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Abstract

Alpha blocking, a phenomenon where the alpha rhythm is reduced by attention to a
visual, auditory, tactile or cognitive stimulus, is one of the most prominent features of
human electroencephalography (EEG) signals. Here we identify a simple physiological
mechanism by which opening of the eyes causes attenuation of the alpha rhythm. We fit
a neural population model to EEG spectra from 82 subjects, each showing different
degrees of alpha blocking upon opening of their eyes. Although it is notoriously difficult
to estimate parameters from fitting such models, we show that, by regularizing the
differences in parameter estimates between eyes-closed and eyes-open states, we can
reduce the uncertainties in these differences without significantly compromising fit
quality. From this emerges a parsimonious explanation for the spectral changes between
states: Just a single parameter, pei, corresponding to the strength of a tonic, excitatory
input to the inhibitory population, is sufficient to explain the reduction in alpha rhythm
upon opening of the eyes. When comparing parameter estimates across different
subjects we find that the inferred differential change in pei for each subject increases
monotonically with the degree of alpha blocking observed. In contrast, other parameters
show weak or negligible differential changes that do not scale with the degree of alpha
attenuation in each subject. Thus most of the variation in alpha blocking across
subjects can be attributed to the strength of a tonic afferent signal to the inhibitory
cortical population.

Author summary

One of the most striking features of the human electroencephalogram (EEG) is the
presence of neural oscillations in the range of 8-13 Hz. It is well known that attenuation
of these alpha oscillations, a process known as alpha blocking, arises from opening of
the eyes, though the cause has remained obscure. In this study we infer the mechanism
underlying alpha blocking by fitting a neural population model to EEG spectra from 82
different individuals. Although such models have long held the promise of being able to
relate macroscopic recordings of brain activity to microscopic neural parameters, their
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utility has been limited by the difficulty of inferring these parameters from fits to data.
Our approach is to fit both eyes-open and eyes-closed EEG spectra together, minimizing
the number of parameter changes required to transition from one spectrum to the other.
Surprisingly, we find that there is just one parameter, the external input to the
inhibitory neurons in cortex, that is responsible for attenuating the alpha oscillations.
We demonstrate how the strength of this inhibitory input scales monotonically with the
degree of alpha blocking observed over all 82 subjects.

Introduction 1

Alpha blocking is a classic feature of the human electroencephalogram (EEG). First 2

identified by Hans Berger as part of his discovery of human EEG in the 1920’s [1, 2], it 3

is now arguably its most robust empirical feature. Classically, alpha blocking refers to 4

the reduction in spontaneously-recorded occipital alpha band (8-13 Hz) power in 5

response to opening of the eyes [3]. More generally, changes in alpha-band power can be 6

effected by a range of visual, tactile and auditory stimuli and altered states of arousal 7

and is widely used as a diagnostic of cognitive activity [4–7]. 8

Despite the importance of alpha blocking in studies of cognition, it still lacks a 9

generally-accepted, mechanistic understanding [8]. Importantly, the mechanism 10

associated with alpha blocking is usually considered separately from the mechanism 11

associated with alpha wave generation. Whereas cortical alpha is thought to be 12

generated by feedforward and feedback interactions between the thalamus and overlying 13

cortex [9–12], blocking is considered to arise from changes in the phase synchrony of 14

populations of these near-identical cortico-thalamic alpha oscillators [13–15]. In this 15

paper, we show how alpha generation and blocking can be described self-consistently 16

within in a single neural population model for the cortex. 17

Neural population models describe how microscopic properties in the cortex, such as 18

post-synaptic rate constants, affect macroscopic observables, such as the local field 19

potential detected by the EEG [16–18]. These models match the high time resolution 20

and low spatial resolution of the EEG and have long been used to interpret the 21

characteristics of alpha-band activity [12,19, 20]. Notably, it has been shown how, with 22

judiciously chosen model parameter values, alpha oscillations can arise spontaneously in 23

the cortex [13,21–26], without the need for direct pacing by oscillatory inputs [27–30]. 24

