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23 Abstract

24 Health advances are contingent on continuous development of new methods and approaches 

25 to foster data driven discovery in the biomedical and clinical health sciences. Open-science 

26 offers hope for tackling some of the challenges associated with Big Data and team-based 

27 scientific discovery. Domain-independent reproducibility, area-specific replicability, 

28 curation, analysis, organization, management and sharing of health-related digital objects are 

29 critical components. 

30

31 This study expands the functionality and utility of an ensemble semi-supervised machine 

32 learning technique called Compressive Big Data Analytics (CBDA). Applied to high-

33 dimensional data, CBDA identifies salient features and key biomarkers for reliable and 

34 reproducible forecasting of binary or multinomial outcomes. The method relies on iterative 

35 subsampling, combines function optimization and statistical inference, and generates 

36 ensemble predictions of observed univariate outcomes. In this manuscript, we extend the 

37 CBDA technique by (1) efficiently handling extremely large datasets, (2) generalizing the 

38 internal and external validation steps, (3) expanding the set of base-learners for joint 

39 ensemble prediction, (4) introduce an automated selection of CBDA specifications, and (5) 

40 provide mechanisms to assess CBDA convergence, evaluate the prediction accuracy, and 

41 measure result consistency. 

42

43 We validated the CBDA 2.0 technique using synthetic datasets as well as a population-wide 

44 census-like study, which grounds the mathematical models and the computational algorithm 

45 into translational health research settings. Specifically, we empirically validated the CBDA 
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46 technique on a large-scale clinical study (UK Biobank), which includes imaging, cognitive, 

47 and clinical assessment data. The UK Biobank archive presents several difficult challenges 

48 related to the aggregation, harmonization, modeling, and interrogation of the information. 

49 These problems are related to the complex longitudinal structure, feature heterogeneity, 

50 multicollinearity, incongruency, and missingness, as well as violations of classical parametric 

51 assumptions that require novel health analytical approaches. 

52

53 Our results showcase the scalability, efficiency and potential of CBDA to compress complex 

54 data into structural information leading to derived knowledge and translational action. The 

55 results of the real case-study suggest new and exciting avenues of research in the context of 

56 identifying, tracking, and treating mental health and aging-related disorders. Following open-

57 science principles, we share the entire end-to-end protocol, source-code, and results. This 

58 facilitates independent validation, result reproducibility, and team-based collaborative 

59 discovery. 

60

61 Key words: CBDA, machine learning, feature mining, meta-algorithm, Big Data
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1. Introduction 

Big Data Science is an emerging transdisciplinary field connecting the theoretical, 

computational, experimental, biomedical, social, environmental and economic areas. It 

deals with enormous amounts of complex, incongruent, and dynamic data (Big Data) 

from multiple sources and aims to develop algorithms, methods, tools, and services 

capable of ingesting such datasets and generating semi-automated decision support 

systems. The lack of a comprehensive mathematical formulation for Big Data Science is 

one of the major challenges in the development of its theoretical foundations. Other 

significant hurdles and gaps in Big Data pertain both the nature of the Big Data and the 

tools and methods to handle them. Examples of the former are Big Data heterogeneity 

[1], noise concentration [2], spurious correlations [3] and more. Tools and methods to 

handle Big Data face challenges like the choice of reliable predictive models, the 

specification and implementation of optimal algorithms, feasibility, scalability and 

convergence of the protocol on large datasets, and access to appropriate computational 

resources, visualization and more.

Previously, we proposed a new scalable framework for Big Data representation, high-

throughput analytics (variable selection and noise reduction), and model-free inference 

that we called Compressive Big Data Analytics (CBDA) [4]. We showcased the 

robustness, efficiency, accuracy and viability of our first generation CBDA protocol on 

small-medium size data. In this manuscript, we expand the CBDA method and test it on 

large synthetic datasets (e.g., ranging from 10,000-1,000,000 cases and 1,000-10,000 

features). In addition, we validate CBDA by directly applying it for detection and 
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prediction of mood disorders (e.g., irritability) using a large population-based clinical 

survey.  Specifically, we will validate the technique on heterogeneous and incongruent 

data from the UK Biobank [5, 6] datasets (see the Datasets section for details). The 

CBDA protocol relies on model-based statistical computing methods and model-free 

data analytics [7]. These will lead to efficient parameter estimations, reliable predictions, 

and robust scientific inference based on imaging, phenotypic, genetics and clinical data.

The two main strategies used by CBDA to explore the core principles of distribution-free 

and model-agnostic methods for scientific inference based on Big Data sets are 

subsampling or bootstrapping and ensemble prediction. Ensemble predictor algorithms 

and subsampling/bootstrapping use common approaches for objective function 

optimization, quantification of noise, bias, prediction error, and variance estimation 

during the learning/training process. 

Standard ensemble methods, such as bagging and boosting [8-10], usually aggregate 

the results of a single “base” learner algorithm like support vector machine (SVM) [11] 

or k-nearest neighbor (kNN) [12]. CBDA employs SuperLearner [13, 14] as its ensemble 

predictor to combine multiple "base" learner algorithms into a blend of meta-learners. In 

addition, CBDA utilizes ensemble methods in two stages, during the Training step as 

well as during the subsequent Overfitting Test step (see Fig S1 for details).

Although advanced ensemble methods like Random Forest [15, 16] could change the 

features’ weights during iterations, they do not directly reveal the importance of 
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individual features. CBDA explicates the feature importance at each experimental 

iteration. Similar to signal estimation in compressive sensing [17], CBDA reduces the 

problem dimension and efficiently derives reliable and reproducible inference. In the 

process of computing the final inference, CBDA subsampling selects stochastically both 

features and cases. It identifies an optimal feature-space which may not necessarily be 

an average of the intermediate results.

Since its CRAN publication in 2018 [4], the CBDA package had an average of 263 

downloads per months over approximately 15 months. The first version of the CBDA 

method was implemented as a stand-alone R package [4], which can be deployed on 

any desktop, laptop, or HPC cluster environment. For example, we demonstrated 

deploying CBDA 1.0 on a high-performance computing platform using the LONI 

graphical pipeline environment [18]. In this manuscript, we are enhancing the CBDA 

method, expanding its applications and test it on large and very heterogeneous 

datasets. These improvements are reflected in an integrated and upgraded CBDA 2.0 R 

package that is also tested on the LONI Pipeline workflow environment. In the Pipeline 

environment, the entire CBDA 2.0 protocol is implemented as pipeline module wrappers 

of various pre-processing and post-processing steps natively representing bash/shell, 

R, and Perl scripts that optimize the iterative CBDA subsampling phases. The latest 

CBDA software release is available on our GitHub repository [19]. 

The upgraded CBDA protocol further expands on the set of machine learning algorithms 

embedded in the ensemble predictor (i.e., SuperLearner  [13, 14]). This new set allows 
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the testing of several model mining performance and overall convergence metrics, 

which will inform the validation step and help transitioning our predictive analytics into 

the estimation/inference phase. The analysis of the ensemble predictor weights across 

the many subsamples and machine learning algorithms can also suggest a way to 

empirically check on CBDA computational convergence.

As a last contribution, we recast our initial mathematical formulation with the purpose of 

better enabling the study of the ergodic properties and the asymptotics of the specific 

statistical inference approaches utilized within the CBDA technique. This new simplified 

and more compact formulation is presented in the Text S1. 

Our results suggest that the CBDA methodology is scalable and accurate, even with 

extremely high-dimensional datasets. One of the strength of combining a subsampling 

strategy with ensemble prediction is the ability of sifting through data where no signal is 

present, with low false discovery rates. The application to a real case study like the UK 

Biobank highlights how the protocol is flexible and scalable in a very complex predictive 

analytics scenario, with incongruent, heterogeneous and highly correlated data, as well 

as with a large degree of missingness.
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2. Materials and Methods

This section illustrates the new CBDA protocol and methodology for representing and 

analyzing large datasets with binomial and continuous outcomes. First, we briefly review 

the main steps of the protocol and then describe in detail the new steps added to the 

workflow, as well as the upgrades implemented in this new study. We then review our 

validation procedure and results using synthetic and clinical datasets. The end-to-end 

CBDA processing workflow is shown in Figure 1.

