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Abstract: Secondary brain injury following subarachnoid hemorrhage (SAH) is the critical 

contributor to the mortality of SAH patients. The underlying mechanisms are poorly understood. 

In this study, we utilized a mice model of SAH to investigate whether FoxO4 is related to the 

brain injury after SAH and identified its upstream regulator Akt. Experimental SAH was induced 

in adult male mice by prechiasmatic cistern injection. Brain FoxO4 protein levels in cytoplasm 

and nucleaus were examined in the sham-operated controls, and in mice 1h, 6h, 12h, 24h, 3d, and 

5d after SAH induction. The Akt inhibitor LY294002 was administered by 

intracerebroventricular infusion to determine its effects on FoxO4. Moreover, the expression of 

FoxO4 was also investigated in neurons incubated with hemoglobin in vitro, which was also 

dertermined after inhibition of Akt. FoxO4 protein expression in the nuclei increased remarkably 

after SAH. The Akt inhibitor LY294002 induced more FoxO4 nuclear localization after SAH in 

vivo and in vitro. Our results suggest the activation of FoxO4 after SAH and which was inhibited 

by the increased phosphorylated Akt (p-Akt).
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1. Introduction

Subarachnoid hemorrhage (SAH) is the main type of stroke which account for about 20% in 

total in developed countries [1]. SAH has attracted much attention in the past decades for the high 

morbidity and mortality. About 25% of patients die almost in 72 hours after hemorrhage. The 

primary cause of mortality in SAH patients is early brain injury, that is, the pathological processes 

in the first 72 hours after initial bleeding. However, few treatments are available for early brain 

injury because its underlying mechanisms remain unclear till now [2].

Accumulating evidence suggests that apoptosis is involved in early brain injury after SAH. 

Apoptotic neuronal death could be related to the high morbidity and mortality in SAH patients [3]. 

The serine-threonine kinase, Akt, was found to play a crucial role in the apoptosis in neurons after 

SAH [4]. The Akt was phosphorylated after activcation, inhibiting the downstream molecules to 

make neurons become resistant to apotpotic stimuli. In an animal model of SAH, it was reported 

that glycogen synthase kinase-3β (GSK3β) is the one regulated by Akt 4. Besides GSK3β, FoxO4 

was also found to be induced nuclear exclusion after Akt phosphorylated in cancer and some other 

diseases [5-7]. 

FoxO proteins are a family of transcription factors with four members in mammals, namely 

FoxO1, FoxO3a, FoxO4, and FoxO6. They are originally identified as downstream regulators of 

the insulin pathway, are known to bind to the promoters of a broad variety of target genes and be 

involved in diverse cellular and physiological processes including cell proliferation, apoptosis, 

reactive oxygen species (ROS) response, longevity, cancer and regulation of cell cycle and 

metabolism [8]. Sereval studies indicated that FoxO4 seems to be more important to the central 

nervous system(CNS) injuries or diseases [9,10]. Hence, we investigated the expression and 

activation of FoxO4 and the underlying regulatory role of Akt to activation of FoxO4 after SAH.

2. Results

2.1. The expressions and locations of FoxO4 and p-Akt in the brain after SAH in vivo 

By Western blotting, we analyzed the FoxO4 and p-Akt expressions in the brain. FoxO4 was 

not changed significantly in the total protein (Fig.1B, F). It was found to be decreased in the 

nucleus im mediately at 1h after SAH and then increased at 6h, 12h and 24h. It was decreased 
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again at 3d and 5d(Fig.1A, E). In the cytoplasmic protein, the levels of FoxO4 were increased 

from 6h, peaked at 12h(Fig.1C, G). These findings showed the nuclear translocation of FoxO4 

after SAH.

For p-Akt, it was found to be increased from 1h to 12h after SAH (Fig1 B, D). Because of the 

early activation of Akt, we treated the animals with Akt inhibitor LY294002 when SAH was 

induced.At 1h after SAH, we could find the p-Akt positive fluorescence in cytoplasm of  

neurons(Fig. 2A, B). While stronger fluorescence for FoxO4 was found in the neuronal cytoplasm 

and nucleus after SAH compared with the sham group (Fig.2C, D).