However, it has been more difficult to interpret alpha blocking within these models 25

since there are multiple ways to reduce or eliminate alpha activity [31]. For example, 26

alpha attenuation has been attributed to coincident changes in several thalamo-cortical 27

parameters controlling the feedforward, cortico-thalamo-cortical, and intra-cortical 28

circuits [32]. 29

A fundamental challenge in using neural population models is the difficulty in 30

estimating parameter values directly from fits to EEG data [33]. Although forward 31

calculations have provided plausible explanations for spontaneous alpha generation, 32

solving the inverse problem to determine the many unknown model parameters is 33

crucial if we want to relate the subject-to-subject variability observed in EEG signals to 34

an associated variability in certain microscopic parameters. This will help identify (and 35

potentially control) the underlying microscopic drivers of the EEG response, and 36

associated cognitive behavior, in a given individual. 37

Recently [33], we quantified the large parameter uncertainties associated with fitting 38

a neural population model [22,26] to EEG data. Such large, and correlated, 39

uncertainties are a consequence of the unidentifiability [34, 35] and sloppiness [36, 37] of 40

the model and are typical when fitting many parameters. Our study found that only 41

one out of the 22 parameters was individually identifiable. This single identifiable 42

parameter, the decay rate of the inhibitory post-synaptic potential γi, was discovered by 43
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fitting to EEG spectra exhibiting alpha oscillations from subjects with their eyes closed. 44

The value of this inhibitory decay rate needed to be within a narrow range in order to 45

generate alpha oscillations (of any amplitude) from a white noise input, regardless of 46

the values of the other parameters. This showed the fundamental importance of this 47

parameter in generating spontaneous alpha-band activity. 48

To understand alpha blocking we must confront another aspect of the 49

unidentifiability problem: whether one can learn the change in a parameter in response 50

to a particular stimulus, in this case the opening of the eyes. This is important since it 51

is often more useful to know how much a parameter changes in response to a stimulus 52

than it is to know the absolute value of that parameter before or after the stimulus is 53

applied. We refer to this as the 2-state fitting problem since this will involve fitting two 54

spectra (eyes closed and eyes open) from a single individual. Thus our previous 55

study [33], where we only fit to the eyes-closed spectra in each individual, was a 1-state 56

fitting problem. 57

Naively, it would seem that the unidentifiability we found for the 1-state problem 58

would doom the 2-state fitting problem since one seemingly needs to perform separate 59

fits to each state. However, fitting the two states simultaneously and by penalizing 60

parameter differences between the states, we are able to reliably determine the change, 61

or differential response, of a particular parameter, even though the absolute value of 62

that parameter in each state can be quite uncertain. When examining data across many 63

subjects, we are able to associate a single parameter pei - the strength of extra-cortical 64

input to the inhibitory cortical population - with the attenuation of alpha oscillations 65

upon opening of the eyes. This unifies the mechanisms for alpha generation and 66

blocking within a single model. 67

In the rest of this introduction we briefly describe the data, the model, and the 68

fitting strategy. Further details about methodology are given in the “Methods of 69

analysis” section. 70

EEG data 71

The EEG data used in this study is provided in the online repository [38] 72

(https://www.physionet.org/pn4/eegmmidb/). We use data from the occipital electrode 73

from 82 individuals, as in our previous study [33], although this time we use eyes-open 74

as well as eyes-closed data. We apply Welch’s method [39] to estimate the 2× 82 power 75

spectra. Once again, because of the well-known nonlinearities and nonstationarities in 76

EEG recordings, we restrict our study to frequencies between 2 Hz and 20 Hz. Since the 77

absolute power in the EEG data is not meaningful, each spectrum is normalized to have 78

a total power of 1. Our interest is thus in changes in spectral shape, not magnitude, 79

upon going from eyes closed to eyes open states in each individual. 80

EEG data variability across individuals 81

It is well-known that the degree to which alpha rhythm is attenuated by an identical 82

visual stimulus varies across individuals [40] with, for example, a negative correlation 83

with age [41]. Visual inspection of the spectra we use from the 82 subjects shows that 84

there is substantial variability in the degree of alpha blocking across individuals used in 85

this study (see Fig 1 for a sample set, Fig A S1 Appendix for the full set). 86

Our approach is to use this individual variability to quantify how much each 87

parameter shifts between EC to EO states and how these shifts scale with the degree of 88

alpha blocking. To do this quantitatively, we needed to define a measure of alpha 89

blocking strength. Here we use the Jensen-Shannon divergence, DJS, which provides a 90

scalar measure of the difference in shape between (normalized) eyes-closed (EC) and 91

eyes-open (EO) spectra from each individual (see Section “Jensen-Shannon divergence 92
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as a measure of the degree of alpha blocking”). To demonstrate how this measure aligns 93

with our intuitive notion of spectrum change, the EC and EO data in Fig 1 are ordered 94

by increasing DJS. Although we explored alternative measures such as the change in 95

relative strength of the alpha band component, we use DJS since it is a more global 96

measure of function change that does not rely on defining a particular frequency band. 97