The entire CBDA protocol is designed, implemented and validated as a reproducible, 

open-project using the statistical computing language R [4, 20]. A number of training 

sets have been used to assess the convergence of the CBDA technique through a 

workflow protocol described in [4, 19]. This validation workflow runs on the LONI 

pipeline environment [18], a free platform for high performance computing, which allows 

the simultaneous submission of hundreds of independent components of the CBDA 

protocol (see [21] for details). 

Figure 1: Schematic of the improved CBDA 2.0 workflow.

The first generation CBDA methodology and its implementation [4] can handle 

predictive analytics for datasets up to 1GB. Depending on the available hardware 

limitations, the enhanced next-generation CBDA 2.0 can handle much larger datasets. 

Our new implementation combines shell/bash and Perl scripts to efficiently perform data 

preprocessing during the subsampling steps, data staging, data post-processing, 

validation, and predictive analytics. The following sections outline the basics of the 

CBDA methodology, drawing parallels between CBDA and alternative ensemble 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912485doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912485
http://creativecommons.org/licenses/by/4.0/


predictor and bootstrapping strategies. Later, we will describe in detail the CBDA 2.0 

implementation and highlight the new upgrades and improvements. The pseudocode is 

shown in the Fig S1.

2.1. A new CBDA subsampling strategy

The initial CBDA subsampling strategy is fully described in [4]. Briefly, both cases and 

features from the original Big Data are sampled with certain specifications given by the 

Case Sampling Range (CSR) and Feature Sampling Range (FSR). Our new 

implementation has two major upgrades in the subsampling strategy. 

The main objective of subsampling is to pass a representative and balanced (if 

possible) but not too large sample of the Big Data to the ensemble predictor for faster 

analysis. In order to generalize and automate the subsample strategy, the first novelty 

of the CBDA 2.0 protocol is to set an upper bound in terms of number of cases and 

features for the subsampled datasets, namely 300 cases and 30 features. The rule of 

thumb here is to set the number of features as one log less than the number of cases. 

Other ratio cases/features can be further explored augmenting our previous report [4]). 

More investigation is needed to determine theoretical optimal cases/features ratio 

values. The goal of this study is to set a reasonably small subsample size that is 

sufficient to support predictive analytics and at the same time enable effective use of 

system resources (memory and computational cycles). 

Table 1 shows how the subsample size (e.g., 300x30), combined with the Big Data 

sizes, can be recasted into the previously used ranges for CSR and FSR. The new 
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subsampling protocol significantly improves on the compression of the data needed to 

reconstruct the original signal (at least in the synthetic case studies) by 3-4 logs in the 

case of 100,000-1 million cases (see Table 1 for details). We also reduced the total 

number of subsamples M to 5,000 (comparing to M=9,000 used in our previous study 

[4]). We tested CBDA 2.0 with synthetic datasets up to 70GB, but the protocol can 

easily be applied to larger datasets since we operate with pre-defined subsamples size 

(i.e., 300x30) and total number of subsamples M (e.g., 5,000). For extremely large 

datasets, the limiting step will be the speed in accessing a much larger dataset, which 

can be easily overcome by faster scripts (e.g., Python implementation).

Table 1: subsampling specifications for different Big Data sizes. The total 

number of subsamples .M = 5,000

 Sampling Rates

Description
n

(cases)

p

(features)
CSR 

(cases)

FSR 

(features)

Medium Synthetic Datasets 10,000 1,000 3% 3%

Large Synthetic Datasets 100,000 10,000 0.3% 0.3%

Very Large Synthetic Datasets 1,000,000 10000 0.03% 0.3%

Upon initializing the subsampling, the second novelty of the CBDA 2.0 protocol is a 

different way to perform the sampling of the validation set. In [4] we set aside 20% of 

the original Big Data for validation and never used it for training. However, when dealing 
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with Big Data that approach is not scalable anymore, since the validation set might be 

as large as the Big Data itself. Our new strategy is then to sample a validation set each 

time we generate a subsample for training. Each validation set is twice the number of 

cases of the training set, with no case overlapping the training sample (see Section 2.3 

for details). In this study we use validations sets of 600 cases. Each sampling is done 

with replacement. As shown in Table 1, the high compression rates, achieved by fixing 

the max size of each subsamples, masks the potential overfitting risks. We recognize 

that over  subsamples some records might be used for both training and internal 𝑀

validation. However, this is only occurring in some of the  predictive analytics steps, 𝑀

and never within the same training/validation sets. Given the low CSR and FSR, the 

likelihood to sample the final top-ranked features in the same subsample (as resulting 

after the CBDA Overfitting Test stage) is almost zero.

To account for the possible multicollinearity among the set of features, we define a 

scaling factor that augments the FSR. We call it Variance Inflation Factor (VIF), similar 

to the ANOVA analysis [22]. 

If the subsampling is deployed on the same server location of the Big Data, the protocol 

performs extremely fast. The conditions are that the server has (1) a workflow system in 

place for the submission of multiple simultaneous jobs (e.g., LONI pipeline workflow, but 

it can be PBS (Portable Batch System) [23, 24], or SLURM (Simple Linux Utility for 

Resource Management) [25], or other schedulers), (2) shell and Perl scripting is 
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enabled, and (3) access to an R computing environment. Our implementation uses the 

LONI pipeline server/client and R 3.3.3. 

If any of the conditions above are not fulfilled, either the Big Data must be deployed on 

a server where the CBDA protocol can be executed, or, as a viable alternative, the 

subsampling can be done on the server hosting the Big Data and only the subsamples 

need to be deployed on the server where the CBDA can be executed. The latter will 

offer a scalable solution, since the size of the total set of subsamples is significantly 

smaller than the whole Big Data and can be reasonably predicted (e.g., approximately 

1-2GBs).

2.2. CBDA ensemble prediction via the SuperLearner.

The SuperLearner [13] and Targeted Maximum Likelihood Estimation (TMLE) [26, 27] 

theories has been developed in the past 10 years. Both are complimentary methods for 

parameter estimation in nonparametric statistical models for general data structures. 

The SuperLearner theory guides the construction of asymptotically optimal estimators of 

non-pathwise-differentiable parameters, e.g., prediction or density estimation, and the 

TMLE theory guides the construction of efficient estimators of finite dimensional 

pathwise-differentiable parameters, e.g., marginal means. The CBDA protocol uses 

SuperLearner as black-box machine learning ensemble predictor. 

We can look at the SuperLearner as a data-adaptive machine learning approach to 

prediction and density estimation. It uses cross-validation to estimate the performance 
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of multiple machine learning models, or the same model with different settings. The 

results shown in this study have been generated using 55 different classification and 

regression machine learning algorithms (see Table 2). 

