cells repress RAG expression (Fisher et al., 2017), which may 

transiently inhibit further Tcrb and Igh recombination (Steinel et al., 2014). Cells that assemble an out-of-

frame VDJ rearrangement on the first allele can attempt V recombination on the other allele (Brady et al., 

2010b; Koralov et al., 2006; Lee and Bassing, 2020; Mostoslavsky et al., 2004; Outters et al., 2015; 

Vettermann and Schlissel, 2010). Following an in-frame VDJ rearrangement, resultant TCRβ or IgH proteins 

signal down-regulation of RAG expression and differentiation of CD4+CD8+ double-positive (DP) thymocytes 

or pre-B cells (von Boehmer and Melchers, 2010). These cells re-express RAG and recombine Tcra or Igk 

loci, but block further V-to-DJ rearrangements at Tcrb and Igh loci as a result of permanent feedback 

inhibition likely mediated through silencing of unrearranged V segments and locus de-contraction (Brady et 

al., 2010b; Majumder et al., 2015; Shih and Krangel, 2013). DP thymocytes assemble VJ rearrangements 

on both Tcra alleles until at least one allele yields a protein that forms an αβ TCR, which can signal 

differentiation of CD4+ or CD8+ single-positive (SP) thymocytes that are naïve mature αβ T cells (von 

Boehmer and Melchers, 2010). Pre-B cells assemble VJ rearrangements on one Igk allele at a time, and 

resulting RAG DSBs signal transient feedback inhibition of recombination on the other allele (Steinel et al., 

2013). The formation and positive selection of an IgH/Igκ B cell receptor signals permanent feedback 

inhibition of Vκ recombination and maturation of κ+ B cells (von Boehmer and Melchers, 2010). As a result 

of these interdependent controls of lymphocyte development and V(D)J recombination between alleles, 

~90% of αβ T cells and ~97% of κ+ B cells express only one type of AgR (Brady et al., 2010b).   

 

While feedback inhibition mechanisms have been demonstrated experimentally, there have been no proven 

mechanisms for monoallelic assembly of a functional AgR gene prior to feedback inhibition. Both 

deterministic and stochastic models have been proposed to explain asynchronous timing of V-to-(D)J 

recombination between alleles of Tcrb, Igh, and Igk loci (Brady et al., 2010b; Levin-Klein and Bergman, 

2014; Mostoslavsky et al., 2004; Outters et al., 2015; Vettermann and Schlissel, 2010). Deterministic 

models invoke that mechanisms predominantly activate one allele for V rearrangement and activate the 
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second allele only if the first fails to assemble a functional gene. In contrast, stochastic models posit that 

both alleles are simultaneously active and mechanisms lower recombination efficiency, making it unlikely 

that both alleles assemble genes before feedback inhibition from one allele ceases V rearrangements. At 

least for Igk, asynchronous replication of homologous AgR alleles initiates in lymphoid progenitors, is 

clonally maintained, and correlates with preferential accessibility and recombination of the early replicating 

allele (Farago et al., 2012; Mostoslavsky et al., 2001). These findings suggest that asynchronous replication 

is a deterministic mechanism for monoallelic initiation of V recombination. In the lymphocyte lineage and 

developmental stage that Tcrb, Igh, or Igk loci recombine, their individual alleles frequently reside in 

different nuclear locations with V(D)J-rearranged alleles underrepresented at transcriptionally repressive 

nuclear structures (Chan et al., 2013; Hewitt et al., 2009; Schlimgen et al., 2008; Skok et al., 2007). The 

positioning of an allele at these structures by deterministic or stochastic means could block V 

rearrangements by suppressing accessibility, RAG binding, and/or locus compaction (Chan et al., 2013; 

Chen et al., 2018; Hewitt et al., 2009; Schlimgen et al., 2008; Skok et al., 2007). Sequence features 

conserved among Vβ and VH RSSs, but not present in Dβ, JH, Vα, or Vκ RSSs, have been proposed to 

render Vβ and VH recombination inefficient, thereby stochastically lowering the likelihood of near-

simultaneous V rearrangements on both alleles (Liang et al., 2002). Although these proposed mechanisms 

may dictate monoallelic AgR gene assembly before enforcement of feedback inhibition, none have been 

validated by experimentally demonstrating causal relationships.  

 

The mouse Tcrb locus offers a powerful physiological platform to elucidate potential contributions of RSSs 

in monoallelic assembly and expression of functional AgR genes. Tcrb has 23 functional Vβs located 250-

735 kb upstream of the Dβ1-Jβ1-Cβ1 and Dβ2-Jβ2-Cβ2 clusters, each of which has one Dβ and six 

functional Jβs (Figure 1A) (Glusman et al., 2001; Malissen et al., 1986). The locus has another Vβ (V31) 

located 10 kb downstream of Cβ2 and in opposite transcriptional orientation from other Tcrb coding 

sequences (Glusman et al., 2001; Malissen et al., 1986). RSSs consist of a semi-conserved heptamer and 

nonamer separated by a generally non-conserved 12 or 23 nucleotide spacer (Schatz and Swanson, 2011). 