As we will show, by comparing how parameter differences scale with increasing DJS we 98

are able to establish how much each (microscopic) parameter changes with the degree of 99

alpha-blocking. 100

Neural population model 101

The model used in this paper is the local variant of the mean-field model originally 102

described in Refs [22,26]. As described in our previous study [33], this model consists of 103

10 coupled non-linear ODEs parameterized by 22 physiologically-motivated parameters 104

(see Table 1). Local equations are linearized around a fixed point and the power 105

spectral density (PSD) is derived assuming a stochastic driving signal of the excitatory 106

population that represents thalamo-cortical and long range cortico-cortical inputs, 107

assumed to be Gaussian white noise. The modelled PSD can then be written as a 108

rational function of frequency derived from the transfer function for the linearized 109

system. As was explained in earlier studies [33,42], tonic excitatory signals to the 110

inhibitory (pei) and excitatory(pee) populations are included as unknown parameters to 111

account for potential DC offsets in extracortical inputs. 112

In this study, we use the identical model but with two changes. The first is to 113

introduce an additional parameter to allow for a non-white background spectrum (giving 114

a total of 23 parameters - see Table 1). Though this adds an extra degree of freedom it 115

is necessary in order to achieve fits to some of the eyes-open spectra. In fact there is 116

evidence from EEG and ECoG studies (for example, see [43]) that the background PSD 117

may have a frequency dependence (typically quoted as 1/f) not readily accounted for by 118

a rational transfer function alone. While various approaches have been suggested to 119

account for such a dependence, we have chosen the simplest way to incorporate it into 120

our model by relaxing the white noise assumption and using coloured noise for the 121

driving signal. Specifically, we take the input PSD, Sin ∝ 1/fη where η is the exponent 122

of the input spectrum treated as a new state-dependent adjustable parameter in the 123

range 0 ≤ η ≤ 2; η = 0 corresponds to the original white noise, η = 1 to the pure 1/f 124

(pink) noise, and η = 2 to a Wiener process (Brownian noise). 125

The second change is to incorporate the main result learned from [33] and restrict 126

the range of γi. There it was found that the inhibitory rate constant γi has a sharply 127

peaked posterior distribution, making it (uniquely) identifiable in the eyes-closed case. 128

This was reproduced here in the eyes-open data when the EEG had a detectable peak in 129

the alpha band; if no peak was observed, the posterior distribution resembled the 130

assumed prior distribution. In light of this and in line with the search for a 131

parsimonious explanation for alpha blocking, the prior distributions for the eyes-closed 132

and eyes open cases in the current study were both limited to a reduced interval around 133

the range found for its posterior distribution in [33] (See the updated minimum and 134

maximum value for γi in Table 1). 135

Model fitting strategy 136

In this 2-state fitting problem, the EC spectrum and the EO counterpart from a given 137

subject are treated as a single dataset to be jointly fit by the model. Given that a single 138

spectrum fit has 23 unknown parameters, a naive fit to two spectra would have 46 139

potentially unknown parameters. 140
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Fig 1. Different subjects exhibit different degrees of alpha blocking upon
opening of the eyes. Here five subjects have been selected to illustrate the range of
alpha blocking behaviour observed in the dataset. The vertical axis on each plot
represents an arbitrary scale for the normalized power spectral density (PSD). Some
subjects do not show any reduction in alpha power between EC and EO states (e.g.
Subject 34); others exhibit partial blocking where the alpha activity in EO state is
weaker than that of EC but is still pronounced (e.g. Subject 25); while some show total
blocking where the alpha activity in the EO spectra completely disappears (e.g. Subject
80). To quantify the degree to which the EEG spectrum changes upon opening of the
eyes, we compute the Jensen-Shannon divergence, DJS, between the eyes-closed (EC)
and eyes-open (EO) normalized experimental spectrum for each subject. A larger value
of DJS implies more pronounced EEG spectrum changes, or alpha-wave suppression.
The complete set of spectra for all subjects is presented in Fig A in S1 Appendix,
ordered by DJS.
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Table 1. State-distinct parameters and state-common parameters.