2.2. The change of the expression of FoxO4 after inhibition of Akt in vivo 

After treatment with Akt inhibitor LY294002, supressed expression of p-Akt was 

confirmed(Fig.3A, F). We did not find the significant difference of FoxO4 in the total protein 

between the SAH group and LY294002 treatment SAH group(Fig. 3A, D). Nevertheless, the 

levels of FoxO4 protein in the nucleus were higher in the LY294002 treatment SAH group 

compared with the paired SAH group(Fig. 3B, E). This finding implies that inhibition of p-Akt 

could induce the nuclear translocation of FoxO4. The Cleaved-Caspase 3 was also detected in this 

study to indicate the apoptosis. We found Cleaved-Caspase 3 was also increased after LY294002 

treatment.

2.3. The effects of p-Akt inhibition on FoxO4 activation in neurons incubated with hemolyse in 

vitro

First, we detected the expression of p-Akt and FoxO4 in neurons incubated with hemolyse. 

The results showed that p-Akt was increased at 1h and 12h after the neurons were treated byh 

hemolyse(Fig. 4A, B). The expression of FoxO4 was increaed from 6h to 24h(Fig. 4A, C). After 

LY294002 treatment, p-Akt was suppressed sufficiently in this experimental system(Fig. 5A, E). 

the levels of FoxO4 in the total protein were not changed(Fig. 5A, D), but which in the nucleus 

were increased(Fig. 5B, F). This finding indicated the nuclear translocation of FoxO4. In our 

influence staining experiments, it was confirmed that FoxO4 was translocated to the nucleus after 

inhibition of p-Akt(Fig. 6A, B). The molecules related to apoptosis of neurons, Cleaved-Caspase 

3, Bcl-2, and SOD2 were also investigated in the present studies. It was detected that 
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Cleaved-Caspase 3 and SOD2 was increased significantly after treatment with LY294002. Bcl-2, 

an anti-apoptosis factor, was reduced after incubation of LY294002.

3. Discussion

The main results of this study showed that: 1) expression of FoxO4 in nucleus was increased 

from 6h to 24h after SAH after expreimental SAH model. This increase was confirmed in cultured 

neurons; 2) inhibiting Akt aggravated nuclear translocation of FoxO4 and may induce more 

apoptosis after SAH in vivo and in vitro.

FoxO4 is one member of FoxO family, which has been documented to be translocated into 

the nucleus in neurons after cerebral ischemia[11]. There are no studies focusing on the 

relationship between FoxO4 and SAH. Hence, as the first step, we detected the cytoplasmic and 

nuclear expressions of FoxO4 in the present study. We found nuclear FoxO4 was increased from 

6h to 24h after SAH, indicating the activation of FoxO4 after SAH. As a surprising, both the 

cytoplasmic and nuclear expressions of FoxO4 were found to be increased at 12h and 24h. With 

regard to the levels of FoxO4 in total protein, no signficant changes were found either at 12h and 

24h after SAH when compared to the sham group. We checked this result with additional animals, 

but the same results was got. The reason might be due to methods or the special characteristics of 

FoxO4. We are keeping trying to explore the reason in our laboratory.

FoxO4 and the other members in FoxO family are direct downstream targets of Akt. After 

dephosphorylation of Akt (inactive state), FoxOs translocates to nucleus where they bind DNA 

and regulate the genes related to metabolism, apoptosis, and reactive oxygen species (ROS) 

activation . We found the activation of both Akt (upregulation of p-Akt) and FoxO4 (translocation 

to necleus) after SAH. Endo er al have reported the increase of the p-Akt, which is consistent with 

our data. The changes of FoxO4 after SAH was investigated for the first time in the present study. 

Interestingly, the nuclear translocation of FoxO4 and the activation of Akt happened at the same 

time would be somewhat contradictory. We hypothesized that the increase in p-Akt is hemostatic 

responses to the activation of FoxO4 or some other downsteam targets. Hence, LY294002 was 

used in the present study to inhibit the increased p-Akt after SAH. After inhibitor of Akt, the 

FoxO4 increased even higher than the vehicle group both  and in vitro. This finding indicated that 

the activation of Akt after SAH suppressed the activated FoxO4 to a higher level. 
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We also detected the Cleaved-Caspase 3 and Bcl-2 and SOD2 levels after LY294002 

treatment in vitro. The Cleaved-Caspase 3, a key excutioner in apoptosis, was increased in 

LY294002 treatment group. On the other side, the Bcl-2, an antiapoptotic protein, was decreased 

after Akt inhibition. These finding implies that Akt/FoxO4 may induce apoptosis after SAH. 

SOD2 is the key enzymes that catalyse the detoxification of superoxide into oxygen and hydrogen 

peroxide, which is then converted to oxygen and water by catalase. In other words, the main 

biological function of SOD2 is to removes ROS in cells. The increase of SOD2 after Akt 

inhibition means the release of the function of FoxO4 to induce ROS production.