Upon binding an RSS, RAG adopts an asymmetric tilt conformation that ensures the capture of a second 
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RSS of differing length and bends each RSS by inducing kinks in their spacers (Kim et al., 2018; Ru et al., 

2015). In vitro, ~40% of synapses between RSSs with consensus heptamers and nonamers proceed to 

cleavage (Lovely et al., 2015), and natural variations of heptamers, spacers, and nonamers can have major 

effects on recombination levels (Akira et al., 1987; Connor et al., 1995; Gauss and Lieber, 1992; Hesse et 

al., 1989; Larijani et al., 1999; Livak et al., 2000; Nadel et al., 1998; Olaru et al., 2004; Ramsden and Wu, 

1991; VanDyk et al., 1996; Wei and Lieber, 1993). The only in vivo confirmation that natural RSS variations 

influence recombination levels is in the Tcrb locus (Bassing et al., 2000; Horowitz and Bassing, 2014; Jung 

et al., 2003; Sleckman et al., 2000; Wu et al., 2003; Wu et al., 2007). Vβs are flanked by 23-RSSs, Jβs by 

12-RSSs, and Dβs by 5’12-RSSs and 3’23-RSSs (Glusman et al., 2001). Direct Vβ-to-Jβ rearrangements 

are permitted by the 12/23 rule; however, they rarely occur due to the inherent inefficiency of recombination 

between Vβ and Jβ RSSs (Bassing et al., 2000; Jung et al., 2003; Tillman et al., 2003; Wu et al., 2003; Wu 

et al., 2007). The recombination strength of a Tcrb RSS is a property determined at the biochemical level by 

its interactions with a partner RSS, the RAG endonuclease, and HMGB1 proteins that bend DNA (Banerjee 

and Schatz, 2014; Drejer-Teel et al., 2007; Jung et al., 2003). In this context, 3’Dβ RSSs are at least 10-fold 

better than Vβ RSSs at recombining with 5’Dβ RSSs in vitro (Banerjee and Schatz, 2014; Drejer-Teel et al., 

2007; Jung et al., 2003). Accordingly, replacement of an endogenous V31 RSS with the 3’Dβ1 RSS 

increases the percentage of αβ T cells expressing V31+ TCRβ chains due to the elevated recombination 

level of V31 relative to other Vβ segments (Horowitz and Bassing, 2014; Wu et al., 2003).  

 

To determine the potential roles of Tcrb RSSs in governing TCRβ allelic exclusion, we made and studied 

mice carrying replacement(s) of their endogenous V31 and/or Trbv2 (V2) RSSs with a better 3’Dβ1 RSS. All 

of these mice develop a greater percentage of αβ T cells expressing V2+ or V31+ TCRβ protein at the 

expense of cells using another type of TCRβ chain. We demonstrate that each Vβ RSS replacement 

increases Vβ rearrangement before feedback inhibition, competes with the homologous allele for usage in 

the TCRβ repertoire, and elevates the percentage of αβ T cells expressing TCRβ proteins from both alleles. 

We conclude that the poor qualities of Vβ RSSs for recombining with Dβ and Jβ RSSs enforce TCRβ allelic 
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exclusion by stochastically limiting Vβ rearrangements before feedback inhibition from one allele halts 

further Vβ recombination.   
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RESULTS 

Generation of Vβ RSS Replacement Mice with Grossly Normal αβ T Cell Development. 

To determine contributions of Tcrb RSSs in allelic exclusion, we established C57BL/6 mice carrying 

germline replacements of the V2 or V31 RSS with the stronger 3’Dβ1 RSS, referred to as the V2R or V31R 

modifications (Figures 1A, 1B, and S1C). We created mice with each replacement on one allele (V2R/+, 

V31R/+), both alleles (V2R/R, V31R/R), or opposite alleles (V2R/V31R). The assembly and expression of 

functional Tcrb genes is essential for αβ T cell development (Bouvier et al., 1996; Mombaerts et al., 1992). 

In thymocytes, Dβ-to-Jβ rearrangement initiates in ckit+CD25- DN1 cells and continues in ckit+CD25+ DN2 

and ckit-CD25+ DN3 cells, while Vβ-to-DJβ recombination initiates in DN3 cells (Godfrey and Zlotnik, 1993). 

The expression of a functional Tcrb gene in DN3 cells is necessary and rate-limiting for differentiation of 

ckit-CD25- DN4 cells and then DP thymocytes (Baldwin et al., 2005; Serwold et al., 2007; Shinkai et al., 

1992; Yang-Iott et al., 2010). We observed normal numbers and frequencies of splenic αβ T cells and 

thymocytes at each developmental stage in every genotype of Vβ RSS replacement mice (Figures 1C and 

S2A-S2F). The V2R and V31R alleles initiate V2 and V31 rearrangements in DN3 cells and at notably 

greater levels than WT alleles (Figures S3A-S3C). These data reveal that replacement of a V2 and/or V31 

RSS with the stronger 3’Dβ1 RSS increases the frequency that Vβ recombination initiates without altering 

normal development or numbers of naïve αβ T cells.  

 

The 3’Dβ1 RSS-replaced Vβ Segments Outcompete Unmodified Vβs for Usage in the TCR Repertoire. 

In wild-type C57BL/6 mice, the representation of individual Vβ segments within the αβ TCR repertoires of 

DP thymocytes, SP thymocytes, and naïve splenic αβ T cells is similar and mirrors their relative levels of 

rearrangement in DN3 thymocytes (Wilson et al., 2001). Thus, we performed flow cytometry on mature 

naive αβ T cells (SP thymocytes and splenic αβ T cells) to determine effects of Vβ RSS substitutions on Vβ 

recombination and resultant usage in the αβ TCR repertoire. We used an antibody for a Cβ epitope 

contained in all TCRβ proteins in combination with different Vβ-specific antibodies that bind peptides 

encoded by a single Vβ [V2, Trbv4 (V4), Trbv19 (V19), or V31] or a family of Vβs [Trbv12.1 and Trbv12.2 

(V12) or Trbv13.1, Trbv13.2, and Trbv13.3 (V13)]. In WT mice, we observed that 7.0% of SP cells express 
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V2+ or V31+ TCRβ chains on their surface (Figures 1D-1F). For mice with V2 or V31 RSS replacement on 

one or both alleles, we detected a 6-11-fold increased representation of each modified Vβ on SP cells 

(Figures 1D-1F). Specifically, we detected V2+ TCRβ chains on 40.9% of cells from V2R/+ mice and on 

61.4% of cells from V2R/R mice, and V31+ TCRβ chains on 50.0% of cells from V31R/+ mice and on 77.1% of 

cells from V31R/R mice (Figures 1D-1F). As all six genotypes exhibit similar numbers of SP cells (Figure 1C), 

the increased utilization of each RSS-replaced Vβ must be at the expense of other Vβ segments. Indeed, 

the percentages of V31+ SP cells are reduced in V2R/+ mice compared to WT mice (5.1% versus 7.0%) and 

in V2R/R mice relative to V2R/+ mice (3.8% versus 5.1%, Figures 1D-1F). Likewise, the percentages of V2+ 