Type
Physiological parameters Fitting parameters

No Label Description Interval No Label

S
ta

te
-d

is
ti

n
ct

p
ar

am
et

er
s

1 τe Passive membrane decay time const. of the excitatory population [5, 150] ms
1 τe(EC)

2 τe(EO)

2 τi Passive membrane decay time const. of the inhibitory population [5, 150] ms
3 τi(EC)

4 τi(EO)

3 γe Excitatory postsynaptic potential rate constant [0.1, 1.0] /ms
5 γe(EC)

6 γe(EO)

4 γi Inhibitory postsynaptic potential rate constant [0.01, 0.1] /ms
7 γi(EC)

8 γi(EO)

5 Γe Postsynaptic potential amplitude of the excitatory population [0.1, 2.0] mV
9 Γe(EC)

10 Γe(EO)

6 Γi Postsynaptic potential amplitude of the inhibitory population [0.1, 2.0] mV
11 Γi(EC)

12 Γi(EO)

7 pee Rate of the excitatory input to the excitatory population [0.0, 10.0] /ms
13 pee(EC)

14 pee(EO)

8 pei Rate of the excitatory input to the inhibitory population [0.0, 10.0] /ms
15 pei(EC)

16 pei(EO)

9 η Exponent of the input spectrum [0.0, 2.0]
17 η(EC)

18 η(EO)

S
ta

te
-c

om
m

on
p

ar
am

et
er

s

10 hreste Mean resting membrane potential of the excitatory population [-80, -60] mV 19 hreste (EC,EO)

11 hresti Mean resting membrane potential of the inhibitory population [-80, -60] mV 20 hresti (EC,EO)

12 heqe Mean Nernst membrane potential of the excitatory population [-20, 10] mV 21 heqe (EC,EO)

13 heqi Mean Nernst membrane potential of the inhibitory population [-90, -65] mV ‡ 22 heqi (EC,EO)

14 Smax
e Maximum mean firing rate of the excitatory population [0.05, 0.5] /ms 23 Smax

e (EC,EO)

15 Smax
i Maximum mean firing rate of the inhibitory population [0.05, 0.5] /ms 24 Smax

i (EC,EO)

16 µ̄e Firing thresholds of the excitatory population [-55, -40] mV 25 µ̄e(EC,EO)

17 µ̄i Firing thresholds of the inhibitory population [-55, -40] mV 26 µ̄i(EC,EO)

18 σe Std. deviation of firing thresholds of the excitatory population [2, 7] mV 27 σe(EC,EO)

19 σi Std. deviation of firing thresholds of the inhibitory population [2, 7] mV 28 σi(EC,EO)

20 Nβ
ee # of connections an excitatory neuron receives from excitatory neurons [2000, 5000] 29 Nβ

ee(EC,EO)

21 Nβ
ei # of connections an inhibitory neuron receives from excitatory neurons [2000, 5000] 30 Nβ

ei(EC,EO)

22 Nβ
ie # of connections an excitatory neuron receives from inhibitory neurons [100, 1000] 31 Nβ

ie(EC,EO)

23 Nβ
ii # of connections an inhibitory neuron receives from inhibitory neurons [100, 1000] 32 Nβ

ii(EC,EO)

The model is characterized by 23 physiological parameters associated with a given subject. As the subject moves from the EC
state to the EO state, so do the physiological parameters. A state-distinct parameter is a physiological parameter that
changes between states and corresponds to two distinct fitting-parameters. A state-common parameter is kept the same for
both the EC and EO states and corresponds to a single fitting-parameter. There are 9 state-distinct parameters (which
translate into twice as many fitting parameters) and 14 state-common parameters giving a total of 32 adjustable parameters
to optimize during the joint fitting to both spectra for each individual. Minimum and maximum values for the physiological
parameters are presented. The list of the physiologically-plausible intervals was originally proposed in [42], and is here
updated with a reduced interval for γi as suggested by the identifiability analysis conducted in [33]. ‡The
physiologically-plausible interval for heqi presented in this table corrects a typographical error made in [33] which incorrectly
indicated the parameter’s minimum and maximum to be -20 mV and 10 mV, respectively.
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To reduce the number of unknowns we implement two types of constraint. The first 141

constraint(see Section “State-common parameters and state-distinct parameters”) is 142

that 14 of the parameters should remain the same in both the EC and EO conditions. 143