4. Materials and Methods 

4.1. In vivo experiments

The Animal Care and Use Committee of Jinling Hospital approved the use of animals for this 

study, which was conducted in accordance with the Guide for the Care and Use of Labomiceory 

Animals published by the National Institutes of Health. Adult male C57/6JBL(30-35g) were 

purchased from the Animal Center of Jinling Hospital (Nanjing, China). The mice were housed in 

temperature-controlled and humidity-controlled animal quarters under a 12h light/12h dark cycle 

at 25℃, and provided with free access to food and water.

4.1.1. In vivo subarachnoid hemorrhage(SAH) model 

The mice were anesthetized with 10% chloral hydmicee (0.04mL/10g) and the SAH model 

was produced by stereotaxic insertion of a needle into the prechiasmatic cistern. Through a 

midline incision, the skin covering the anterior skull is opened. With a 0.9mm drill bit and a tail 

angle of 40°, a burr hole was drilled on the skull 4.5mm in front of the brainstem. The blood 

(50μL) was taken from C57/6JBL donors and passed through the burr hole at an angle of 40°with 

No.27 needle for 10 seconds until it reached the skull base. When the needle tip reached the base 

of the skull, it was retracted 0.5 mm. Then,Arterial blood was slowly injected into the 

prechiasmatic cistern over 20s under aseptic conditions. Stay in place for 5 min to avoid 

backflowand then after 30 min returned to their cages at room temperature. 

4.1.2. Experimental grouping and drug administmiceion
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In the first experiment, 42 mice were assigned randomly to 7 groups: the control group (n = 

6) and 6 SAH groups (1h, 6h, 12h, 24h, 3d and 5d, n = 6 for each group). The animals in the SAH 

1h, 6h, 12h, 24h, 3d and 5d groups were subjected to experimental SAH and were killed at 1h, 6h, 

12h, 24h, 3d and 5d after blood injection. The control mice were euthanized immediately after 

saline injection. Of the six samples in each group, three were used to extract total protein, and the 

other three were used to extract nuclear protein and cytoplasmic protein.

In the second experiment, 24 mice required. Akt inhibitor LY294002 was administered to 

investigate the significance of Akt in the nuclear translocation of FoxO4 after SAH. The mice 

were arranged in two groups, including SAH + vehicle (dimethyl sulfoxide [DMSO], Sigma, St. 

Louis, MO, USA) (25% DMSO in PBS; n = 8), SAH + LY294002 (50 mmol/L in 25% DMSO in 

PBS; n = 8). LY294002 (Sigma, St. Louis, MO, USA) , and injected 10μL into the lateral ventricle 

(bregma: -0.5 mm, lateral: 1.0 mm, depth: 2.0 mm) at a mouse of 1μL/min as described in the 

previous studies[12]. SAH was performed 30 min after injection of medicine into lateral ventricle. 

In the experimental group (SAH + LY294002), 4 mice were euthanized at 1h to detect p-Akt, and 

8 mice were euthanized at 24h (4 mice were tested for FoxO4 nuclear protein, and the other 4 

mice were tested for FoxO4 whole protein). Similarly, in the control group (SAH + vehicle), we 

collected the whole protein of 1h and 24h and  nucleoprotein of 24h, respectively, to detect the 

whole protein of p-Akt, FoxO4 and the nucleoprotein content of FoxO4. 

4.1.3. Western blotting

Each mouse was perfused with 150mL of ice-cold 0.9% saline through the left ventricle 

under deep anesthesia and brains were frozen until used. 1)Total protein extraction: Cortical 

tissues were lysed in RIPA buffer containing 1% PMSF and 1% phosphatase inhibitor, and protein 

concentration was measured by BCA method. 2)Extraction of nucleoprotein and cytoplasmic 

protein: Follow the instructions of nuclear protein and Cytoplasmic Protein Extraction Kit 

(Beyotime, Nantong, China). Under the condition of low osmotic pressure, the cells were fully 

expanded, then the cell membrane was destroyed, the plasma protein was released, and then the 

nucleus was precipitated by centrifugation. Finally, the nucleoprotein was extracted by high salt 

extraction reagent. Protein concentmiceions were measured using a detergent-compatible protein 

assay (Beyotime, Nantong, China).
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Protein extracted by SDS-PAGE was electrotransferred to PVDF membrane. The membrane 

was sealed with 5% skim milk and incubated with primary antibodies against FoxO4(1:1000), 

p-Akt(1:1000), Cleaved-Caspase 3(1:1000) and SOD2(1:1000), with GAPDH (1:5000) and H3 

(1:2000) as a loading control. Primary antibodies against FoxO4, H3 and GAPDH were purchased 

from Proteintech Group(Chicago, IL, USA); Primary antibodies against p-Akt, SOD2 and 

apoptosis-related proteins Cleaved-Caspase 3 were purchased from Cell Signaling Technology 

(Beverly, MA, USA). After the membranes were washed three times for 10 minutes each in 

PBST, they were incubated in the appropriate HRP-conjugated secondary antibody (1:400) for 2h. 