SP cells are reduced in V31R/+ mice compared to WT mice (4.3% versus 7.0%) and in V31R/R mice relative 

to V31R/+ mice (2.3% versus 4.3%, Figures 1D-1F). Moreover, the percentage of SP cells expressing V4+, 

V12+, V13+, or V19+ TCRβ protein is lower than normal in V2R/+ and V31R/+ mice, and further reduced in 

V2R/R and V31R/R mice (Figures 1D, 1G, and data not shown). The Vβ usage in splenic αβ T cells of each Vβ 

RSS replacement mouse genotype is altered similarly as on SP thymocytes (Figures S4A-S4E). These data 

show that the stronger 3’Dβ1 RSS empowers V2 and V31 to outcompete normal Vβ segments for 

recombination and resultant usage in the αβ TCR repertoire.  

 

Notably, each genotype of homozygous Vβ RSS replacement mice has a ~1.5-fold greater representation of 

its modified Vβ compared to the corresponding heterozygous genotype (Figure S4F). This less than additive 

effect based on allelic copy number suggests that Tcrb alleles compete for rearrangement and resultant 

usage in the αβ TCR repertoire. Our analysis of V2R/+, V31R/+, and V2R/V31R mice yields additional evidence 

for this competition as each RSS-replaced Vβ is less represented in V2R/V31R mice relative to V2R/+ or 

V31R/+ mice (Figures 1D-1F and S4A-S4C). Specifically, V2 is expressed on 32.2% of SP cells in V2R/V31R 

mice compared to 40.9% in V2R/+ mice, and V31 is expressed on 42.0% of SP cells in V2R/V31R mice 

relative to 50.0% in V31R/+ mice (Figures 1D-1F). We observed similar differences among splenic αβ T cells 

(Figures S4A-S4C). These differences imply that the overall Vβ recombination efficiency of each RSS-

replaced allele is elevated such that it effectively competes with the other allele for recombination in 

thymocytes and usage in the αβ TCR repertoire.   
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Competition between Tcrb alleles implies that rearrangement of the unmodified allele in heterozygous Vβ 

RSS replacement mice might limit the extent that each RSS-replaced Vβ outcompetes other Vβ segments 

on the modified allele. To test this, we generated mice with the WT, V2R, or V31R allele opposite an allele 

with deletion of the Tcrb enhancer (Eβ). As Eβ deletion blocks all Tcrb recombination events in cis (Bories 

et al., 1996; Bouvier et al., 1996), an Eβ-deleted (EβΔ) allele cannot compete with an active Tcrb allele. We 

compared the Vβ repertoires of mature αβ T cells from WT/EβΔ, V2R/EβΔ, and V31R/EβΔ mice to cells from 

WT, V2R/+, and V31R/+ mice. The percentages of V2+ and V31+ SP thymocytes each are equivalent between 

WT/EβΔ and WT mice (Figures 2A-2D). In contrast, representation of each RSS-replaced Vβ is ~1.5-fold 

greater in V2R/EβΔ or V31R/EβΔ mice relative to V2R/+ or V31R/+ mice, respectively (Figures 2A-2D). 

Furthermore, the percentages of V2+ and V31+ cells in V2R/EβΔ and V31R/EβΔ mice are similar to those of 

V2R/R and V31R/R mice, respectively (compare Figures 1D-1F with Figures 2A-2D). These comparisons 

reveal that recombination of a wild-type Tcrb allele indeed limits the extent to which each RSS-replaced Vβ 

can outcompete other Vβ segments on the same allele.  

 

Vβ RSS Replacements Increase Biallelic Assembly and Expression of Functional TCRβ Genes. 

We next determined effects of Vβ RSS replacements on monoallelic TCRβ expression. Due to the absence 

of allotypic markers that can identify TCRβ chains from each allele, the field assays TCRβ allelic exclusion 

by quantifying cells that stain with two different anti-Vβ antibodies. This method suggests that 1-3% of αβ T 

cells exhibits biallelic TCRβ expression (Balomenos et al., 1995; Steinel et al., 2014). However, this might 

be an underestimation as antibodies are not available for all Vβ proteins and biallelic Tcrb expression 

involving the same Vβ segment cannot be discerned. Regardless, we used this approach to determine the 

percentages of αβ T cells expressing two different types of TCRβ chains in WT, V2R/+, V2R/R, V31R/+, V31R/R, 

and V2R/V31R mice. We first used an antibody for V2 or V31 combined with an antibody for V4, V12, V13, or 

V19.  For each combination, we observed that 0.05-0.21% of SP cells stained with both antibodies in WT 

mice (Figures 3A-3D). In V31R/+ and V31R/R mice, we detected increased frequencies of SP cells that 
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stained for V31 and each other Vβ tested (Figures 3C and 3D). Likewise, for V2R/+ and V2R/R mice, we saw 

increased frequencies of SP cells that stained for V2 and each other Vβ (Figures 3A and 3B). We also 

observed inverse trends where the frequencies of SP cells expressing V2 and another Vβ decreased in 

V31R/+ and V31R/R mice, as well as the frequencies of SP cells expressing V31 and another Vβ decreased in 

V2R/+ and V2R/R mice (Figures 3A-3D). We next quantified V2+V31+ cells and observed that 0.09% of SP 

thymocytes stained with both V2 and V31 antibodies in WT mice (Figures 3E and 3F). In mice carrying V2R 

or V31R on one or both alleles, we detected 0.3-0.68% of SP cells stained with both antibodies (Figures 3E 

and 3F). Strikingly, the frequency of V2+V31+ SP cells is 27-fold higher in V2R/V31R mice compared to WT 

mice (2.47% versus 0.09%, Figures 3E and 3F). To address any potential background staining from the 

increased frequencies of V2+ and V31+ cells in V2R/V31R mice, we mixed equal numbers of SP cells from 

