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Abstract

Most neuronal models are based on the assumption that ion concentrations remain
constant during the simulated period, and do not account for possible effects of
concentration variations on ionic reversal potentials, or of ionic diffusion on electrical
potentials. Here, we present what is, to our knowledge, the first multicompartmental
neuron model that accounts for electrodiffusive ion concentration dynamics in a way
that ensures a biophysically consistent relationship between ion concentrations,
electrical charge, and electrical potentials in both the intra- and extracellular space.
The model, which we refer to as the electrodiffusive Pinsky-Rinzel (edPR) model, is an
expanded version of the two-compartment Pinsky-Rinzel (PR) model of a hippocampal
CA3 neuron, where we have included homeostatic mechanisms and ion-specific leakage
currents. Whereas the main dynamical variable in the original PR model is the
transmembrane potential, the edPR model in addition keeps track of all ion
concentrations (Na+, K+, Ca2+, and Cl−), electrical potentials, and the electrical
conductivities in the intra- as well as extracellular space. The edPR model reproduces
the membrane potential dynamics of the PR model for moderate firing activity, when
the homeostatic mechanisms succeed in maintaining ion concentrations close to baseline.
For higher activity levels, homeostasis becomes incomplete, and the edPR model
diverges from the PR model, as it accounts for changes in neuronal firing properties due
to deviations from baseline ion concentrations. Whereas the focus of this work is to
present and analyze the edPR model, we envision that it will become useful for the field
in two main ways. Firstly, as it relaxes a set of commonly made modeling assumptions,
the edPR model can be used to test the validity of these assumptions under various
firing conditions, as we show here for a few selected cases. Secondly, the edPR model is
a supplement to the PR model and should replace it in simulations of scenarios in which
ion concentrations vary over time. As it is applicable to conditions with failed
homeostasis, the edPR model opens up for simulating a range of pathological conditions,
such as spreading depression or epilepsy.

Author summary

Neurons generate their electrical signals by letting ions pass through their membranes.
Despite this fact, most models of neurons apply the simplifying assumption that ion
concentrations remain effectively constant during neural activity. This assumption is
often quite good, as neurons contain a set of homeostatic mechanisms that make sure
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that ion concentrations vary quite little under normal circumstances. However, under
some conditions, these mechanisms can fail, and ion concentrations can vary quite
dramatically. Standard models are thus not able to simulate such conditions. Here, we
present what to our knowledge is the first multicompartmental neuron model that in a
biophysically consistent way does account for the effects of ion concentration variations.
We here use the model to explore under which activity conditions the ion concentration
variations become important for predicting the neurodynamics. We expect the model to
be of great use for simulating a range of pathological conditions, such as spreading
depression or epilepsy, which are associated with large changes in extracellular ion
concentrations.

Introduction 1

The neuronal action potential (AP) is generated by a transmembrane influx of Na+, 2

which depolarizes the neuron, followed by an efflux of K+, which repolarizes it. 3

Likewise, all neurodynamics is fundamentally about the movement of ions, which are 4

the charge carriers in the brain. Therefore, it might seem peculiar that most models of 5

neuronal activity are based on the approximation that the concentrations of the main 6

charge carriers (Na+, K+, and Cl−) do not change over time. This approximation is, for 7

example, incorporated in the celebrated Hodgkin-Huxley model [1], and a large number 8

of later models based on a Hodgkin-Huxley type formalism (see, e.g., [2–7]). 9

Setting the ion concentrations to not change over time is often a fairly good 10

approximation. The reason is that the number of ions that need to cross the membrane 11

to charge up the neuron by, say, an AP worth of millivolts, is too small to have any 12

notable impact on ion concentrations on either side of the membrane (see, e.g., Box 2.2 13

in [8]), meaning that concentration changes on a short time scale can be neglected. On a 14

longer time-scale, the ionic exchange due to APs (or other neuronal events), is normally 15

reversed by a set of homeostatic mechanisms such as ion pumps and cotransporters, 16

which work to maintain constant baseline concentrations. In Hodgkin-Huxley type 17

models, the large number of ion pumps, cotransporters and passive ionic leakages that 18

strive towards maintaining baseline conditions are therefore not explicitly modeled. 19