The blotted protein bands were visualized by enhanced chemiluminutesescence (ECL) Western 

blotting detection reagents (Amersham, Arlington Heights, IL, USA) and were exposed to X-ray 

film. Developed films were digitized using an Epson Perfection 2480 scanner (Seiko Corp, 

Nagano, Japan). Optical densities were obtained using Glyko Bandscan software (Glyko, 

Novato,CA, USA). All experiments were repeated at least three times.

4.1.4. Immunofluorescence

The mice were perfused with 60mL of ice-cold 0.9% saline followed by 60mL of 4% 

formalin through the left ventricle under deep anesthesia. The brains were placed in 4% 

paraformaldehyde for 12 hours, after it was removed. Followed by 20%, 30% sucrose gradient 

dehydrated 1 day, until the brain completely sink to the bottom.Take out the brain tissue and let it 

dry on the surface, put it into the mold and bury it. After dewaxing, antigen repair, and cell lysis, 

the slides were incubated with anti-p-Akt (Cell Signaling Technology, Beverly, MA, USA; 

1:1000) or anti-FoxO4 (Proteintech Group, Chicago, IL, USA; 1:2000) antibody overnight at 4℃. 

After PBS was removed, NeuN (EMD millipore, Billerica, MA; 1:200) was added 16-18h 

overnight. Then DAPI dye solution was added (Nanjing Kaiji Biological Co., Ltd.) and incubated 

at room temperature for 10 min. After washing with PBS, the slides were incubated with goat 

anti-rabbit IgG (diluted 1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and horseradish 

peroxidase (HRP) for 60 min at room temperature. The slices were washed three times with PBS 

(pH 7.4) for 5 min each. The slices were then slightly dried and sealed with anti-fluorescence 

quenching. The sections were observed under a fluorescence microscope and the images were 

collected.
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4.2. In vitro experiments

4.2.1. Culture and treatment of primary neurons

At 16-18 days of gestation, the mice were killed with neck broken and immersed in a culture 

dish containing 75% alcohol. After autoclave, the ophthalmic scissors opened the abdomen and 

took out the fetal mice. The head of fetal mice was severed and slightly washed in HBSS. We 

stripped the meningeal vessels and other tissues, removed the hippocampus and other brain 

parenchyma, and preserved the cortex. The cortex was cut up and a small amount of pancreatin 

was added, and then transferred into a 15mL centrifuge tube and bathed in 37℃ water for 5 min. 

Added high glucose mediu (DMEM with 10% fetal bovine serum and 1% double antibody): 

pancreatin = 1.5:1, blowed gently and repeatedly. Centrifuged for 5 min at 1500 rpm, discarded 

the supernatant, and then suspended it again to obtain neurons with high purity, which could plant 

in the culture dish or 6-well plate coated with ploy-D. All the cells were replaced with the whole 

neuron culture medium. The proportion was neurobasal medium 100mL, B27 2mL, glumax 1mL, 

HEPES 750μL, Penicillin-Streptomycin (Liquid) 125μL (all from Gibco BRL, Grand Island, NY, 

USA). Two days later, the half fluid was changed (50%, all of which affected the growth of 

neurons). After 7 days, the cell protein or drug could be extracted for further treatment. In order to 

prevent cell pollution, all operations were completed under sterile conditions.

4.2.2. In vitro subarachnoid hemorrhage(SAH) model

After 7 days of culturing primary neurons in whole neuron culture medium, the treatment can 

be started. Hemoglobin (sigma, St. Louis, Mo, USA) was diluted to 65mg/mL. hemoglobin was 

diluted with neurobasic medium, and then filtered with sterile filter. Discard the culture medium 

of neurons and replace it with half volume of hemoglobin (1mL for 6-well plate).The SAH model 

can be established in vitro.