V2R/R and V31R/R mice. Notably, the frequency of V2+V31+ cells in V2R/V31R mice is 3.5-fold greater than in 

mixed V2R/R and V31R/R cells (Figures 3E and 3F). This provides firm evidence that V2+V31+ cells in 

V2R/V31R mice are αβ T cells expressing both V2+ and V31+ TCRβ chains. The sum of the frequencies of 

double-staining cells for all Vβ combinations tested shows that the total incidence of SP cells expressing 

two types of TCRβ chains is increased for each Vβ RSS replacement genotype (Figure 3G). The highest 

incidence of dual-TCRβ expressing thymocytes is in V2R/V31R mice and is 5-fold more than in WT mice 

(Figure 3G). Similar increased incidences of dual-TCRβ expression was observed in splenic αβ T cells 

(Figures S5A-S5G). Collectively, these data provide strong evidence that replacement of a V2 and/or V31 

RSS with the 3’Dβ1 RSS elevates the frequencies of mature αβ T cells exhibiting biallelic TCRβ expression.  

 

The elevated biallelic TCRβ expression must result from the 3’Dβ1 RSS increasing overall Vβ recombination 

so that both alleles assemble functional genes in a higher than normal percentage of thymocytes. To 

validate this, we made 102 αβ T cell hybridomas from splenocytes of V2R/V31R mice and analyzed Tcrb 

rearrangements by Southern blotting and PCR/sequencing. We compared our data to a prior study of 212 

wild-type αβ T cell hybridomas, where 56.6% contained a single Vβ rearrangement on one allele and a 

DβJβ rearrangement(s) on the other allele, and 43.4% contained one in-frame and one out-of-frame Vβ 

rearrangement on opposite alleles (Table 1) (Khor and Sleckman, 2005). Of our V2R/V31R hybridomas, 
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45.1% had a single Vβ rearrangement on one allele and a DβJβ rearrangement on the other allele, while 

31.4% carried one Vβ rearrangement on each allele (Table 1). We discovered that an additional 9.8% of 

V2R/V31R hybridomas had two Vβ rearrangements (involving V31 and another Vβ) on one allele and a DβJβ 

rearrangement on the other allele, and another 13.7% harbored recombination of V31 and another Vβ on 

one allele and a single Vβ rearrangement on the other allele (Table 1). Our data reveal a higher incidence of 

these rearrangements in V2R/V31R cells (23.5% versus 0%, Table 1) as none of the WT hybridomas had 

two distinct Vβ rearrangements on the same allele (Khor and Sleckman, 2005). In total, we observed 

monoallelic Vβ rearrangements in 54.9% of V2R/V31R hybridomas and biallelic Vβ rearrangements in 45.1% 

(Table 1). However, our sample size does not allow us to conclude that biallelic Vβ recombination is 

increased relative to the theoretical 40% or published 43.4% in WT αβ T cells (Figure S1A, Table 1) (Khor 

and Sleckman, 2005). Of the V2R/V31R hybridomas, 12.7% had a V2 rearrangement and 56.9% had a V31 

rearrangement (Table 1), reflecting the increased usage of V2 and V31 in the TCR repertoire of V2R/V31R 

mice. Eight hybridomas (7.8% of total) had recombination of each RSS-replaced Vβ (Table 1). Although the 

3’Dβ1 RSS is strongest at recombining to 5’Dβ RSSs, it also drives lower levels of recombination to Jβ 

RSSs (Banerjee and Schatz, 2014; Drejer-Teel et al., 2007; Jung et al., 2003; Tillman et al., 2003; Wu et al., 

2003). V31 rearrangement to a 5’Dβ RSS or Jβ RSS occurs by inversion and leaves a signal join in the 

locus, allowing for definitive identification of V31 recombination to a DβJβ complex versus a Jβ segment by 

Southern blotting (Malissen et al., 1986; Wu et al., 2003). On WT alleles, V31-to-Jβ rearrangements have 

not been identified in 512 hybridomas spanning three studies (Bassing et al., 2000; Khor and Sleckman, 

2005; Sleckman et al., 2000). Of the 58 V31 rearrangements in V2R/V31R hybridomas, 33 were to a DβJβ 

complex, 24 were to a Jβ segment, and the target of one was undetermined (Tables 1 and 2). We 

sequenced the V2 and V31 rearrangements in the eight V2R/V31R hybridomas that recombined both V2 and 

V31. Every V2 rearrangement contained a Jβ2 segment and had one or more potential Dβ nucleotides 

(Table 2). For V31, we identified rearrangements to DβJβ complexes, the Vβ coding region of a Trbv29-

Dβ1Jβ2 rearrangement, and the 5’Dβ1 RSS in a manner that produced a hybrid join (Table 2). Two 

hybridomas contained an in-frame V2DβJβ rearrangement on one allele and an in-frame V31DβJβ 
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rearrangement on the other allele (Tables 1 and 2). Notably, this incidence of an in-frame Vβ(Dβ)Jβ 

rearrangement on each allele in ~2% of hybridomas mirrors the 2.47% of V2+V31+ αβ T cells in V2R/V31R 

mice. Our hybridoma data show that replacement of a single Vβ RSS with the 3’Dβ1 RSS on opposite 

alleles increases the frequency of overall Vβ recombination and biallelic assembly of functional Tcrb genes. 

 

Vβ RSS Substitutions Elevate Vβ Recombination Independent of c-Fos Transcription Factor Binding. 