Table 2: Library of the 55 different classification and regression machine-learning 
algorithms used by the ensemble predictor SuperLearner in our CBDA 

implementation (SL.library).
Base Learner 

Class Base Learner Different specifications Reference
Glmnet 
(SL.glmnet)

"SL.glmnet" "SL.glmnet.0" "SL.glmnet.0.25" 
"SL.glmnet.0.50“ "SL.glmnet.0.75“ [35, 36]

bartMachine 
(SL.bartMachine)

"SL.bartMachine" "SL.bartMachine.500" 
"SL.bartMachine.100“ "SL.bartMachine.20“ [37, 38]

Support Vector 
Machine (SL.svm)

"SL.svm" "SL.svm.radial.10" 
"SL.svm.radial.0.1“ "SL.svm.radial.default" 
"SL.svm.poly.2.0" "SL.svm.poly.3.0" 
"SL.svm.poly.3.10" "SL.svm.linear" 
"SL.svm.poly.3.n10" "SL.svm.poly.6.0" 
"SL.svm.sigmoid“ "SL.svm.poly.6.10" 
"SL.svm.poly.6.n10" , 

[11]

Random Forest 
(SL.randomForest)

"SL.randomForest" "SL.randomForest.1000" 
"SL.randomForest.500" "SL.randomForest.300" 
"SL.randomForest.100" "SL.randomForest.50" 
"SL.randomForest.20“

[15, 16]

Xgboost (SL. 
Xgboost)

"SL.xgboost" "SL.xgboost.500" 
"SL.xgboost.300“ "SL.xgboost.2000" 
"SL.xgboost.1500" "SL.xgboost.d3" 
"SL.xgboost.d5" "SL.xgboost.d6" 
"SL.xgboost.gau" "SL.xgboost.shrink.15" 
"SL.xgboost.shrink.2" "SL.xgboost.shrink.05" 
"SL.xgboost.shrink.25“

[9, 10, 39]

K-nearest neighbor 
(SL.knn)

"SL.knn","SL.knn.100","SL.knn.50","SL.knn.25", 
"SL.knn.5" [12]

Others
"SL.glm" "SL.bayesglm" "SL.earth" 
"SL.glm.interaction“ "SL.ipredbagg" "SL.mean" 
"SL.nnet" "SL.nnls“

Details on default and modified parameters for each of the machine learning algorithm 

classes can be found in the Text S2. After each machine learning model has completed 
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the analysis on each subsample, SuperLearner then creates an optimal weighted 

average of those models (i.e., ensemble predictor), using the test data performance. 

This approach has been proven to be asymptotically as accurate as the best possible 

prediction algorithm that is tested [13]. Although we do not directly discuss convergence 

results of the SuperLearner in this study, we outline a two-pronged approach for 

assessing the overall performance and computational convergence of our CBDA 

method (see Section 2.4).

2.3. CBDA two-phase bootstrapping strategy

CBDA resembles various ensemble methods, like bagging and boosting algorithms, in 

its use of the core principle of stochastic sampling to enhance the model prediction [28]. 

The purpose and utilization of the derived samples is what makes CBDA unique as it 

implements a two-phase bootstrapping strategy. In phase one, similar to the 

compressive sensing approach for signal reconstruction [29], CBDA bootstrapping is 

initiated by the divide-and-conquer strategy, where the Big Data is sampled with 

replacement following some input specifications (e.g., see section 2.1 and Table 1 here 

and as described in [30]). In phase two, during the CBDA-SuperLearner calculations, 

additional cross-validation and bootstrapping inputs are passed to each base learner 

included in the meta-learner/SuperLearner. In fact, the SuperLearner uses an internal 

10-fold cross-validation, which is applied to each of the base learners in the SL.library. 

Moreover, one of the (optional) inputs for the SuperLearner is a set of data for external 

validation. In this study, the external validation set is specified as twice the number of 

the cases of the training chunks (600 vs. 300) and the same number of features. 
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Technically, this approach does not represent an external validation, since it comes 

from the same dataset, but no case included in the internal validation sample (600x30) 

would also appear in the training sample (300x30). We choose a much larger external 

validation set simply because there is no scarcity of data and also because the 

increased size does not affect CPU time (it’s just the application of the ensemble 

predictor model trained on the 300x30 sample).

As many distinct boosting methods can be included within the meta-learner library (e.g., 

XGBoost), combining the power of multi-classifier boosting within a single base learner 

into the larger CBDA ensemble prediction enhances the method’s power by aggregating 

across multiple base learners. Many studies examine the asymptotic convergence of 

bagging, boosting and ensemble methods [31-34]. Similar approaches may be 

employed to validate CBDA inference in terms of upper error bounds, convergence, and 

reliability. We highlight the strategies we pursue in this study in Section 2.5.

2.4. Signal filtering and False Discovery Rate (FDR) calculation

Since CBDA exploits the subsampling strategy for feature mining purposes, it is 

important to have an assessment of the False Discovery Rates (FDR) when ranking the 

most informative and predictive features. We describe now a new and general 

procedure to filter the signal and approximate CBDA False Discovery Rates. After the 

CBDA learning/training stage is completed, it is critical to determine the optimal number 

 of top-ranked predictive models to choose from the total number  computed. We 𝑀 ∗ 𝑀

now outline a new procedure, which comprises two steps. The first step selects  top-𝑀 ∗
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ranked models and plots the feature frequencies emerging from the  subsamples. 𝑀 ∗

Then as a second step, we define a probabilistic cut-off  to select the likely signal (i.e., 𝛼

a subset of features with significantly higher frequencies). In this context, a signal is a 

feature frequency significantly higher than the others. 

Now,  can be between 0 and . If  is too low or too high, no signal can be 𝑀 ∗ 𝑀 𝑀 ∗

detected (see Figure 2A-C). For each  value chosen, we plot the resulting feature 𝑀 ∗

frequency distribution. For , each feature frequency follows a binomial 𝑀 ∗ = 𝑀

distribution, with probability  . The distribution of the feature frequencies then follows a 1
𝑝

normal distribution, since it is the result of a linear transformation of a very large number 

of binomial stochastic variables (see [40] for details). The mean  and standard 𝜇

deviation of the features frequency distribution across the  subsamples can give us 𝜎 𝑀

a way to control the CBDA False Discovery Rate and suggests a cut-off for selecting 

True Positives (i.e., TP) for different . By construction, if we plot the distribution of 𝑀 ∗

the feature frequencies across the  subsamples, we see an approximately normal 𝑀

distribution centered on the mean frequency   with a certain variability given by the 𝜇 ∼
1
𝑝

standard deviation  (see Figure 2A). By setting different  we can then control false 𝜎 𝛼

positives (i.e., FP). 

Figure 2: Procedure to generate Precision Recall and AUC plots. The consistent 
colors in the three Panels indicate identical significance levels based on the “normal” 
histogram in Panel A. Panel A: histogram of feature frequencies for the Binomial 
dataset with 100,000 cases and 10,000 features, for =5,000. Panel B: histogram of 𝑀 ∗

the features frequencies across the 1,000 Top Ranked models. Panel C: Precision-
Recall plot for the Binomial dataset with 100,000 cases and 10,000 features, for 𝑀 ∗

. Each circle represents a cutoff based on Figure 2B distribution for different = 1,000 𝛼
. The area under the curve (AUC) in Panel C is then used to assess the quality and 
accuracy of  (i.e., Top-Ranked models to consider).𝑀 ∗
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For example with an , we obtain . Decreasing  𝛼 = 𝑒 ‒ 6 𝐶𝐵𝐷𝐴𝐹𝐷𝑅 ‒ 𝑐𝑢𝑡𝑜𝑓𝑓 =  𝜇 + 4.75𝜎 𝛼

forces a more conservative FDR. The criteria will consider any feature density value 

above the  as a Positive. For the synthetic datasets, the new CBDA 𝐶𝐵𝐷𝐴𝐹𝐷𝑅 ‒ 𝑐𝑢𝑡𝑜𝑓𝑓

function CBDA_slicer() will generate AUC (i.e., Area Under the Curve) trajectories 

based on different  and . The maximum of each trajectory will determine the 𝑀 ∗ 𝛼

optimal  (see Figure 3A-C). The False Discovery Rate can be then calculated as the 𝑀 ∗

ratio of False Positives over the Positives (i.e., FP/P).