4.2.3. Experimental grouping and drug administmiceion

In the first experiment, The 30 well neurons cultured in the six well plate were randomly 

divided into 5 groups: the control group (n = 6) and four SAH groups (1h, 6 h, 12h, and 24h, n = 6 

for each group). The SAH groups (1h, 6h, 12h, and 24h ) were subjected to experimental SAH and 
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the protein has been extracted at 1h, 6h, 12h and 24 h after Hemoglobin cultured. The neurons in 

the control group extracted protein directly after discarding the whole culture medium.

In the second experiment, the neurons were arranged in two groups, including SAH + vehicle 

(DMSO, Sigma, St. Louis, MO, USA) (1% DMSO in PBS; n = 18), SAH + LY294002 (20μmol/L 

in 1% DMSO in PBS; n = 18). LY294002 (Sigma, St. Louis, MO, USA) . A 45 min pre-treatment 

with the treatment of SAH as described in the previous studies[13]. SAH induced after 45 min. 

When the establishment time of SAH in vitro reached one hour, the whole protein was extracted 

from the cells in six pores in both the experimental group(SAH + LY294002) and the control 

group(SAH + vehicle)(to detect p-Akt). In each group, six holes were used to extract total protein 

at the time of 24h after SAH (to detect FoxO4). The last six pores of each group were used to 

extract nucleoprotein in SAH 24 hours (to detect the expression of FoxO4 in nucleus).

4.2.4. Western blotting

1)Total protein extraction: Total protein extraction: Primary neuron cell were lysed in 

RIPA buffer containing 1% PMSF and 1% phosphatase inhibitor, and protein concentration was 

measured by BCA method. 2)Extraction of nucleoprotein and cytoplasmic protein: Follow the 

instructions of nuclear protein and Cytoplasmic Protein Extraction Kit (Beyotime, Nantong, 

China). Under the condition of low osmotic pressure, the cells were fully expanded, then the cell 

membrane was destroyed, the plasma protein was released, and then the nucleus was precipitated 

by centrifugation. Finally, the nucleoprotein was extracted by high salt extraction reagent. Protein 

concentmiceions were measured using a detergent-compatible protein assay (Beyotime, Nantong, 

China). The steps of Western blotting after protein extraction are consistent with the experiments 

in vivo.

4.2.5. Immunofluorescence 

After discarding the culture medium, the neurons were fixed with 4% paraformaldehyde. 

Antigen repair, cell membrane drilling and sealing(all from Beyotime, Nantong, China) were 

carried out in sequence at room temperature. The sections were then incubated with the diluted 

anti-p-Akt (Cell Signaling Technology, Beverly, MA, USA; 1:1000), anti-FoxO4 (Proteintech 

Group, Chicago, IL, USA; 1:2000) antibody overnight at 4℃. After PBS was removed, NeuN 
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(EMD Millipore, Billerica, MA ;1:200) was added and incubated at 4℃ for 16-18h. After washing 

with PBS, DAPI dye solution was added (Nanjing Kaiji Biological Co., Ltd.; 1:50000) and 

incubated at room temperature for 10 min. After washing with PBS, the slides were incubated 

with goat anti-rabbit IgG (diluted 1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and 

horseradish peroxidase (HRP) for 60 min at room temperature. The slices were washed three times 

with PBS (pH 7.4) for 5 min each. The slices were then slightly dried and sealed with 

anti-fluorescence quenching. The sections were observed under a fluorescence microscope and the 

images were collected.

For immunofluorescence staining, positive cells were identified, and analyzed with the help 

of an investigator who was blind to the experimental treatments.  

4.3. Statistical analysis

Comparisons between different groups were performed by analysis of variance (ANOVA) 

followed by Tukey’s multiple comparisons test if a significant difference had been determined by 

ANOVA. A probability value of P < 0.05 was considered statistically significant. 

5. Conclusions

The activation of FoxO4 and increased phosphorylated Akt were detected after SAH. FoxO4 

nuclear translocation was suppressed by Akt and which may related to neuronal apoptosis.
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Figure legends

Figure 1. The expression of FoxO4 and p-Akt in the brain.   The nucleoprotein content of 

FoxO4 at different time periods after SAH was detected (A). Western blotting was used to detect 

the total protein content of FoxO4 and p-Akt at different time periods after SAH (B). In 

cytoplasmic protein, the content of FoxO4 in different time periods after SAH was detected 

(C).Statistical analysis of p-Akt changes at different time periods, n = 3, *P < 0.05 vs. sham, **P 