The increased Vβ recombination and TCRβ allelic inclusion in Vβ RSS replacement mice can be explained 

by the greater strength of the 3’Dβ1 RSS in recombining with Dβ and Jβ RSSs. Yet, this interpretation is 

complicated by the fact that 3’Dβ RSSs, but not Vβ RSSs, contain a c-Fos transcription factor binding site 

that spans the heptamer and spacer. In vitro, c-Fos interacts with RAG proteins when bound to 3’Dβ RSSs 

(Figure 4A) (Wang et al., 2008), leading to a model where c-Fos deposits RAG on 3’Dβ RSSs to sterically 

hinder Vβ recombination until Dβ-to-Jβ recombination deletes a 3’Dβ RSS (Wang et al., 2008). To 

investigate potential effects of c-Fos-mediated RAG deposition and/or transcription-associated accessibility, 

we made C57BL/6 mice carrying germline V2 or V31 RSS replacements with a 3’Dβ1 variant RSS, referred 

to as the V2F or V31F modification. The 3’Dβ1 RSS variant contains a two-nucleotide substitution in the 

spacer that abolishes both c-Fos binding and c-Fos-mediated RAG deposition, but has no obvious effect on 

the activity of the 3’Dβ1 RSS at recombining to a Vκ RSS in vitro (Figures 4A and 4B) (Wang et al., 2008). 

We established mice with each Vβ RSS replacement on one allele (V2 F/+ and V31F/+) or opposite alleles 

(V2F/V31F). 

 

We performed flow cytometry on WT, V2F/+, V31F/+, and V2F/V31F mice to determine effects of V2F and/or 

V31F alleles on αβ T cell development, TCRβ repertoire, and TCRβ allelic exclusion. The numbers and 

frequencies of splenic αβ T cells and thymocytes at each developmental stage are normal in each Vβ RSS 

replacement genotype (data not shown), indicating no major effects on αβ T cell development. In contrast, 

replacement of the V2 and/or V31 RSS with the 3’Dβ1 RSS variant increases the frequencies of SP cells 

expressing V2, V31, or both (Figures 4C-4E). Specifically, we found a 4.9-fold greater than normal 
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representation of V2+ cells in V2F/+ mice and a 5.4-fold higher than normal frequency of V31+ cells in V31F/+ 

mice (Figures 4C-4E). Similar to what we observed in V2R/V31R mice, the V2F and V31F alleles compete for 

recombination in thymocytes as we detected smaller increases of V2+ and V31+ cells in V2F/V31F mice 

(Figures 4C-4E). Finally, we detected higher than normal frequencies of V2+V31+ SP cells in V2F/+, V31F/+, 

and V2F/V31F mice (Figures 4F and 4G), revealing that replacement of a V2 and/or V31 RSS with the 3’Dβ1 

RSS variant elevates the incidence of biallelic TCRβ expression. These data indicate that neither RAG 

deposition nor transcription-associated accessibility from potential c-Fos binding is needed for 3’Dβ1 RSS 

substitutions to increase Vβ rearrangement and biallelic TCRβ expression.    

 

Vβ RSS Replacements Increase the Initiation of Vβ Recombination before Feedback Inhibition. 

The elevated incidences of biallelic TCRβ expression in Vβ RSS replacement mice could arise from 

increased initiation of Vβ recombination prior to enforcement of feedback inhibition and/or continued Vβ 

recombination during feedback inhibition. We found that the rearrangements of RSS-replaced Vβs are 

elevated in DN3 thymocytes of V2R/EβΔ and V31R/EβΔ mice (Figure S3C). As these Vβs rearrange 

independent of competition and feedback inhibition from the other allele, the 3’Dβ1 RSS substitution does 

increase Vβ recombination before feedback inhibition. To determine if rearrangements of RSS-replaced Vβs 

are halted by TCRβ-mediated feedback inhibition, we established and analyzed V2R/+ and V31R/+ mice with 

a pre-assembled functional TCRβ transgene (TcrbTg). Expression of the transgene-encoded V13+ TCRβ 

chain initiates in DN2 cells and signals feedback inhibition of Vβ rearrangements (Steinel et al., 2010). 

However, ~3% of TcrbTg αβ T cells also expresses TCRβ protein from VβDβJβ rearrangements that occur in 

DN3 cells before TcrbTg-mediated feedback inhibition (Steinel et al., 2010). We observed that the TcrbTg 

more effectively decreases utilization of V2 than V31 when each is flanked by their own RSS or the 3’Dβ1 

RSS (Figures 5A-5D). Next, we made αβ T cell hybridomas from V2R/+, TcrbTgV2R/+, V31R/+, and 

TcrbTgV31R/+ mice to quantify Vβ rearrangements. We detected V2 rearrangements in 50% of V2R/+ clones 

but not in any TcrbTgV2R/+ cells (p = 2.68x10-5, Pearson’s χ2 test with Yates’ correction), and we found V31 

rearrangements in 50% of V31R/+ clones and in only 15% of TcrbTgV31R/+ cells (p = 1.63x10-5, Pearson’s χ2 
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test with Yates’ correction, Table S1). Our previous analysis of 129 TcrbTg αβ T cell hybridomas showed that 

2.3% had a V31 rearrangement and an additional 7% carried recombination of a different Vβ (Table S1 and 

data not shown) (Steinel et al., 2010). Collectively, these data indicate that TcrbTg-signaled feedback 

inhibition suppresses recombination of RSS-replaced Vβs and does so more effectively for V2R versus 

V31R. As feedback inhibition could block accessibility of 5’Dβ RSSs in DN cells (Bassing et al., 2000), RSS-

replaced Vβs may continue to recombine with Jβ segments until Vβ recombination is silenced by 

differentiation of DP thymocytes. To assess this possibility, we quantified V31 targeting to DβJβ complexes 

or Jβ segments in V31R/+ and TcrbTgV31R/+ hybridomas where V31 is the only rearranged Vβ segment. 

These primary V31 rearrangements occurred to Jβ segments in 38% of V31R/+ and 14% of TcrbTgV31R/+ 

cells (Table S1), revealing that TCRβ-mediated feedback inhibition also suppresses V31R-to-Jβ 

recombination. Our hybridoma analysis reveals that increased initiation of Vβ recombination prior to TCRβ-

mediated feedback inhibition is the predominant, if not sole, mechanistic basis for the elevated frequencies 

of biallelic TCRβ expression in Vβ RSS replacement mice.  
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DISCUSSION 

 

Improving the Quality of Vβ RSSs Increases Vβ Rearrangement and Biallelic TCRβ Expression.   