Instead, they are simply assumed to do their job and are grouped into a single passive 20

and non-specific leakage current I leak = gleak(φm − Eleak), which determines the cell’s 21

resting potential (for a critical study of this approximation, see [9]). 22

Another approximation commonly applied by modelers of neurons is that the 23

extracellular potential is constant and grounded (φe = 0) so that the only voltage 24

variable that one needs to worry about when simulating neurodynamics is the 25

transmembrane potential (φm). This assumption is implicit in the majority of 26

morphologically explicit models of neurons, where the (spatial) signal propagation in 27

dendrites and axons are computed using the cable equation (see, e.g., [10–12]). 28

Cable-equation based, multicompartmental neuronal models are widely used within the 29

field of neuroscience, both for understanding dendritic integration and neuronal 30

response properties at the single neuron level (see, e.g., [3, 4, 6, 7]) and for exploring the 31

dynamics of large neuronal networks (see e.g., [13–15]). They are even used in the 32

context of performing forward modeling of extracellular potentials, such as local field 33

potentials (LFP), the electrocorticogram (ECoG), and electroencephalogram (EEG) 34

(see, e.g., [16–18]), despite the evident inconsistency involved when first computing 35

neurodynamics under the approximation that φe = 0 (Fig 1A), and then in the next 36

step using this dynamics to predict a nonzero φe (Fig 1B). The approximation is 37

nevertheless useful since φe is typically so much smaller than φm that the (ephaptic) 38

effect of φe on neurodynamics can be neglected without severe loss in accuracy [19]. 39

There are, however, scenarios where the assumptions of constant ion concentrations 40
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Figure 1. Modeling intra- and extracellular dynamics: standard theory vs.
unified framework. (A) The dynamics of the membrane potential (φm) and
transmembrane currents of neurons are typically modeled using cable theory. It is then
assumed that the extracellular environment is grounded (φe = 0). Typically, it is also
assumed that ion concentrations both in the intra- and extracellular space are constant,
so that also ionic reversal potentials remain constant. (B) When knowing the
transmembrane neuronal currents (as computed in (A)), standard volume conductor
theory [20,21] allows us to estimate the extracellular potential, which is computed as
the sum of neuronal point-current sources weighted by their distance to the recording
location. An underlying assumption is that fluctuations in φe (as computed in (B)) are
so small that they have no effect on the neurodynamics (as computed in (A)), i.e.,
there is no ephaptic coupling. Another underlying assumption (cf. constant ion
concentrations) is that extracellular diffusive currents do not affect electrical potentials.
(C) We propose a unified, electrodiffusive framework for intra- and extracellular ion
concentration and voltage dynamics, assuring a consistent relationship between ion
concentrations, electrical charge, and electrical potential in all compartments.

and a grounded extracellular space are not justifiable. Notably, large-scale extracellular 41

ion concentration changes are a trademark of several pathological conditions, including 42

epilepsy and spreading depression [22–25]. In these cases, neurons are unable to 43

maintain their baseline conditions because they for various reasons are too active and/or 44

their homeostatic mechanisms are too slow. During spreading depression, the 45

extracellular K+ concentration can change from a baseline value of about 3-5 mM to 46

pathological levels of several tens of mM, and the increased K+ concentration tends to 47

coincide with a slow, direct-current (DC) like drop in the extracellular potential, which 48

may be several tens of millivolts in amplitude [25,26], and can give rise to large spatial 49

gradients. For example, one experiment saw the extracellular K+-concentration and φe 50

vary by as much as 30 mM and 20 mV, respectively, over the hippocampal depth [26]. 51

Such dramatic gradients in the extracellular environment are likely to have a strong 52

impact on the dynamical properties of neurons, both through the 53

concentration-dependent changes in ion-channel reversal potentials [27–29] and 54

putatively through a direct ephaptic effect from φe on the membrane potential. 55

The construction of accurate neuron models that include ion concentration dynamics 56