Figure 2A shows an example of the histogram of feature frequencies resulting from one 

of the synthetic dataset results for =5000 (Figure 2A). Figure 2 is meant to be 𝑀 ∗

illustrative of the methodology rather than showing the specific results. Based on the 

features distribution shown in Figure 2B and the hypothetical cut-off values set in 

Figure 2A, several  determine the values for the Precision-Recall (PR) plots, see 𝛼

Figure 2C, which shows the PR AUC plot for . 𝑀 ∗ = 1,000

In real case scenarios, the True Positive rate may not be known. Thus, the feature 

mining process may be guided by the optimal settings suggested by the synthetic case 

studies. Namely, we used the best top-ranked value (i.e., 1,000) and 5,000, 300x30 and 

600x30 for the total number of samples, size of the training and validation sets, 

respectively.
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2.4.1. Precision-Recall and AUC trajectories

Usually, the number of features measured in Big Data is very large (e.g., ~1-10K), 

resulting in a number of True Negatives ((TN, referring to features) that is typically 2-3 

logs larger than the number of True Positives (TP). Due to this built-in class imbalance, 

the classical ROC curves (i.e., False Positive Rates-PPR vs True Positive Rates-TPR) 

are not very informative in discriminating between different  combinations. We then 𝑀 ∗

decide to use Precision-Recall (PR) plots to select the best  and , since they do not 𝑀 ∗ 𝛼

account for True Negatives (TN). The definitions of Precision and Recall are given 

below: 

   and    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 .

Where FP and FN represent False Positives and False Negatives, respectively. The 

Precision Recall Area Under Curve (PR AUC) is defined as the area under the PR 

curve, and that is what we use to generate our AUC trajectories. An ideal algorithm with 

only true positives and negatives would have a PR curve in the upper-right corner and a 

PR AUC of one. The new function called CBDA_slicer() generates a set of plots after 

the training stage of CBDA that display (1) the frequency of each feature as a function 

of the top-ranked  models, (2) the correspondent PR plot, and (3) an AUC plot. The 𝑀 ∗

AUC plot summarizes the results of the RP as a function of . In a real case scenario, 𝑀 ∗

the function CBDA_slicer() generates a final False Discovery Rate plot, instead of the 

AUC plot, since no true positives are known. Details on the CBDA_slicer() function can 

be found in the Text S3 as well as in through the help() method part of CBDA 2.0 

package [19].
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2.5. CBDA Convergence

This section outlines two alternative approaches for testing CBDA convergence and 

evaluate the overall performance on a generic dataset. Both approaches rely on the 

analysis of the ensemble predictor output. More specifically we first look at the overall 

distributions of the weights/coefficients that the ensemble predictor assigns to each of 

the machine learning and classification algorithms throughout the training stage of the 

CBDA protocol (see Section 2.5.1 for details). The working hypothesis is that if there is 

energy/signal/information in the data, it will be reflected in some/few algorithms being 

consistently more predictive than others. The assumption behind each machine learning 

and classification algorithm is that there is a specific correlation structure in the data, 

and that we can exploit it for building better predictive models. For example, when we 

use logistic regression models, we assume a specific relationship (e.g., log-linear) 

between the output to be predicted and the features (covariates or regressors) available 

in the dataset. Other algorithms do not return explicit relationships between outcomes 

and features (i.e., support vector machine, neural network, random forest), however 

they still superimpose specific joint distributions on the data for the purpose of improving 

our predictions. 

The second approach examines the similarity and variability among the ensemble 

predictor weights/coefficients across the top predictive models. Here the assumption is 

that higher similarity and lower variance can suggest the convergence of the CBDA 

protocol (see Section 2.5.2 for details).
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2.5.1. Ensemble predictor’s weights distribution analysis

The ensemble CBDA-SuperLearner model utilizes Non-Negative Least Squares (NNLS) 

to estimate the coefficients of a linear combination of predictive models:

𝑓𝑆𝐿( ⋅ ) = 𝜆1 𝑓1( ⋅ ) + 𝜆2𝑓2( ⋅ ) + ... + 𝜆𝑠 𝑓𝑠( ⋅ ),  
𝑠

∑
𝑗 = 1

𝜆𝑗 = 1 .

Each of the  is a base learner, e.g., weak learners available in the SL.library (see {𝑓𝑗} 𝑠
𝑗 = 1

Table 2 for the list of all the base learners used in the current CBDA implementation). 

For each ensemble prediction model , the weights/coefficients  are optimized to 𝑓𝑆𝐿( ⋅ ) 𝜆𝑗

return the best ensemble prediction . In other words, the NNLS step weights the  𝐹𝑆𝐿(𝑋,𝑌)

performance of each algorithm in the SuperLearner training/learning step and combines 

them in a way that the performance of  is as good as the best among the . Note 𝐹𝑆𝐿 𝑓𝑗

that some algorithms might perform better than others in certain “regions” of the Big 

Data and by combining them, we can improve the overall meta-algorithm performance. 

Early studies suggested some approaches for defining asymptotic and ergodic 

properties of ensemble predictors [13, 27, 41, 42].

If we assume that only one or very few statistical models (e.g., priors and likelihoods 

function assumptions) are the “true” assumptions/models explaining the data, then only 

a few  will be nonzero (or significantly non-trivial), or equivalently the set  , 𝜆𝑗 𝜆𝑗 ≠ 0

,  will be sparse. If we populate the SL.library with a large enough classes of 𝑗 = 1,2,…,𝑠

learning algorithms, then a sparse set  , , will very likely return a better 𝜆𝑗 ≠ 0 𝑗 = 1,2,…,𝑠

prediction than a dense one.
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We will investigate the relationship between the sparsity of  and the CBDA {𝜆𝑗 ≠ 0} 𝑠
𝑗 = 1

performance by generating enough empirical evidences to support our hypothesis. For 

example, we will compare the distributions of weights/coefficients between the studies 

on synthetic datasets generated without signal (e.g., Null datasets) and with signal, an 

ideal controlled scenario of white noise vs perfect information. We will then investigate 

the correlation between ensemble predictor accuracy or performance and the  {𝜆𝑗} 𝑠
𝑗 = 1

distributions using large biomedical data.

Figures 6 and 7 show some of the results of how this approach can shed some light 

into the overall performance of the CBDA protocol. A new function called SLcoef_plot() 

generates a barplot of the means of the SuperLearner coefficients for each algorithm in 

the SuperLearner library (across the M predictive model outputs)  resulting from the 

CBDA training stage. Details on the SLcoef_plot() function can be found in the Text S3 

as well as in the help of the new package [19].

2.5.2. Dissimilarity analysis of the ensemble predictor weights

The convergence performance of ensemble predictors is typically assessed by 

evaluating the variance of the models predictions.  For instance, in bagging, by simply 

calculating the variance of prediction results for each model, it is possible to assess 

whether the added model is useful or not. The classical strategy in bagging is described 

below, 

𝑓(𝑥) = ∑
{𝛽 ∈ 𝐵}

𝜆𝛽 𝑓𝛽(𝑥),  e.g.,  𝑓(𝑥) =
1
𝐵 ∑

{𝛽 ∈ 𝐵}
𝑓𝛽(𝑥) . 

If , for some , then the adding and averaging step are meaningful.∑
𝑥𝑉𝑎𝑟𝛽 (𝑓𝛽(𝑥)) ≤ 𝛼  𝛼
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In CBDA, we use a similar strategy but the ensemble model predictions are now based 

on subsamples of the original Big Data. CBDA does not add models, but it ranks them 

based on two prediction performance metrics (i.e., Mean Squared Error-MSE and 

Accuracy). By evaluating the similarity and variability of the weights assigned to each 

algorithm of the ensemble predictor across the top-ranked predictive models, we mimic 

the bagging strategy of tracking the variance of the model predictions to ensure 

convergence. 

CBDA Implementation: After the initial steps of the CBDA protocol (random 

subsampling, training, ranking) of CBDA (see [4] for details), we obtain the models 

listed below (note: they've already been ranked by the accuracy/MSE):

SuperLearner([𝑋𝑗,𝑌𝑗])→𝑓𝑗( ⋅ ), 𝑗 = 1,...,𝑀.

Here  is the total number of subsample cases, and  is a linear combination of the 𝑀 𝑓𝑗( ⋅ )

models trained by base learning algorithms in SuperLearner, which has the form of

𝑓𝑗( ⋅ ) = 𝜆𝑗
1 𝑓𝑗

1( ⋅ ) + 𝜆𝑗
2 𝑓𝑗

2( ⋅ ) + ... + 𝜆𝑗
𝑠 𝑓𝑗

𝑠( ⋅ ), 𝑗 = 1,...,𝑀.