Here we show that elevating Vβ rearrangement frequency by replacing the endogenous V2 and/or V31 RSS 

with the 3’Dβ1 RSS increases the incidences of biallelic TCRβ expression before TCRβ-signaled feedback 

inhibition. Nucleotide sequence differences between the 3’Dβ1 and V2 or V31 RSSs must provide the 

mechanistic basis for enhanced Vβ rearrangement. Although the 3’Dβ1 RSS can bind c-Fos to recruit RAG 

in vitro (Wang et al., 2008), we demonstrate that a variant 3’Dβ1 RSS that cannot bind c-Fos maintains 

elevated levels of Vβ recombination and biallelic TCRβ expression in vivo. The increased rearrangement 

and preferential targeting of RSS-replaced V2 and V31 to DJβ complexes mirrors the relative in vitro 

activities of the 3’Dβ1, V2, and V31 RSSs for RAG/HMGB1-mediated synapsis and cleavage (Banerjee and 

Schatz, 2014; Drejer-Teel et al., 2007; Jung et al., 2003). Context dependent kinking of each RSS spacer 

must occur for RAG/HMGB1 to pair RSSs for coupled cleavage (Kim et al., 2018). Indeed, the normal and 

variant 3’Dβ1 RSSs possess spacers of greater bending quality compared to the V2 and V31 RSSs (Kim et 

al., 2018) and heptamers and nonamers of less overall variation from consensus (Figure 1B). Accordingly, 

the increased levels of Vβ rearrangement in our RSS replacement mice can be explained mechanistically 

by the greater quality of the 3’Dβ1 RSS for RAG/HMGB1-mediated pairing and coupled cleavage with 5’Dβ 

and Jβ RSSs. Although our observations cannot exclude potentially minor contributions of RSS differences 

in regulating RAG cleavage in Vβ chromatin, our 3’Dβ1 RSS replacements neither introduce a recognized 

transcription factor binding site nor increase germline transcription of V2 or V31 (data not shown). Some 

RSSs, albeit not the 3’Dβ1 RSS, position nucleosomes over themselves even within accessible chromatin 

(Baumann et al., 2003; Kondilis-Mangum et al., 2010). Thus it is possible that Vβ RSSs, but not 3’Dβ1 

RSSs, bind nucleosomes to antagonize recombination of otherwise accessible Vβ segments since RSS 

nucleosome occupancy inhibits RAG access and cleavage (Golding et al., 1999; Kwon et al., 1998). Even 

so, improving the quality of a Jβ RSS in mice lacking Dβ segments permits robust Vβ-to-Jβ rearrangements 

where the normal poor quality Vβ RSSs are intact (Bassing et al., 2000). Therefore, we conclude that the 
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improved Vβ RSS quality for recombining with Dβ and Jβ RSSs is the underlying mechanism for increased 

Vβ recombination and biallelic TCRβ expression in our Vβ RSS replacement mice.  

 

The Poor Qualities of Vβ RSSs Provide a Stochastic Mechanism for Limiting Vβ Recombination 

Before Feedback Inhibition.    

Our study offers the first validated mechanism for how only one allele of any AgR locus assembles a 

functional gene before feedback inhibition. In addition to promoting Vβ recombination and biallelic TCRβ 

expression, improving the quality of one Vβ RSS reveals that Tcrb alleles compete for Vβ recombination. 

The only way that elevating the efficiency of Vβ recombination on one allele can outcompete Vβ 

rearrangement on the other is if both alleles are activated in the time window(s) that feedback inhibition 

requires to block Vβ recombination of the second allele. If deterministic models were correct, the 

recombination of one allele would have no consequence on the recombination of the other, and one would 

predict that the increases of Vβ recombination in RSS replacement mice would be additive based on allelic 

copy number. Consequently, our data demonstrate that the poor qualities of Vβ RSSs for recombining with 

Dβ and Jβ RSSs provides a stochastic mechanism that serves a major role in limiting the incidence of 

functional Vβ rearrangements on both alleles before feedback inhibition terminates Vβ recombination. 

 

We propose the following model for how thymocytes enforce TCRβ allelic exclusion. In non-cycling DN3 

cells, at least one allele becomes active and undergoes Vβ-to-DJβ recombination. The DNA DSBs trigger 

transient feedback inhibition at least in part by repression of RAG expression, providing time to test the 

initial rearrangement (Fisher et al., 2017; Steinel et al., 2014). In cells where both alleles are activated, poor 

Vβ RSSs limit the likelihood of Vβ recombination on both alleles before loss of RAG. If the rearrangement is 

out-of-frame, RAG re-expression permits Vβ recombination on the second allele, or on the first allele if a 

Dβ2Jβ2 complex is available. In the latter case, poor Vβ RSSs again decrease the chance for Vβ 

recombination on both alleles. When the first rearrangement is in-frame, its TCRβ protein activates Cyclin 

D3 to move cells into S phase (Sicinska et al., 2003), where RAG2 is degraded (Lin and Desiderio, 1994). 
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Based on its function in pro-B cells (Powers et al., 2012), Cyclin D3 may repress Vβ accessibility before 

cells enter S phase. In DN3 cells where RAG is re-expressed between DSB repair and S phase entry, poor 

Vβ RSSs limit the possibility of further Vβ recombination on the second allele. Additional factors, including 

inhibition of RC formation, Vβ accessibility, and locus contraction via stochastic interaction of alleles with 

nuclear lamina (Chan et al., 2013; Chen et al., 2018; Schlimgen et al., 2008), cooperate with poor Vβ RSSs 

to limit biallelic assembly as DN3 cells attempt Tcrb recombination. Finally, TCRβ signals promote genetic 

and epigenetic changes that silence Vβ recombination in DP cells where Tcra genes assemble (Jackson 

and Krangel, 2005; Liang et al., 2002; Majumder et al., 2015; Skok et al., 2007). Notably, all features of this 

model could apply to IgH allelic exclusion.  