(and conservation) poses two key challenges. Firstly, ion conserving models need a finely 57

adjusted balance between the homeostatic machinery and all passive and active 58

ion-specific currents so that all ion concentrations, as well as voltages, vary in a 59

biophysically realistic way over time when the neuron is active. Secondly, in spatially 60

extended models, ions will not move only across membranes, but also within the 61

extracellular and intracellular space. Such ionic movement may be propelled both by 62
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diffusion and electrical drift. Ionic diffusion can, in principle, affect the electrical 63

potential (since ions carry charge), and the electrical potential can, in principle, affect 64

ion concentration dynamics (since ions drift along potential gradients) [30–32]. Accurate 65

modeling of such systems thus requires a unified, electrodiffusive framework that 66

ensures a physically consistent relationship between ion concentrations, charge density, 67

and electrical potentials. 68

Intra- or extracellular electrodiffusion is not an issue in single-compartment models, 69

of which there are quite a few that incorporate ion concentration dynamics in a more or 70

less consistent way [28,29,33–47]. There are also several morphologically explicit models 71

that have included homeostatic machinery and explicitly simulated ion concentration 72

dynamics (see e.g., [27, 48–57]). However, neither of these have accounted for the 73

electrodiffusive coupling between the movement of ions and electrical potentials (see 74

Results section titled Loss in accuracy when neglecting electrodiffusive effects on 75

concentration dynamics). Hence, to our knowledge, no morphologically explicit neuron 76

model has so far been developed that ensures biophysically consistent dynamics in ion 77

concentrations and electrical potentials during long-time activity, although useful 78

mathematical framework for constructing such models are available [58–62]. 79

The goal of this work is to propose what we may refer to as ”a minimal neuronal 80

model that has it all”. By ”has it all”, we mean that it (1) has a spatial extension, (2) 81

considers both extracellular- and intracellular dynamics, (3) keeps track of all ion 82

concentrations (Na+, K+, Ca2+, and Cl−) in all compartments, (4) keeps track of all 83

electrical potentials (φm, φe, and φi - the latter being the intracellular potential) in all 84

compartments, (5) has differential expression of ion channels in soma versus dendrites, 85

and can fire somatic APs and dendritic calcium spikes, (6) contains the homeostatic 86

machinery that ensures that it maintains a realistic dynamics in φm and all ion 87

concentrations during long-time activity, and (7) accounts for transmembrane, 88

intracellular and extracellular ionic movements due to both diffusion and electrical 89

migration, and thus ensures a consistent relationship between ion concentrations and 90

electrical charge. Being based on a unified framework for intra- and extracellular 91

dynamics (Fig 1C), the model thus accounts for possible ephaptic effects from 92

extracellular dynamics, as neglected in standard feedforward models based volume 93

conductor theory (Fig 1A-B). By ”minimal” we simply mean that we reduce the number 94

of spatial compartments to the minimal, which in this case is four, i.e., two neuronal 95

compartments (a soma and a dendrite), plus two extracellular compartments (outside 96

soma and outside dendrite). Technically, the model was constructed by adding 97

homeostatic mechanisms and ion concentration dynamics to an existing model, i.e., the 98

two-compartment Pinsky-Rinzel (PR) model [3], and embedding in it a consistent 99

electrodiffusive framework, i.e., the previously developed Kirchhoff-Nernst-Planck 100

framework [31,32,60, 62]. For the remainder of this paper, we refer to our model as the 101

electrodiffusive Pinsky-Rinzel (edPR) model. 102

The remainder of this article is organized as follows. First, we present the edPR 103

model and illustrate the numerous variables that it can simulate. Next, we show that 104

the edPR model can reproduce the firing properties of the original PR model. By 105

running long-time simulations (several minutes of biological time) on both models, we 106

identify the firing conditions under which the two models maintained a similar firing 107

pattern, and under which conditions concentration effects became important so that 108

dynamics of the edPR-model diverged from the original PR model over time. Finally, 109

we use the electrodiffusive edPR model to explore the validity of some important 110

assumptions commonly made in the field of computational neuroscience, regarding the 111

decoupling of electrical and diffusive signals. We believe that the IPCR model will be of 112

great value for the field of neuroscience, partly because it gives a deepened insight into 113

the balance between neuronal firing and ion homeostasis, partly because it lends itself 114
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to explore under which conditions the common modeling assumption of constant ion 115

concentrations is warranted, and most importantly because it opens for more detailed 116

mechanistic studies of pathological conditions associated with large changes in ion 117