We denote the weights of the base learners as a vector  equivalent to  𝜆𝑗   = (𝜆𝑗
1,𝜆𝑗

2,...,𝜆𝑗
𝑠)

the weights matrix:

Λ𝑀'
= ( 𝜆1

1 ⋯ 𝜆1
𝑠

⋮ ⋱ ⋮
𝜆𝑀'

1 ⋯ 𝜆𝑀'
𝑠

) .

Here  is a changing parameter, which ranges from the total number of subsample 𝑀'

experiments , down to a small number. In detail, we design an algorithm calculating 𝑀

the change of similarity among coefficient matrix by using Bray-Curtis distance [43], 
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described as . Ideally we want to see higher similarity with smaller values 𝐵𝐶𝑑 =
∑|𝑥𝑖 ‒ 𝑥𝑗 |
∑(𝑥𝑖 + 𝑥𝑗)

of  If the  does not make any significant change across the decreasing values of 𝑀'. 𝐵𝐶𝑑

, we can speculate that the performance of the CBDA protocol was not adequate. 𝑀'

Figure 4 shows some results of how this approach can guide our selection of the top 

predictive models at the end of the training stage of the CBDA protocol.

A new function called BCplot() generates Bray-Curtis index and variance trajectories of 

the M vectors of SuperLearner coefficients resulting from the CBDA training stage.

Details on the BCplot() function can be found in the Text S3 as well as in the help() 

function of the new package  [19]

A new function called Overfitting_plot() generates two plots for each dataset after the 

Overfitting Test stage of the CBDA is completed (see Overfitting Plots in Fig S1). The x 

axis of each plot shows the 100 top-ranked features resulted from the CBDA training 

stage. The y axis shows Accuracy and MSE, respectively. By analyzing the trend of the 

overfitting plots, we can have a general assessment of the overall performance of the 

CBDA protocol on any dataset. This should be the first function to call at the end of the 

CBDA Overfitting Test stage. Details on the Overfitting_plot()  function can be found in 

the Text S3 and the help() function in the CBDA package [19]. 

2.6. Datasets

For the purpose of testing the protocol and assessing the CBDA performance. We 

validate the CBDA technique on three different datasets. The first two, namely the Null 
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and Binomial datasets, are synthetically generated as cases (i.e., ) and features (i.e., 𝑛 𝑝

), see Table 1 for details. Similar to our previous study, for all the Binomial datasets, 

only 10 features are used to generate the binary outcome variable (these are what we 

call truly predictive features, see details below in the Binomial Datasets section). The 

real case-study represents a real biomedical dataset on aging and neurodegenerative 

disorders (UK Biobank) [5, 6]. This data archive includes appropriate and relevant 

categorical (binomial/binary) outcome features, as well as clinical and neuroimaging 

measures.

2.6.1. Null datasets

The first set of data is a "white noise" dataset (i.e., Null dataset), where the outcome  is 𝑌

a realization of a Bernoulli vector of length  (i.e.,  , with 𝑛 𝑌 = [𝑌1,𝑌2,…,𝑌𝑛] 𝑌𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖

) that is completely independent from the set of features . Each (0.5), 𝑖 = 1,2,….,𝑛 𝑋

column of   is an independent realization of a Gaussian random variable with mean 0 𝑋

and standard deviation 1 (i.e., , with . We will refer 𝑋 = [𝑋1,𝑋2,...,𝑋𝑝] 𝑋𝑗 ∼ 𝑁(0,1),𝑗 = 1,2,...,𝑝

to  as number of cases and to  as number of features.𝑛 𝑝

2.6.2. Binomial datasets

The second set of data is similar to the Null dataset, but the Bernoulli vector   is now 𝑌

an explicit function of the set of features. We establish the dependency of  to  by 𝑌 𝑋

selecting 10 features from  to build a linear additive model , with non-zero 𝑋 𝑌 ∼ 𝑋

coefficients for only these 10 features:

𝑍 = 𝑏𝑘1𝑋𝑘1 + 𝑏𝑘2𝑋𝑘2 + 𝑏𝑘3𝑋𝑘3 + … + 𝑏𝑘10𝑋𝑘10 + 𝑒, with 𝑒 ∼ 𝑁(0,1) and
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𝑏 = 𝑏𝑘𝑗 (j = 1,2,...,10))

The Bernoulli outcome Y is then generated by an inverse logit on the outcome of the 

linear additive model (i.e.,   and ). When 𝑃𝑟 =
𝑒𝑧

1 + 𝑒𝑍 𝑌𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑟),𝑖 = 1,2,…,𝑛

necessary, various strategies may be used to binarize the predicted outcomes using the 

corresponding probability values. 

2.6.3. UK Biobank archive

The UK Biobank dataset is a rich national health resource that provides census-like 

multisource healthcare data. The archive presents the perfect case study because of its 

several challenges related to aggregation and harmonization of complex data elements, 

feature heterogeneity, incongruency and missingness, as well as health analytics. We 

built on our previous UK Biobank explorative study [6] and expand to include several 

outcomes for classification and prediction using our CBDA protocol.

The UK Biobank dataset comprises 502,627 subjects with 4,317 features ([44] and 

www.ukbiobak.ac.uk). A smaller UK Biobank subset with 9,914 subjects has a complete 

set of neuroimaging biomarkers. By matching the ID field, we are able to merge the two 

datasets into a more comprehensive one with 9,914 subjects and 7,614 features (see 

Table 3 for details).

Table 3: Aggregated UK Biobank clinical assessments and neuroimaging biomarkers.

Source Types of Data Sample Size
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 For our CBDA analysis, we then started with this subset of the entire UK Biobank 

dataset (i.e., 9,914 cases), with 3,297 neuroimaging biomarkers and 4,317 clinical and 

demographic features. Due to the high frequency of missing data in the 
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Baseline Characteristics: age, DOB, sex

UK Biobank Assessment Centre:  Interview 

information, Physical measures, Cognitive 

function, Imaging: MRI, DXA, Biological sampling: 

blood, saliva, urine

Questionnaire Information: Sociodemographics, 

Life style and environment, Psychosocial factors, 

Health and medical history, Sex-specific factors.     

Biological Samples: blood, saliva, urine

Genomics: genotypes, imputation 

(genotypes/haplotypes), HLA

Online Follow-up: diet, cognitive function, work 

environment, mental health.  

Additional Exposure: local environment, physical 

activity measurement.  

Health-related Outcomes: death, cancer, stroke, 

myocardial infarction.  

Imaging Biomarkers

The collection includes 9,914 subjects 

with 4,316 clinical/demographic 

features and 3,297 imaging 

biomarkers. No longitudinal data are 

included. The imaging biomarker data 

are complete, while there is a lot of 

missing information for the 

clinical/demographic features. Among 

the clinical/demographic features, 

only 23 have complete data, and 

1,616 have complete missingness. 

C
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o Build models to predict these clinical features using imaging biomarkers

o Impute the missing data for the clinical/demographic features

o Use text mining methods to analyze the free text. Predict clinical features using unstructured data

o Validate the prediction model using the hospital admission dataset
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clinical/demographic feature subset (~72% of missingness), many of the clinical and 

demographic features were discarded (see Section 3.4 for details).

University of Michigan has signed a materials-transfer-agreement (MTA), 

20171017_25641, with the UK Biobank consortium for the use of these UKBB data.

2.6.4. Data availability

Large synthetic datasets can be downloaded using the pipeline workflow script available 

on our GitHub repository [45]. A client version of LONI pipeline environment [18] can be 

installed on a local machine and a guest account can be created with the LONI Pipeline 

Java/WebStart Client [46]. A pipe script can be downloaded from our GitHub repository, 

in the Data section [45]. After making the appropriate edits to the script in order to point 

to the appropriate local directories and remote data file name, the selected dataset will 

be compressed first and then saved in the local directory specified. Otherwise, if a client 

version is not available, the LONI webapp [47] can be used. Similar edits should be 

made to the pipeline script before loading on the LONI webapp. 