This set is referred to as state-common parameters. The remaining 9 parameters are 144

allowed to vary between conditions and are thus referred to as state-distinct parameters, 145

giving a total of 32 unknown parameters. This joint-fitting approach for the two spectra 146

allows us to couple together the dependency between the EC and EO parameters while 147

at the same time allowing their actual values to be determined by the data. 148

The second constraint (see Section “Regularization of parameter differences”) is to 149

penalize (regularize) non-zero differences between EC and EO values for state-distinct 150

parameters. This helps to identify the important parameter differences driving the 151

change in spectral shape from EC to EO. Our regularization procedure is a variant on 152

the standard procedure employed in high-dimensional inference problems searching for 153

sparse, or parsimonious, solutions [44]. 154

We use the same fitting scheme to that described in [33]: Fitted parameters are 155

obtained using particle swarm optimization (PSO) [45,46] starting from a random set of 156

initial states. Each of the 82 subjects was fit separately as a parallel job on the OzStar 157

supercomputer at Swinburne University of Technology, generating 1000 independent fit 158

samples per subject. Computations were performed using a parallel for-loop with 30 159

workers and 30 CPUs each with 1 GB of memory. From the resulting sample of 1000 160

optimized parameter sets, the 10 percent with the lowest cost function values are 161

accepted as final estimates (a detailed discussion justifying this threshold was given 162

previously [33]). 163

Further details on data analysis are given in Section “Methods of analysis”. Our 164

implementation of the methods and all datasets are publicly available at 165

https://github.com/cds-swinburne/Hartoyo-et-al-2020-DATA-n-CODE. 166

Results 167

Fig 2 shows the best model fits to EC and EO spectra from 5 different subjects, ordered 168

vertically by degree of alpha blocking. Both regularized and unregularized cases exhibit 169

good fits to the data. The similarity between regularized and unregularized cases 170

confirms that the bias caused by regularization is within acceptable limits. 171

The EC and EO posterior marginal distributions for each parameter are shown in 172

Fig 3. Plots for the 5 subjects are ordered vertically by degree of alpha blocking, as in 173

Fig 2. Distributions are estimated from the 100 best fit parameter sets for each subject. 174

pei shows the most noticeable difference between its EC and EO distributions, with EO 175

distributions drifting increasingly higher than their corresponding EC distributions as 176

alpha blocking gets larger. Differences between distributions for EC and EO states are 177

weakly visible for pee and mostly negligible for other parameters. 178

To better quantify the difference between EC and EO states for each parameter and
how it scales with the degree of alpha blocking, we calculate the difference between each
EC to EO parameter estimate. We do this for each of the NJ = 100 best sample fits
found for each of the NI = 82 subjects. Thus, if θij is a given parameter estimate
indexed by subject, i, and sample fit, j, we define the parameter response, ∆θij , to be

∆θij = θEO
ij − θEC

ij , i ∈ {1, . . . , NI}, j ∈ {1, . . . , NJ} (1)

∆θi =
1

NJ

NJ∑
j=1

(
θEO
ij − θEC

ij

)
(2)

where ∆θi is the resulting mean parameter response from EC to EO (averaged over 179

sample fits) for a given subject, i. 180
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Fig 2. Regularized and unregularized best fits to EC and EO spectra. Best fit results
for the 5 subjects shown in Fig 1. Subjects are ordered vertically by the degree of alpha blocking,
with alpha blocking increasing downwards. Regularized fits (red) deviate only slightly from the
unregularized fits (green). The 16% and 84% uncertainty quantiles (based on the gamma
distribution for the unregularized best fits) are shown in black. These boundaries define the
acceptable error of a fit. Regularized best fits deviate only slightly from the unregularized ones and
generally stay within these uncertainty quantiles. In order to visualize the different fits, EC and EO
spectra for a given subject are not necessarily shown on the same vertical scale.
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Fig 3. Posterior distributions for each parameter. Posterior distributions for state-distinct parameters (with EC in
orange and EO in green) and state-common parameters (grey), again for the 5 subjects in Fig 1 and Fig 2. Subjects are
ordered vertically by the degree of alpha blocking, with alpha blocking increasing downwards. The distributions are calculated
using kernel density estimates from the best 100 of 1000 randomly seeded particle swarm optimizations for each subject. Each
parameter is plotted in normalized coordinates, where -1 corresponds to the lower limit of the plausible parameter interval
and +1 corresponds to the upper limit. The parameter pei is the only parameter where the difference between EC and EO
distributions increases consistently with the degree of alpha blocking. Weaker shifts in pee are also apparent.