concentrations, such as epilepsy and spreading depression [22–25]. 118

Results 119

An electrodiffusive Pinsky-Rinzel model 120

The here proposed electrodiffusive Pinsky-Rinzel (edPR) model is inspired by the 121

original Pinsky-Rinzel (PR) model [3], which is a two-compartment (soma + dendrite) 122

version of a CA3 hippocampal cell model, initially developed by Traub et al. [2]. In the 123

original PR model, the somatic compartment contains Na+, and K+ delayed rectifier 124

currents (INa and IK−DR), while the dendritic compartment contains a 125

voltage-dependent Ca2+ current (ICa), a voltage-dependent K+ afterhyperpolarization 126

current (IK−AHP), and a Ca2+-dependent K+ current (IK−C). In addition, both 127

compartments contain passive leakage currents. Despite its small number of 128

compartments and conductances, the PR model can reproduce a variety of realistic 129

firing patterns when responding to somatic or dendritic stimuli, including somatic APs 130

and dendritic calcium spikes. 131

In the edPR model, we have adopted all mechanisms from the original PR model. In 132

addition, we have (i) made all ion channels and passive leakage currents ion-specific, (ii) 133

included a 3Na+/2K+ pump (Ipump), a K+/Cl− cotransporter (IKCC2), a 134

Na+/K+/2Cl− cotransporter (INKCC1), and a Ca2+/2Na+ exchanger, and (iii) 135

included two extracellular compartments (outside soma + outside dendrite). To 136

compute the dynamics of the edPR, we used an electrodiffusive KNP-framework for 137

consistently computing the voltage- and ion concentration dynamics in the intra- and 138

extracellular compartments [60]. The model is summarized in Fig 2 and described in 139

details in the Methods section. 140

Key dynamical variables in the electrodiffusive Pinsky-Rinzel 141

model 142

While the key variable in the original PR model is the membrane potential φm, the 143

edPR model allows us to compute a multitude of variables relevant to neurodynamics. 144

The functionality of the edPR model is illustrated in Fig 3, which shows a 60 s 145

simulation where the model fires at 1 Hz for 10 s. We have plotted a selection of output 146

variables, including the membrane potential (Fig 3A-B), extracellular potentials 147

(Fig 3C-D), the dynamics of all ion concentrations in all compartments (Fig 3E-H), 148

concentration effects on ionic reversal potentials (Fig 3I-J), concentration effects on the 149

electrical conductivity of the intra- and extracellular medium (Fig 3K), and ATP 150

consumption (Fig 3L) of the 3Na+/2K+ pump and Ca2+/2Na+ exchangers. 151

Unlike neuronal models based on cable theory, where φe is assumed to be zero so 152

that φm = φi, the edPR model computes φm, φi, and φe from a consistent framework 153

where ephaptic effects from φe on φm are accounted for (Fig 3C). Due to the electrical 154

coupling between the soma and dendrite, the fluctuations in φm were similar in these 155

compartments, and a more detailed analysis of the AP shapes is found further below. 156

While an action potential essentially gave a depolarization followed by a repolarization 157

of φm, its extracellular signature was essentially a voltage drop (to about −5 mV) 158

followed by a voltage increase (to about +5 mV). This biphasic response of the 159

extracellular AP signature has been seen in several studies (for an analysis, see [20, 21]). 160

In experimental recordings, amplitudes in φe fluctuations are typically on the order of 161
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Figure 2. edPR model architecture. (A) Two plus two compartments (soma +
dendrite), with intracellular space to the left and extracellular space to the right. Two
kinds of fluxes of different ion species k are involved: transmembrane fluxes (jk,dm,
jk,sm) and intra- and extracellular fluxes (jk,i, jk,e). The dynamics of the potential φ
and ion concentration dynamics in all compartments were computed using an
electrodiffusive framework, ensuring bulk electroneutrality and a consistent relationship
between ion concentrations, electrical charge, and voltages. (B) Active currents were
taken from the original PR model [3]. In the soma, these consisted of Na+ and K+

delayed rectifier currents (INa and IK-DR). In the dendrite, these consisted of a
voltage-dependent Ca2+ current (ICa), a Ca2+-dependent K+ current (IKC), and a
voltage-dependent K+ afterhyperpolarization current (IK-AHP). Ion specific passive
(leakage-) currents and homeostatic mechanisms were taken from a previous model by
Wei et al. [45], and were identical in the soma and dendrite. These included Na+, K+

and Cl− leak currents, a 3Na+/2K+ pump (Ipump), a K+/Cl− cotransporter (IKCC2),
and a Na+/K+/2Cl− cotransporter (INKCC1). In addition, the dendrite included a
Ca2+/2Na+ exchanger (ICa-dec), providing an intracellular Ca2+ decay similar to that
in the PR model.