Every synthetic dataset used in this manuscript can be generated from scratch using 

the R script in the Data Section of our GitHub repository [45]. For larger datasets, it is 

recommended to use the R script locally. Small size synthetic datasets are available on 

our GitHub repository [45]. The UK BioBank dataset is not publicly accessible, unless 

an IRB approval is available. A modified publicly available version of it can be 

downloaded from our GitHub repository [45]. A proxy of the UK BioBank dataset is 

publicly available on GitHub; the entire UK Biobank data is available separately 

(www.ukbiobank.ac.uk).
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3. Results

We review now all the Results of the CBDA protocol applied to the synthetic datasets 

first, and then on the real case study datasets. We will describe the feature mining 

performance, test the proposed performance procedure as well as the two pronged 

approach in assessing CBDA convergence.

Figure 3: Precision Recall AUC values for different synthetic datasets and Top-
Ranked models . We always performed  subsamples. We calculated the 𝑴 ∗ 𝑀 = 5,000
PR AUV values in Panels A-C for different values of , e.g., 100, 500, 1,000, 2,000, 𝑀 ∗

3,000 and 5,000.  The horizontal lines in Panels D-F are calculated for  values 0.9 𝛼
(black), 1e-2 (red), 1e-5 (green), 1e-10 (yellow), 1e-16 (brown) and 1e-20 (blue).  Figure 
2 has more details on how the horizontal line values are calculated

3.1. Binomial datasets results

The next sets of results highlight the performance of our CBDA protocol on three 

synthetic Binomial datasets as described in Table 1 and in the Methods section. Each 

of the Binomial datasets has only 10 “true” features out of 1,000 and 10,000 features 

total, respectively. Figure 3A-C below shows the AUC trajectories based on different 

 (from 100 up to 5,000) and  (from 0.9 down to ). After setting the , then 𝑀 ∗ 𝛼 𝑒 ‒ 20 𝑀 ∗

True and False Positives, as well as True and False Negatives are calculated for each  𝛼

(displayed as horizontal red lines in Figure3D-F). Figure 3D-F show the correspondent 

frequency plot for the best  (selected as the maximum of the AUC trajectories, large 𝑀 ∗

circles in black in Figure 3A-C). For each circle in Figure 3A-C, a histogram like Figure 

3D-F is generated and, based on the cutoffs calculated on the histogram for 𝑀 ∗ =

 (e.g., Figure 2A shows the histogram for Figure 3B at ), a Precision-5,000 𝑀 ∗ = 5,000

Recall AUC curve is created (e.g., the PR AUC plot for Figure 3B at  is 𝑀 ∗ = 1,000 

shown in Figure 2C). For ease of illustration, Figure 3 does not display the cutoff with 

different colors (as in Figure 2).
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We used the accuracy of the predictions as performance metric to rank each CBDA 

predictive model applied to each subsample. 

3.2. SuperLearner Coefficients Distributions: convergence by dissimilarity

Similarly to the analysis performed in Section 3.1, we look at the distribution of the 

SuperLearner coefficients/weights across the  top-ranked predictive models to gain 𝑀 ∗

insights into CBDA overall convergence. Figure 4 shows the results for the Binomial 

dataset with 10,000 cases and 1,000 features, using Accuracy as performance metric. 

Similar plots for all the Synthetic datasets analyzed in this study are shown in Fig S2, 

and they include both Accuracy and MSE as performance metric. For  (i.e., 𝑀 ∗ = 𝑀

5,000), the coefficients/weights always show a flat distribution (Figure 4A), since many 

of the subsamples do not have any true feature in it, resulting in a poor predictive 

model. If we only look at the distribution of the  top-ranked predictive models, some 𝑀 ∗

of the algorithms in the SuperLearner library performs better than others (Figure 4B). 

We could use the largest coefficient/weight obtained for  as a cut-off for “true 𝑀 ∗ = 𝑀

positive” algorithms in the SuperLearner library for the optimal  (as returned by the 𝑀 ∗

procedure described in Section 3.1).

Figure 4: Ensemble predictor’s coefficients/weights distribution analysis, Binomial 
(Panels A-B) and Null (Panels C-D) datasets analysis (each with 10,000 cases and 
1,000 features). The x axis displays the list of the algorithm in the SuperLearner library. 
The y axis shows the mean value of each SuperLearner coefficient across the 

 (Panels A and C) and  (Panels B and D) top-ranked models.𝑀 = 5,000 𝑀 = 𝑀 ∗ = 1,000

To validate this cut-off, we also plot the coefficients/weights distribution obtained from 

the analysis of the Null dataset. The same cut-off value emerges from the Null dataset 

analysis (Figure 4C). The only difference between the Null and Binomial datasets is 
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that for the Null dataset no “better” algorithm emerges if we only look at the distribution 

of the  top-ranked predictive models (Figure 4D). Thus, by comparing the 𝑀 ∗

SuperLearner coefficients/weights distribution between  and , we can first check if 𝑀 𝑀 ∗

the CBDA protocol converged to a subset of better-performing algorithms. The overall 

quality of the CBDA convergence can be then assessed by looking at the overall 

accuracy as suggested by the Overfitting Test stage of the protocol.

Another way to use the SuperLearner coefficients/weights to gain insights into the 

CBDA protocol convergence is to compare the Bray-Curtis (BC) dissimilarity index [43] 

calculated on the Binomial and Null datasets distributions, controlling for M*. Figure 5A-

B shows the BC index as a function of , from 50 to 5,000, calculated on the Binomial 𝑀 ∗

dataset with 10,000 cases and 1,000 features. The key information from Figure 4 is 

about the dynamics of the index rather than on its values over . The dynamics are 𝑀 ∗

unchanged in the Null case if  is varied, while, in the Binomial case, the lower  is, 𝑀 ∗ 𝑀 ∗

the lower the BC index is, suggesting an overall less diverse coefficients/weights 

distribution. The variance of the coefficients/weights follows a similar pattern when 

comparing the Binomial (decreasing with a minimum, Figure 5C) and the Null (flat, 

Figure 5D) cases. The variance also shows a result consistent with Figure 3A, where 

the variance of the coefficients/weights can be used to pinpoint the optimal . In other 𝑀 ∗

words, we can choose  as the minimum of the variance of the coefficients/weights 𝑀 ∗

over .𝑀 ∗

Figure 5: Dissimilarity and variance analysis of the coefficients/weights 
distributions of the ensemble predictor. Binomial (Panels A-C) and Null (Panels B-
D) datasets analysis (each with 10,000 cases and 1,000 features). The x axis displays 
the top-ranked models  (from 50 to 5,000). The y axis shows the mean value of the 𝑀 ∗

Bray-Curtis dissimilarity distance within the SuperLearner coefficients (Panels A-B) and 
the variance of the SuperLearner coefficients (Panels C and D).
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3.3. Overfitting Test Stage

The Overfitting Test stage (see Fig S1 for details) of the CBDA protocol generates 

nested nonparametric models using the top 50 (or 100) features selected in the training 

stage. Figure 6 shows the performance metrics Mean Squared Error - MSE and 

Accuracy plotted against the number of top features used in each nested predictive 

model. This example uses the results obtained on the synthetic binomial datasets (as 

described in Section 2.6). The plots give us an overview of potential overfitting issues. 

The circles in Figure 6 highlights the optimal number of features to include in the best 

predictive model, using either Accuracy or MSE as performance criteria. It is worth 

noting that for the Binomial datasets, the optimal number of top features to be included 

in the best predictive model is always consistent with the number of true features used 

to generate the synthetic output, i.e. 10. In fact, across the three Binomial Datasets, 

CBDA always ranked at least 8 of the 10 true features among the top 10. As shown by 

the overfitting plots in Figure 6, having 7-8 true features in the predictive model already 

ensures an accuracy of ~90%.