January 15, 2020 9/19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912386doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912386
http://creativecommons.org/licenses/by/4.0/


In Fig 4, to examine the association between each parameter response and the 181

degree of alpha blocking, we plot ∆θi versus Di
JS for each of the 82 subjects i. We also 182

plot the 25% to 75% interquartile range determined from that subject’s NJ = 100 183

sample fits, which provides an estimate of the unidentifiability of the parameter 184

response. Results are shown for all 9 state-distinct parameters. 185

To characterize how each parameter response scales with the degree of alpha 186

blocking, we perform a linear regression of ∆θ versus DJS . We use linearity simply to 187

characterize the trend, not because of any expectation of linearity. Most parameter 188

responses are either zero or show an insignificant trend with the degree of alpha 189

blocking. The major exception is ∆pei which increases monotonically with increasing 190

DJS . pee shows a non-zero parameter response, but its trend with DJS is weak and 191

restricted to low values. In the context of our model this implies that excitatory input 192

to the inhibitory population is the dominant factor determining the response of alpha 193

oscillations to a visual stimulus. 194

Discussion 195

By fitting a neural population model to EEG data from 82 individuals, we have 196

demonstrated a clear association between the degree of alpha blocking and a single 197

model parameter: the strength of a tonic excitatory input to the inhibitory population, 198

pei. Most of the change between eyes-closed and eyes-open spectra is explained by 199

variation in this external input level. 200

As a consistency check, we perform a forward calculation to test how the EEG 201

spectrum is affected by each state-distinct parameter. In Fig 5 we compare the spectra 202

calculated from the best fit parameter set (for a particular subject), to the spectra 203

calculated when the best-fit values for the 9 state-distinct parameters are perturbed. 204

Results show that the magnitude of the alpha rhythm is most sensitive to perturbations 205

of pei, with increasing pei resulting in less alpha-band power. This is consistent with the 206

tendency for pei to increase with alpha blocking (Fig 4). Interestingly, decreases in pee 207

also cause a weaker alpha peak, although the effect is considerably less sensitive that for 208

pei. We note that the relative effects of different parameter perturbations can vary 209

among the different individuals, making it important to compare data across multiple 210

individuals when performing the inverse problem. 211

The sensitivity of the alpha peak amplitude to changes in pei helps explain why the 212

inverse problem identified pei appears as the dominant driver of alpha blocking: 213

regularization is, after all, designed to identify sensitive input parameters. While this 214

consistency is comforting, it does not rule out the role of other factors. One could, for 215

example, contrive large changes in multiple weakly-sensitive parameters to give the 216

same effect as a small change in a single, sensitive parameter. These are, in fact, the 217

types of solution that a fit commonly finds without any regularization. Thus, in our 218

effort to tame the unidentifiability problem, we are pushed towards simplicity as a 219

guiding principle for identifying causes. 220

Although this model does not identify the source of the extra-cortical input, pei, we 221

speculate that the visual stimulus increases thalamo-cortical afference to cortical 222

neurons. This shifts the fixed point to a position in state space with a weaker alpha 223

rhythm. Importantly, our model states that this extracortical input is tonic, rather than 224

oscillatory. Our single-parameter explanation for the difference between eyes-closed and 225

eyes-open spectra contrasts with previous explanations for alpha blocking which invoked 226

changes in multiple parameters [31,32]. 227

Importantly, we have now shown how both alpha generation and blocking can arise 228

within a single model in a way that is justified by fits to real EEG spectra. Our 229

previous study [33] found that the presence of spontaneous alpha oscillations was 230
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Fig 4. EC to EO parameter responses and how they scale with the degree of alpha blocking. The EC-to-EO
parameter response (Eq 1) is calculated from the 100 best samples fits for each of the 82 subjects. The mean (black dot),
calculated from Eq 2, and interquartile ranges (error bar) for each subject are plotted against the Jensen-Shannon divergence,
DJS, for that subject. In order to quantify how much each parameter response scales with the degree of alpha blocking we
performed a linear regression through the sample fits; errors in the fit were estimated by randomly sampling from the
distributions estimated from the sample fits. The resulting trend line is shown in blue, with its slope and error reported on
each subplot. Several of the parameters (τe, τi,Γe, η) show essentially zero response to alpha blocking. Of the others, only
∆pei (lower right subplot) shows a clear trend, increasing monotonically with DJS. pee shows a non-zero parameter response
but its trend with DJS is weak and not monotonic. This result suggests that alpha blocking by visual stimulus can largely be
attributed to an increase in a tonic afferent signal pei to the inhibitory cortical population, with weak or negligible
contributions from the other parameters.
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Fig 5. Forward calculation of the sensitivity of the alpha-rhythm to individual parameters. Shown
are calculations depicting the sensitivity of the alpha-rhythm to each of the nine state-distinct parameters. The
initial state (green) is that of the best fit for EO Subject 25. Each parameter is then perturbed by +3% (red) or
-3% (blue) of the plausible interval, keeping other parameters constant. We observe that perturbing pei changes
the alpha rhythm amplitude most significantly, with a comparatively small change to the peak frequency. The
same perturbations applied to pee had a similar type of effect, though reversed and to a smaller extent. Alpha
band power is only weakly affected by γe or γi though they both control the frequency. We note in general that
perturbations applied to the other parameters have significantly smaller effects than perturbations to pei.