<0.01 vs. sham(D). Statistical analysis of nucleoprotein content of FoxO4 at different time 

periods, n = 3, *P < 0.05 vs. sham, **P < 0.01 vs. sham (E).Statistical analysis of the total protein 

content of FoxO4 changes at different time periods, n = 3, *P < 0.05 vs. sham (F).Statistical 

analysis of the cytoplasmic protein content of FoxO4 changes at different time periods, n = 3, *P 

< 0.05 vs. sham, **P < 0.01 vs. sham (G).
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Figure 2. The changes of p-Akt and FoxO4 after SAH were detected qualitatively.  P-Akt 

was detected in control group and SAH 1h group. The red fluorescence labeled p-Akt, green 

fluorescence labeled neurons, and DAPI labeled nucleus (A, B). FoxO4 was detected in control 

group and SAH group. FoxO4 was labeled by red fluorescence, neurons by green fluorescence, 

and nucleus by DAPI (C, D).

Figure 3. The changes after treatment with Akt inhibitor LY294002 in vivo.  The total 

protein expressions of FoxO4 and p-Akt in group LY294002+SAH and group Vehicle+SAH were 

compared (A). The changes of FoxO4 nucleoprotein in group LY294002+SAH and group 

Vehicle+SAH were compared (B). We compared the changes of Cleaved-Caspase 3 between 

LY294002 + SAH group and group Vehicle+SAH group (C). Statistical analysis of FoxO4 protein 

compared between LY294002 + SAH group and group Vehicle+SAH group, n = 3, P > 0.05 (D). 

Statistical analysis of FoxO4 nuclear protein changes compared between LY294002 + SAH group 

and group Vehicle+SAH group, n = 3, *P < 0.05 (E). Statistical analysis of changes in p-Akt was 

compared between LY294002 + SAH group and group Vehicle+SAH group, n = 3, *P < 0.05 (F). 

We statistically analyzed the expression of Cleaved-Caspase 3 was compared between LY294002 

+ SAH group and group Vehicle+SAH group, n = 3, *P < 0.05 (G). 

Figure 4. Expression of p-Akt and FoxO4 in neurons in vitro.  Western blotting was used to 

detect the expression of FoxO4 and p-Akt in vitro (A). Statistical analysis of the expression of 

p-Akt in different time periods, n=3, *P < 0.05 vs. sham (B). The total protein expression of 

FoxO4 in different time periods was statistically analyzed, n=3, *P < 0.05 vs. sham , **P < 0.01 

vs. sham(C).

Figure 5. The changes after treatment with LY294002 were detected in vitro.  Changes in 

FoxO4 and p-Akt in group LY294002+SAH and group Vehicle+SAH in total protein (A). 

Western blotting was used to detect the change of FoxO4 of nucleoprotein in group LY294002 + 

SAH and group vehicle + SAH (B). Cleaved-Caspase 3, Bcl-2 and SOD2 in group LY294002 + 

SAH and group vehicle + SAH were detected(C). The FoxO4 total protein in group 

LY294002+SAH and group Vehicle+SAH was analyzed statistically, n = 3, P > 0.05 vs. vehicle + 
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SAH (D). Statistical analysis of p-Akt in group LY294002 + SAH and group vehicle + SAH was 

detected, n = 3, *P < 0.05 vs. vehicle + SAH (E). The change of FoxO4 nucleoprotein in group 

LY294002 + SAH and group vehicle + SAH was statistically analyzed, n = 3, *P < 0.05 vs. 

vehicle + SAH(F). The changes of Cleaved-Caspase 3 in group LY294002 + SAH and group 

vehicle + SAH were statistically analyzed, n = 3, **P < 0.01 vs. vehicle + SAH (G). The changes 

of Bcl-2 in group LY294002 + SAH and group vehicle + SAH were statistically analyzed, n = 3, 

*P < 0.05 vs. vehicle + SAH (Figure 5H). The changes of SOD2 in group LY294002 + SAH and 

group vehicle + SAH were statistically analyzed, n = 3, *P < 0.05 vs. vehicle + SAH (I).

Figure 6. The distribution of FoxO4 in the cells was detected by immunofluorescence.  

FoxO4 in Vehicle+SAH group was located in cytoplasm, in which FoxO4 was labeled with red 

fluorescence, green fluorescence labeled neurons, and DAPI labeled nucleus (A). FoxO4 in the 

LY294002+SAH group was located in the nucleus, in which the red fluorescence labeled FoxO4, 

green fluorescence labeled neurons, and DAPI fluorescence labeled nucleus (B).
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