Figure 6: Overfitting analysis for the Binomial datasets. The y axis shows the 
performance metric (Panels A-C: Accuracy, Panels D-F: MSE). The x axis shows the 
50 Top-ranked features resulting from the CBDA Training Stage, and used to generate 
the nested models during the CBDA Overfitting Test Stage on which the performance 
metrics are calculated. The red circles identify the likely optimal choices (i.e., max 
performance without overfitting) for the number of features to include in the best 
predictive model.

3.4. Clinical Data Application: UK Biobank Dataset: data wrangling stage

We first acquire a subset of cases from the UK Biobank with complete neuroimaging 

measures (3,297 biomarkers) for a total of 9,914 subjects. Then we expand the data to 
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include all the 4,316 physical features measured on these 9,914 subjects. The resulting 

initial merged dataset represents a second-order tensor of dimensions 9,914 x 7,614 

(with one extra feature being the subject ID). The next steps were performed to ensure 

data harmonization and congruency.

For example, we eliminated all the constant features (1,964, all from the subset of 

physical features), bringing the UKBB dataset down to 2,352 physical features.

Then we address the magnitude of missingness in the subset of physical features (the 

neuroimaging subset is complete). The plot below in Figure 7A shows the number of 

cases/subjects corresponding to different level of missingness. The more missingness 

we allow the more cases/subjects can be included in the final dataset. However, large 

missingness can seriously affect our results, no matter how efficient and accurate the 

imputation is. Based on the landscape shown in Figure 7A, we chose a 20% 

missingness as the best compromise that allows for a maximum number of additional 

features with a manageable level of missingness (increasing the missingness to 30% or 

40% will only add approximately 50 subjects). Only 19 features are complete (see the 

list in Text S4).

Figure 7: UK Biobank data wrangling statistics and results. Panel A: Missingness 
analysis. The x axis has the 2,352 features left in the physical dataset after eliminating 
the constant features. The y axis displays the % of missingness in the dataset, as a 
function of the number of features added. For example, the red horizontal line indicates 
a missingness of 20%, and the blue vertical line shows that if we allow for at most 20% 
missingness in the physical dataset, we end up with 951 features (discarding the other 
1,401 features with more than 20% missingness). Panel B: Analysis of the 951 features 
left in the physical dataset. The x axis shows the number of levels (up to 30) for each of 
the categorical features in the physical dataset with at most 20% missingness. The goal 
of this analysis is to identify possible binary target outcomes for the CBDA analysis. The 
large peak at 4 levels shows features that are actually binary, with some incongruencies 
(either NAs, or values of -1 and -3 assigned to a binary outcome). The data cleaning 
step at this stage needs to be done manually and can only rarely be automated. Text 
S4 has some detail on the list of features up to 10 unique levels.
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The subset of physical features was further reduced to 951 features (still 9,914 cases). 

Our goal was to clean the data as much as possible before making it available to the 

CBDA protocol. Thus, the next data wrangling step analyzed the unique values for each 

feature, merging categorical and numeric (both integer and double) features. Figure 7B 

shows the number of features that have certain number of levels (or unique values), 

starting from 2 up to 30. We did not include the missing values code “NA” as a level. 

Figure 7B shows a peak at levels=4 with 31 features.

Due to the incongruency of the UKBB dataset, some obvious binary features are often 

coded with 4 levels (e.g., ), and the same Field code or ID is used multiple 0, 1, ‒ 1, ‒ 3

times for different time points. For these features, we eliminated the levels -1 and -3. 

The CBDA protocol will include a new module in future studies to address longitudinal 

data. We treated these pseudo-longitudinal data fields as the same feature and 

depending on the type of the measure, either exclude them or take the mean. This extra 

“cleaning” step reduced the physical features to 830. Unfortunately, these steps are not 

automated and require specific knowledge of the data under analysis, especially if the 

outcome of interest shows these incongruences. 

Another important step is to ensure that any of the features included as “predictors” for 

the outcome of interest are not correlated to the outcome of interest (e.g., they measure 

the same or similar outcome). For example, the two features “X2090: seen doctor for 

nerves, anxiety, tension or depression" and “X4598: ever depressed for a whole week” 

are highly correlated, and using one as the outcome of interest should exclude the use 
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of the other one as a predictor. An exhaustive and automated search will require 

adequate handling of unstructured data, which we will include in a separate dedicated 

module of the CBDA protocol. To demonstrate the CBDA protocol performance, for this 

study, we only chose one outcome of interest out of the 31 outcomes with 4 levels, 

namely "X1940: Irritability". The initial levels for “Irritability” were , thus we ‒ 1, ‒ 3, 0, 1

eliminated the levels  and  to make it a binary outcome The physical features ‒ 1 ‒ 3

labels and counts for up to 10 unique levels are shown in Text S4. The final UK Biobank 

subset analyzed to predict Irritability is 9,569 cases/subject with a total of 4,129 

combined features: ID and outcome of interest (i.e., Irritability), 3,297 neuroimaging 

biomarkers and 830 physical features, the latter with at most 20% missing values.

3.5. CBDA applied to the UK Biobank Dataset 

We applied the new CBDA functions to assess the CBDA performance during the 

training (i.e., CBDA_slicer(), BCplot() and SLcoef_plot()) and validation 

(Overfitting_plot()) stages. Ultimately the Overfitting_plot() results will determine the 

overall performance of the CBDA protocol on each dataset. Figure 8A shows the 

accuracy results of CBDA protocol for the top 100 features returned by the CBDA 

Overfitting Test stage executed on the neuroimaging biomarkers and the physical 

features as predictors. Fig S3-A shows the equivalent plot for the neuroimaging 

biomarkers only. 

Figure 8: Overfitting plots for the UK Biobank dataset CBDA analysis. The x axis 
shows the top 100 (Panel A) and top 300 (Panel B) features returned by the CBDA 
training stage (see Supplementary Figure S1 for details) on the UK Biobank dataset 
with both neuroimaging and clinical biomarkers. The y axis represents the accuracy of 
the nested models after the CBDA Overfitting Test stage. The details on the features 
can be found in the Table S2 (for Panel A) and S4 (for Panel B).
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The overall accuracy converges to approximately 72% for both datasets, with a slightly 

different dynamic when only the top 5-10 features are included. Tables S1 and S2 show 

the lists of the top 100 features for both datasets analysis. When the physical features 

are included in the analysis, only 5 of them are selected in the top 100 (ranked from 20 

to 24), and they all refer to neuroimaging features (i.e., see the grey cells in the Table 

S2, for details). There is a minimal overlap if we compare the top100 features, namely 4 

features overlap between the 2 datasets analyses (i.e.,"rh_BA45_exvivo_thickness", 

"rh_middletemporal_meancurv", "lh_temporalpole_gauscurv", 

"lh_S_circular_insula_ant_curvind").

The highly correlated features in the biomarker dataset can explain this lack of overlap. 

A pairwise correlation analysis of all the neuroimaging biomarkers shows that 75% of 

the top 200 features (resulting after merging the 2 lists displayed in Text S5) have a 

correlation of 0.37 and higher, 50% of the top 200 features have a correlation of 0.55 

and higher, 20% of the top 200 features have a correlation of 0.72 and higher, and 10% 

of the top 200 features have a correlation exceeding 0.82.

We ran the analysis again increasing the FSR up to approximately 180, using a 

Variance Inflation Factor (VIF) of 6. The VIF for the UKBB dataset is determined by the 

peculiar structure of the biomarker measures. In fact, the same measures are divided 

between a left and right hemisphere (factor of 2) and of approximately 15 measures on 

each region of interest that are correlated (e.g., volume, surface, thickness). We 

assumed a 20% of the number of measures for each ROI to be highly correlated and 
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contribute to an additional scaling factor of 3 (i.e., 20% of 15). Thus, the VIF is 

calculated as , bringing the FSR from 30 to 180. Increasing the FSR further will 2 × 3 = 6

significantly slow down the CBDA protocol without any advantages in term of 

performance.