January 15, 2020 12/19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912386doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912386
http://creativecommons.org/licenses/by/4.0/


crucially dependent on the value of a single parameter - the decay rate of the inhibitory 231

post-synaptic potential, γi. This demonstrated how intracortical inhibition is the 232

essential driver of alpha wave activity. Our present work shows how extracortical input 233

to the inhibitory cortical neurons, pei, is the driver of classical alpha blocking. Together 234

we have thus identified the respective loci of physiological control for both the 235

generation and attenuation of alpha oscillations. 236

In the future, the approach we have described could be used to determine the 237

parameter response associated with anesthetic induction. Changes in EEG spectra 238

under general anesthesia, from the loss of consciousness to the period of anaesthetic 239

maintenance, are well characterized [47,48]. Implementing the procedure we have 240

outlined here, may allow us to identify a subset of the parameters driving the changes of 241

brain state, connecting them to specific disruptions in interneuronal communication 242

associated with a particular anesthetic. This will provide quantitative insight into the 243

mechanisms underlying the loss of consciousness. 244

Methods of analysis 245

Jensen-Shannon divergence as a measure of the degree of alpha 246

blocking 247

The Jensen-Shannon divergence, DJS, is closely related to the Kullback-Leibler 248

divergence [49,50]. It is symmetric, non-negative, finite, and bounded [51]. DJS, is 249

traditionally used to measure the difference between two probability distributions. Here 250

we use it to measure the difference between the EC and EO spectra for each subject 251

since these spectra have the same properties as a probability distribution: they are 252

non-negative with a total integral of 1 (since the spectra are normalized as described in 253

Section “EEG data”). DJS thus measures the difference in shape between EC and EO 254

spectra, since power differences among original experimental spectra are irrelevant due 255

to the normalization. 256

If the Kullback-Leibler divergence of P relative to Q is given by

DKL(P ||Q) =

∫
p(x) ln

p(x)

q(x)
dx (3)

the Jensen-Shannon divergence between the EC normalized experimental spectrum
SEC and the EO normalized experimental spectrum SEO is given by

DJS(SEC ||SEO) =
1

2
DKL(SEC ||1

2
(SEC + SEO))

+
1

2
DKL(SEO||1

2
(SEC + SEO)).

(4)

In this work the logarithmic base e is used in the calculation of the Jensen-Shannon 257

divergence, in which case 0 ≤ DJS ≤ ln 2. 258

We have chosen the Jensen-Shannon divergence based on the postulate that the 259

greater the degree of alpha blocking, the larger the DJS. This is qualitatively confirmed 260

by examination of the spectra from different subjects (Fig 1 and Fig A in S1 Appendix). 261

We are interested how the parameter response scales with DJS (and thus alpha 262

blocking), since this relates changes in the model to changes in the spectra. To check 263

this, Fig C in S1 Appendix shows how the total parameter response (given by the 264

Manhattan distance in parameter space,
∑
m |∆θm|, where m indexes state-distinct 265

parameters) increases monotonically with DJS. Distances in spectral space, captured by 266

DJS, thus scale smoothly with distances in parameter space, providing a link between 267

microscopic parameters and macroscopic observable over 82 different subjects. 268
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Physiological interpretability depends, of course, on whether individual parameters scale 269

with DJS (see Fig 4). 270

State-common parameters and state-distinct parameters 271

There are compelling physiological reasons why certain parameters should have the 272

same value in EC and EO states in a single individual. The EEG signal transitions 273

reversibly between the EC and EO state in times of the order of a second. It is unlikely 274

that parameters determined largely by the morphology or connectivity of the neurons 275

could vary significantly on this time-scale. We thus do not expect the average number 276

of synapses per neuron (Nβ
ee, N

β
ei, N

β
ie, and Nβ

ii) to vary between the two states. 277

Similarly parameters representing intrinsic neuronal properties such as those involved in 278

the sigmoidal response of the neural population (maximum firing rates (Smax
e , Smax

i ) 279

and slope (σe, σi) and the threshold (µ̄e, µ̄i), resting (hreste , hresti ) and equilibrium (heqe , 280

heqi ) potentials) plausibly could be expected to remain constant on this time scale. We 281

thus require that these 14 parameters, referred to as state-common parameters, have the 282

same value in EC and EO states for a particular individual. We emphasize that, 283

although each of these parameters has a shared value across states, that value can vary 284

between individuals. 285

The remaining 9 parameters are allowed to vary between states and are thus referred 286

to as state-distinct parameters. Together with state-common parameters, this gives 287