 

The Broader Impacts of Vβ RSSs Being a Major Determinant of Vβ Recombination Frequency.  

The field has strived to elucidate mechanisms that promote V rearrangements across large chromosomal 

distances, with emphasis on factors that determine broad usage of V segments or promote allelic exclusion. 

In vivo experiments have shown that modulation of accessibility and RC contact of a V segment can 

influence its rearrangement frequency (Fuxa et al., 2004; Jain et al., 2018; Ryu et al., 2004). Correlative 

computational analyses conclude that V accessibility is the predominant factor for determining relative V 

utilization at Tcrb and Igh loci, while V RSS quality and RC contact each mainly function as a binary switch 

to prevent or allow recombination (Bolland et al., 2016; Gopalakrishnan et al., 2013). On the contrary, our 

data show that the qualities of RSSs flanking V2 and V31 function far beyond reaching a minimal threshold 

for functional synapsis and cleavage with Dβ RSSs. The increased usage of V2R and V31R at the expense 

of other Vβs on the same allele indicate that most, if not all, Vβs dynamically compete with each other for 

productive contact with the RC. On a normal allele, RAG bound to Dβ RSSs likely repeatedly capture and 

release different Vβ RSSs before synapsis proceeds to functional cleavage (Wu et al., 2003). This sampling 

of V segments could occur via diffusional-based synapsis of V RSSs positioned within a cloud of spatial 

proximity (Ji et al., 2010) or by RAG chromosomal loop scanning-based synapsis (Hu et al., 2015; Jain et 

al., 2018). To determine RSS quality (strength), the field typically uses an algorithm that calculates a 

recombination information content (RIC) score, which is based on statistical modeling of how each 
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nucleotide diverges from an averaged RSS (Cowell et al., 2003). The RIC scores of the RSSs we 

manipulated predict that the 3’Dβ1 RSS replacement would decrease V2 recombination and the variant 

3’Dβ1 RSS substitution would reduce both V2 and V31 rearrangements (Figure S5H). These differences 

between predicted and empirical data could be due to a number of possibilities, including that the RIC 

algorithm does not address pairwise effects of RSSs on recombination. Regardless, the discrepancies 

between outcomes predicted by machine-generated associations and our actual in vivo results highlight the 

critical need to experimentally test computationally-based models of V(D)J recombination. 

 

Since the discovery of AgR allelic exclusion (Pernis et al., 1965), the field has worked to identify 

mechanisms and physiological roles for monoallelic expression of TCR and Ig genes. The predominant, 

long-standing theory is that the expression of only one type (specificity) of AgR by T and B cells suppresses 

autoimmunity by ensuring negative selection of cells expressing a self-reactive receptor (Brady et al., 

2010a; Heath and Miller, 1993; Padovan et al., 1993). Consistent with this hypothesis, expression of a 

second endogenous AgR enables cells bearing a transgenic autoreactive AgR to evade negative selection 

(Auger et al., 2012; Iliev et al., 1994; Sarukhan et al., 1998; Zal et al., 1996), and biallelic TCRα expression 

potentiates autoimmune diabetes in the NOD mouse model (Schuldt et al., 2017). Our findings suggest new 

avenues for investigation. As Vβ RSSs share sequence features with VH RSSs, but not V RSSs of other loci 

(Liang et al., 2002), experimentally determining if VH RSSs are poor for recombining with DH RSSs to thus 

restrain VH recombination and enforce IgH allelic exclusion is warranted. In addition, RSS replacements 

could test the model that poor activities of Igλ RSSs, relative to Igκ RSSs, help mediate isotypic exclusion 

(Ramsden and Wu, 1991) where most B cells express Igκ or Igλ, but not both types of light chains (Bernier 

and Cebra, 1964). V2R/V31R mice and the RSS replacement approach provide unprecedented experimental 

means to determine the effects of biallelic expression of diverse TCRβ chains in the αβ T cell population. 

RSS replacement mice also permit testing of possible additional reasons for controlling V rearrangements 

between alleles, including that monospecificity facilitates robust lymphocyte activation upon antigen 

encounter (Vettermann and Schlissel, 2010) and our view that asynchronous V-to-(D)J recombination 