100 µV, which is much smaller than that predicted by the edPR model. The discrepancy 162

is an artifact that is mainly due to the 1D approximation in the edPR-model (see 163

Discussion). The dendritic extracellular potential (Fig 3D) was by definition zero at all 164

times, as this compartment was used as the reference point for the potential. 165

The effect of neuronal firing on the ion concentration dynamics is illustrated in 166

Fig 3E-H. Before the stimulus onset, the cell was resting at approximately -68 mV, and 167

ion concentrations remained at baseline values. During AP firing, the ion concentrations 168

varied in a jigsaw-like fashion. As the extracellular volume was set to be half as big as 169

the intracellular volume, changes in extracellular ion concentrations were about twice as 170

big as the changes in intracellular ion concentrations. The jigsaw pattern was most 171
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Figure 3. Output of the edPR model. A 28 pA step-current injection was applied
to the somatic compartment between t = 10 s and t = 20 s, and the model responded
with a firing rate of 1 Hz. (A-B) The membrane potential φm of the soma and the
dendrite, respectively. (C-D) The extracellular (index e) potential φe of the soma
(index s) and the dendrite (index d), respectively. The dendritic extracellular
compartment was chosen as the reference point when calculating potentials, so φde was
zero by definition. Since amplitudes in φm were so much larger than for φe, intracellular
(index i) potentials (φi = φe + φm) were similar to φm, and therefore not shown. (E-F)
Ion concentrations dynamics of all ion species k (Na+ Cl−, K+, Ca2+) in all four
compartments shown in terms of their deviance from baseline concentrations. (I-J)
Changes in reversal potentials for all ion species in the soma and the dendrite,
respectively. (K) Change in conductivity of the intra- and extracellular media (σi and
σe, respectively). (L) Accumulative number of ATP molecules consumed by the
3Na+/2K+ pumps and Ca2+/2Na+ exchangers.

pronounced for the K+ and Na+ concentrations, as these were the main mediators of 172

the APs (Fig 3E-H). The pattern reflects a cycle of (i) incremental steps away from 173

baseline concentrations, which were mediated by the complex of mechanisms active 174

during the APs, followed by (ii) slower decays back towards baseline, which were 175

mediated by pumps and cotransporters working between the APs. In this simulation, 176

the decay was incomplete, so that concentrations reached gradually larger peak values 177

by each consecutive AP. However, as we show later (see Section titled The edPR model 178
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predicts homeostatic failure due to high firing rate), the concentrations did, in this case, 179

approach a firing-frequency dependent steady state. When the firing ceased, the pumps 180

and cotransporters could work uninterruptedly to re-establish the baseline ion 181

concentrations. Although a full recovery of ionic concentrations took on the order of 30 182

s, the resting membrane potential of about −68 mV was recovered much faster (ms 183

timescale), after which the recovery process was due to an electroneutral exchange of 184

ions between the neuron and the extracellular space. 185

As ion concentrations varied during the simulation, so did the ionic reversal 186

potentials, Ek(Fig 3I-J). The by far largest change was seen for the Ca2+ reversal 187

potential in the dendrite (Ek,d), which dropped by as much as −30 mV during an AP, 188

(i.e., from a baseline value of 124 mV to 94 mV). The explanation is that the basal 189

intracellular Ca2+-concentration is extremely low (100 nM) compared to the 190

concentrations of other ion species (several mM), and therefore experienced a much 191

larger relative change during the simulation. Among the main charge carriers (Na+ Cl−, 192

K+), the lowest concentration is found for K+ in the extracellular space (Table 5 in 193

Methods). For that reason, the second largest change in reversal potential was found for 194