14 + 2× 9 = 32 distinct parameters down from the maximum possible 2× 23 = 46 free 288

parameters. 289

It is interesting to note that the state-distinct parameters fall into two sub-groups: 290

those that characterize the input to the macro-column (i.e. tonic levels of pee and pei 291

and the exponent of the input spectrum, η), and those that affect the shape, amplitude 292

and time-scale of the post-synaptic potentials (γe, γi, Γe, Γi, τe, and τi). Some or all of 293

the parameters in the state-distinct group could conceivably vary on such a time scale 294

(though with different levels of plausibility) and so we allowed all of them to vary 295

between states. However, after fitting and regularization, we discovered that it is 296

primarily parameters from the first subgroup of state-distinct parameters (particularly 297

pei, and to a lesser extent pee) that play the dominant role in distinguishing EC from 298

EO spectra. The second sub-group are thus a posteriori shared parameters as distinct 299

from the state-common parameters which are a priori shared. 300

Regularization of parameter differences 301

A straightforward least-squares fit of EC/EO pairs resulted in parameter differences 302

between states shows little systematic scaling with the degree of alpha blocking (see Fig 303

B in S1 Appendix). We hypothesized that this was caused by parameter 304

unidentifiability (uncertainty) obscuring the subtle differences between states. To 305

address this problem, we added a regularization term to our least-squares cost function. 306

Regularization is a standard method for identifying the subset of sensitive 307

parameters in a fit by trading off fitting accuracy [44]. In traditional regularization, 308

using for example the L1 norm [52], it is the value of the parameter itself that is 309

regularized (penalized). In our case, we penalize the differences between (state-distinct) 310

parameters, rather than the parameter values themselves, biasing most to zero and 311

allowing only the most important ones to be non-zero. This reduces much of the 312

unwanted variation caused by sloppy parameters. 313
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The regularized cost function for the 32-parameter fit is given by

C =
1

2

∑
n

(αŜn(θ)Sinn − Sn)2EC +
1

2

∑
n

(αŜn(θ)Sinn − Sn)2EO

+
λ

ND

∑
θm∈D

|θ̂EOm − θ̂ECm |
(5)

where θ is the 32-parameter vector to be optimized, αŜ(θ) is the model spectrum 314

normalized by the scaling factor α (the formula to compute α appears as Eq (12) 315

in [33]), Sin is the input spectrum given by 1/fη, S is the experimental spectrum, θ̂m is 316

the parameter θm normalized to the range of [-1,1] corresponding to the θm’s plausible 317

range, D is the set of state-distinct parameters, ND is the number of the state-distinct 318

parameters, and λ is the regularization parameter. The first and second terms on the 319

right hand side correspond to least-squares fitting errors for the EC and EO spectra, 320

respectively, while the third is the regularization term to penalize differences between 321

state-distinct parameters. 322

The amount of regularization applied (i.e. the value of λ) affects the quality of the 323

fit. If regularization were too strong, it would force each (state-distinct) parameter to 324

have the same value in EC and EO states, resulting in identical predicted spectra for 325

each state and thus poor fit accuracy (assuming that the two spectra are actually 326

different). If regularization were too weak, the parameter values vary too wildly, as we 327

found in Fig B in S1 Appendix. Our strategy is to maximize the amount of 328

regularization applied while keeping the fit inside the uncertainty bounds of the data. 329

To determine this optimal λ, we calculate fitting errors (the first two expressions on 330

the right hand side of Eq 5) for 19 different values of λ ranging across ten orders of 331

magnitude. The resulting plot (see Fig D in S1 Appendix) has an “S” shape, exhibiting 332

high fitting accuracy at low λ and poor accuracy at high λ, with a transition regime in 333

between. Our optimal regularization parameter is taken to be the largest value of λ 334

where the median regularised fitting error does not exceed the 84% quantile of 335

unregularized fitting errors. This corresponds to a value λ = 0.1. A visual comparison 336

of regularized versus unregularized fits is given in Fig 2. 337

Supporting information 338

S1 Appendix. Additional figures. Fig A. Degree of alpha blocking across all 339

subjects; Fig B. Unregularized EC to EO parameter responses and how they scale with 340

the degree of alpha blocking; Fig C. Manhattan distances between EC and EO 341

parameter sets as a function of the degree of alpha blocking; Fig D. Comparison of 342

fitting error as a function of regularization parameter. (PDF) 343
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