between alleles suppresses RAG-triggered genomic instability and resultant lymphoid cancers. 
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Figure 1. Increased Utilization of 3’Dβ1 RSS-replaced Vβ Segments on αβ T Cells.   
(A) Schematic of the Tcrb locus and relative positions of V, D, and J segments, C exons, and the Eβ enhancer. Not 
drawn to scale.  
(B) Sequences of a consensus heptamer and nonamer and the 3’Dβ1, V2, and V31 RSSs. Differences relative to the 
consensus heptamer and nonamer are indicated in red. Differences of each Vβ RSS relative to the 3’Dβ1 RSS are 
underlined. 
(C) Total numbers of SP thymocytes and splenic αβ T cells (n ≥ 6).   
(D) Representative plots of SP thymocytes expressing V2+, V31+, or V19+ TCRβ chains.  
(E-G) Quantification of V2+ (E), V31+ (F), or V19+ (G) SP thymocytes, refer to legend in (D). (n = 5, one-way ANOVA, 
multiple post-tests compared to WT, unless indicated by bars, and p-values are corrected for multiple tests. ns=not 
significant, **p<0.01, ****p<0.0001). 
All quantification plots show mean ± SD. 
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Figure 2. Vβ RSS Replacement Alleles Compete with Normal Tcrb Alleles for Usage in the TCRβ Repertoire. 
(A and C) Representative plots of SP thymocytes expressing V2+ (A) or V31+ (C) TCRβ chains. 
(B and D) Quantification of V2+ (B) or V31+ (D) SP thymocytes (mean ± SD, n ≥ 3, ****p<0.0001).  
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Figure 3. 3’Dβ1 RSS-replaced Vβ Segments Increase Bi-allelic Tcrb Gene Expression. 
(A, C, and E) Representative plots of SP thymocytes expressing both V2+ and V19+ (A), V31+ and V19+ (B), or V2+ and 
V31+ (E) TCRβ chains. 
(B, D, and F) Quantification of SP thymocytes expressing the two indicated TCRβ chains. (F) V2R/R and V31R/R 
thymocytes were mixed 1:1 and analyzed. (B and D) n = 5, two-way ANOVA. (F) n ≥ 3, one-way ANOVA. 
(G) Quantification of double-staining SP thymocytes for each Vβ combination tested (n = 5, two-way ANOVA). 
All quantification plots show mean ± SD. Multiple post-tests are compared to WT unless indicated by bars, and p-
values are corrected for multiple tests. ns=not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 4. 3’Dβ1 RSS Substitutions Increase Vβ usage and TCRβ Allelic Inclusion Independent of c-Fos binding. 
(A) Sequences of the normal and inactivated c-Fos binding site in the 3’Dβ1 RSS. The A→C and T→C mutations are 
indicated in red. 
(B) Sequence validation of the V2 or V31 RSS replacement with the variant 3’Dβ1 RSS. The inactivated c-Fos binding 
site is highlighted in blue and mutated nucleotides indicated by red arrows.  
(C) Representative plots of SP thymocytes expressing V2+ or V31+ TCRβ chains.  
(D and E) Quantification of V2+ (D) or V31+ (E) SP thymocytes (n ≥ 5, one-way ANOVA). 
(F) Representative plots of SP thymocytes expressing both V2+ and V31+ TCRβ chains.  
(G) Quantification of SP thymocytes expressing both V2+ and V31+ TCRβ chains (n ≥ 5, one-way ANOVA). 
All quantification plots show mean ± SD. Multiple post-tests are compared to WT and p-values are corrected for 
multiple tests. ns=not significant, *p<0.05, ****p<0.0001. 
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Figure 5. 3’Dβ1 RSS Substitutions Increase Vβ recombination before Enforcement of Feedback Inhibition 
(A and C) Representative plots of SP thymocytes expressing V2+ (A), V31+ (C), or V13+ TCRβ chains. 
(B and D) Quantification of SP thymocytes expressing V2+ (B) or V31+ (D) TCRβ chains (n = 3, ****p<0.0001). 
All quantification plots show mean ± SD. 
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Table 1. Analysis of Tcrb rearrangements in αβ T cell hybridomas 
 Genotype  
 V2R/V31R WT* p-value 
 Number % Total Number % Total  
Clonal Hybridomas 
Assayed 102 -- 212 -- 

 

      
Rearrangement Status      
V(D)J / DJ           46 45.1 120 56.6  
V(D)J / V(D)J       32 31.4 92 43.4  
V(D)J-V(D)J / DJ 10 9.8 0 0 

1.842-10 
V(D)J-V(D)J / V(D)J 14 13.7 0 0 
      
Monoallelic V(D)J 56 54.9 120 56.6 0.9597 
Biallelic V(D)J 46 45.1  92 43.4 0.9455 
      
1 V(D)J  46 45.1 120 56.6 0.3305 
2 V(D)J  42 41.2 92 43.4 0.8995 
3 V(D)J  14 13.7 0 0 1.039-06 
      
V2(D)J 13 12.7 
V31(D)J  58 56.9 
      V31-to-DJ 33 32.4 
      V31-to-J 24 23.5 
V2(D)J / V31(D)J 8 7.8 
      V2(D)JIF / V31(D)JIF 2 2.0 
IF = In-Frame 
* = Khor and Sleckman, 2005 
 p-values were generated by Pearson’s χ2 test with Yates’ continuity correction.
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Table 2. Sequence analysis of the V2 and V31 rearrangements on opposite alleles in V2R/V31R T cell hybridomas 

 Vβ N/P Potential Dβ N/P Jβ Status 
Clone 1 V2 AGCAGCCAAGA TA A T CCGGGCAG 2.2 Out-of-Frame 
 V31 GCCTGGAGTCT  AC  CCAACGAAAGA 1.4 In-Frame 
Clone 23 V2 AGCAGCCAAGA T TGG  GAACAG 2.7 In-Frame 
 V31 The V31 rearrangement was not identified 
Clone 54 V2 AGCAGC CAA GAC  AACACCGGGCAG 2.2 In-Frame 
 V31 GCCTGGAGTCT A GC G TGAACAG 2.7 Out-of-Frame 
Clone 55 V2 AGCAGC T T  CTCCTATGAACAG 2.7 In-Frame 
 V31 GCCTGGAGTCTC  GGGACAGGGGG GCGG GAACAG 2.7 In-Frame 
Clone 59 V2 AGCAGCCAAGA TC GG  AGTCAAAACACCTTG 2.4 In-Frame 
 V31 GCCT  GGC  CACCTTG 2.4 Out-of-Frame 
Clone 62 V2 The V2(Dβ)Jβ2 rearrangement was not cloned and sequenced 
 V31 V31-to-5’Dβ1 RSS hybrid join, deleting all subsequent Jβ1-Cβ1 and Dβ2/Jβ2-Cβ2 sequences 
Clone 90 V2 AGCAGC TT CT C CTATGAACAG 2.7 In-Frame 
 V31 GCCTGGAGTC CCCCT CTGGGGGG TGCAGAAA CGCTGTATTTTGGC 2.3 In-Frame 
Clone 105 V2 AGCAGCCA CCTCC GGGACTGGGGC TATGA ACAG 2.7 In-Frame 
 V31 V31 rearranged to the Vβ coding sequence of an out of frame V29(Dβ)Jβ2.7 rearrangement Out-of-Frame 
Sequences are underlined every 3 nucleotides to orient the reading frame. 
Dβ nucleotides in bold are from Dβ1, italicized nucleotides are from Dβ2, and for V2 rearrangements unformatted nucleotides could be from either. 
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