The results of the CBDA analysis with the VIF=6 are shown in Tables S3 and S4, where 

the top 300 selected features are listed for both datasets, respectively. There is an 

overlap of 34 features between the two analyses (see Table 5 for details). Fig S3-B 

shows the equivalent of Figure 8B with neuroimaging biomarkers only included in the 

analysis. Increasing the FSR does not change the results in terms of overlap. If we 

compare the two CBDA experiments with different FSR, among the top 100 and top 

300, there are 19 overlapping features for the experiment using only neuroimaging 

biomarkers and 9 when using both neuroimaging and clinical biomarkers. The accuracy 

does not change significantly over the top 50 features (although it slightly increases, see 

Figure 8). In such a highly correlated set of features, the inclusion of additional features 

does not affect the performance, especially if the pool of the remaining features is highly 

correlated. Possibly repeating the CBDA experiment a large number of times could 

shed some light into the correlation structure of the dataset with respect to the most 

predictive features, alone and in combination.

Figure 9 shows the SLcoef_plot() and BCplot() functions output for the UK Biobank 

dataset with neuroimaging biomarker and physical features. The SuperLearner 

coefficients distribution shows how the SVM algorithm (with different kernel 

specifications) is consistently the most adequate to analyze the dataset (Figure 9AB). 
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In fact, across the 55 different classification and machine learning algorithms bagged 

into the SL.library of our ensemble predictor, the SVM class has the best predictive 

power. Figure 9A shows the mean SuperLearner coefficients assigned during training 

across the 5,000 subsamples. Figure 9B enforces a threshold of 0.05, however most of 

the algorithms’ coefficients fell well below that, as shown in Figure 9A. No specific 

insights can be gained by looking at the Bray-Curtis and variance plots. The Bray-Curtis 

dissimilarity trajectory generated by the function BCplot() is relatively flat (except for an 

increase for ), with a set of minima between  and  𝑀 ∗ < 500 𝑀 ∗ = 1,000 𝑀 ∗ = 3,000

(Figure 9C). The variance of the SuperLearner coefficients is consistently decreasing 

when  decreases from 5,000 down to 50 (Figure 9D). The analysis on the UK 𝑀 ∗

Biobank with only the neuroimaging biomarkers returns similar results

Figure 9: CBDA training stage for the UK Biobank dataset. SuperLearner 
coefficients distribution analysis (Panels A and B), Panel C: Bray-Curtis similarity index 
on the SuperLearner coefficients distribution as a function of the top-ranked models . 𝑀 ∗

Panel D:  variance of the SuperLearner coefficients distribution as a function of the top-
ranked models .𝑀 ∗
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4. Discussion and Conclusions

There are many challenges and opportunities associated with Big Data and team-based 

scientific discovery. Key components in this knowledge discovery process are curation, 

analysis, domain-independent reproducibility, area-specific replicability, organization, 

management and sharing of health-related digital objects.

Open-science offers a promising avenue to tackle some of these challenges. The FAIR 

data principles that we abide by (i.e., making data Findable, Accessible, Interoperable 

and Reusable) [48] promote maximum use of research data and foster continuous 

development of new methods and approaches to feed data driven discovery in the 

biomedical and clinical health sciences, as well as in any Big Data field.

This work expands the functionality and utility of a new method and approach that we 

developed in our previous study on an ensemble semi-supervised machine learning 

technique called Compressive Big Data Analytics (CBDA).  We designed and built our 

CBDA protocol following the FAIR open-source/open-science principles where the 

scientific community can independently test, validate and expand on our second 

generation technology. The entire protocol, the updated R software package [4, 20] and 

the complete high performance computing (HPC) workflow (i.e., LONI pipeline, see [21] 

for details) are openly shared and publicly accessible on our GitHub repository [19]. As 

in our previous release, CBDA 2.0 has two open-source implementations: (1) a 

platform-agnostic stand-alone R package, and (2) a reproducible pipeline graphical 

workflow (wrapper of the R-package).

In an effort to make the CBDA protocol accessible to a larger pool of researcher so it 

can be deployed on virtually any HPC server, we are working now on recasting the 
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LONI pipeline workflow into more popular and commonly used batch systems like PBS 

and SLURM. Currently the pre- and post-processing steps to efficiently perform 

subsampling are developed as shell and Perl scripts. In order to better and more 

efficiently handle heterogeneous, unstructured and incongruent data types, we are 

recasting the scripts for these two critical steps into the Python language.

Currently, our CBDA 2.0 does not handle longitudinal and unstructured data. We are 

developing methods and approaches to address these challenges in the context of data 

privacy and utility [49, 50] We will incorporate the findings and the corresponding R 

wrappers implementation into the CBDA protocol as soon as they are sufficiently tested 

and validated. A synoptic table of current and future developments for the CBDA R 

packages is illustrated in Table 4.

We tested our second generation CBDA protocol on both synthetically generated and 

real datasets. Our results on synthetically generated datasets confirm and strengthen 

our previous study. Even with significantly reduced  feature undersampling rates (e.g., 

from , down to ), and increased sizes of the datasets analyzed ~1% ‒ 5% ~0.03% ‒ 0.3%

(e.g., up to 1 million cases and 10,000 features), the CBDA protocol can identify most of 

the true features. Our new CBDA functionalities allows now for an immediate check on 

overfitting and possibly convergence issues. The new Overfitting_plot() function applied 

to our results on the synthetic datasets shows how accurate predictions can be 

generated even if only a subset of the true features is mined and selected.

The CBDA classification results on the UK Biobank population-wide census-like study 

provide empirical evidence of effective prediction, especially when the data is extremely 

complex, incongruent, higly correlated and has a lot of missingness. Overall, CBDA 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912485doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912485
http://creativecommons.org/licenses/by/4.0/


performs well with highly correlated features. Multicollinearity plays a key role in 

analyzing the UK Biobank. Results are not completely reproducible due to the features 

being extremely correlated. Also, due to the stochastic nature of the CBDA subsampling 

strategy, once the accuracy reaches ~70% (soon enough, with top 10-20 features), the 

additional features that are added do not improve performance and are selected almost 

at random due to the multicollinearity. The top 10-20 features are also selected semi-

randomly among the correlated top 100-300. The ranking is based on random 

subsampling and the feature selection in such a scenario (highly correlated features) is 

affected by accuracy values that are very close to each other.

The results showcase the scalability, efficiency and potential of CBDA to compress 

complex data into structural information leading to derived knowledge and translational 

action, where specific clinical outcomes can be targeted. Combining the CBDA and the 

UKBtools [51] R packages in the next wave of analysis will definitely streamline and 

facilitate the mapping of features, their descriptions and field ID codes, as well as the 

necessary data cleaning and wrangling before CBDA is implemented.

Even if this study was intended to be explorative and without a clear outcome in mind, 

our CBDA analysis paves the way for a deeper analysis of the UK Biobank dataset. Our 

results may also suggest potentially new avenues of research in the context of 

identifying, tracking, and treating mental health and aging-related disorders.

Table 4: Past, present and future CBDA R package developments.
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CBDA R 1.0 
[past]

CBDA R 2.0: Large Scale 

[current]

CBDA R 3.0: Unstructured and 

Longitudinal Data [future]

Client implementation: 
single and multicore 
options.

Client implementation: single and multicore options [not 

recommended for datasets larger than 1GB].

Server implementation: 
available for LONI 
pipeline only

Server implementation: 

available for LONI pipeline 

only.

Server implementation: 

available for PBS, SLURM and 

LONI pipeline only.

Client and Server 
implementation: loads 
the entire Big Data into 
the R workspace before 
any CBDA subsampling 
and training/validation

Server implementation: does not load the Big Data into the R 

workspace.

Server implementation: faster if the Big Data is located on the 

same server where CBDA subsampling, training and 

validation are performed.

Server implementation: 

subsampling (both for the 

CBDA Training and 

Overfitting Test  stages) is 

performed by a 

combination of shell and 

Perl scripts

Server implementation: 

subsampling (both for the 

CBDA Training and Overfitting 

Test stages) is performed by 

Python scripts

Handles Longitudinal Data

Client and Server 
implementation: CBDA 
subsampling is 
performed by the R 
scripts

Handles Unstructured Data
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