EK, which increased by about 5 mV (i.e., from a basal value of -84 mV to -79 mV) in 195

both the soma and dendrite. The changes in ECa and EK had a relatively minor impact 196

on the firing pattern in the shown simulations, as the relative change in the driving 197

force φm − Ek was not that severe. 198

The conductivities (σ) of the intra- and extracellular bulk solutions depend on the 199

availability of free charge carriers, and are in the edPR model functions of the ion 200

concentrations and their mobility (cf. Eq 19). The changes in σ were minimal during 201

the conditions simulated here (Fig 3K), i.e., σ varied by a few µS/m over the course of 202

the simulation, while the basal levels were approximately 0.08 S/m and 0.67 S/m for the 203

intra- and extracellular solutions, respectively. 204

Finally, the 3Na+/2K+ pump and Ca2+/2Na+ exchanger use energy in the form of 205

ATP to move ions against their gradients. The 3Na+/2K+ pump exchanges 3 Na+ ions 206

for 2 K+ ions, and consumes one ATP per cycle [63], while we assumed that the 207

Ca2+/2Na+ exchangers consumed 1 ATP per cycle (i.e., per Ca2+ exchanged, as 208

in [64]). As the edPR model explicitly models these processes, we could compute the 209

ATP (energy) consumption of the pumps during the simulation. Fig 3L shows the 210

accumulative number of ATP consumed from the onset of the simulation. The 211

3Na+/2K+ pump was constantly active, as it combated leakage currents and worked to 212

maintain the baseline concentration even before stimulus onset. Before stimulus onset, 213

it consumed ATP at a constant rate (linear curve), which increased only slightly at 214

t = 10 s when the neuron started to fire (small dent in the curve). As the neuron did 215

not contain any passive leakage of Ca2+, the Ca2+/2Na+ exchangers were only active 216

while the neuron was firing. During firing, the Ca2+/2Na+ exchanger combated the 217

Ca2+ entering through the dendritic Ca2+ channels, and then consumed approximately 218

the same amount of energy as the 3Na+/2K+ pump (parallel curves). A high metabolic 219

cost of dendritic Ca2+ spikes has previously been reported also in cortical layer 5 220

pyramidal neurons [64]. 221

We note that the edPR model had a stable resting state before stimulus onset and 222

that it returned to this resting state after the stimulus had been turned off. In this 223

resting state, ion concentrations remained constant, and φm was approximately -68 mV. 224

This resting equilibrium was due to a balance between the ion-specific leakage channels, 225

pumps, and cotransporters, which we adopted from previous studies (see Methods). 226

However, the existence of such a homeostatic equilibrium was not highly sensitive to the 227

choice of model parameters. As we confirmed through a sensitivity analysis, varying 228

membrane parameters with ± 15% of their default values, only lead to a variation of 229

about ± 2 mV in the resting potential, see Fig 4. 230
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Figure 4. Sensitivity analysis. To study the steady state’s sensitivity to the values
of the leak conductances ḡNa,leak, ḡK,leak, and ḡCl,leak, the pump strength ρ, and the
cotransporter strengths Unkcc1 and Ukcc2, we performed a sensitivity analysis using
Uncertainpy, a Python toolbox for uncertainty quantifications and sensitivity
analysis [65]. We ran the model for 15 seconds and let the parameters have a uniform
distribution within a ±15% interval around their default values. (A) The mean and
standard deviation of the somatic membrane potential. We see that the homeostatic
equilibrium of the model was not highly sensitive to the choice of model parameters.
(B) The total-order Sobol indices for the different parameters. We see that the
relatively small variation in the potential was mostly due to the variation of ḡNa,leak.
This makes sense, knowing that the sodium reversal potential (55 mV) is furthest away
from the resting potential (≈ −68 mV), making the driving force (φm − Ek) of the Na+

leak current stronger than those for the other ion-specific leak currents.

The edPR model reproduces the short term firing properties of 231

the original PR model. 232

A motivation behind basing the electrodiffusive (edPR) model on a previously 233

developed (PR) model, was that we wanted to use the firing properties of the original 234

PR model as a ”ground truth” when constraining the edPR model. In particular, we 235

wanted the edPR model to qualitatively reproduce the interplay between somatic action 236

potentials and dendritic Ca2+ spikes, as this was an essential feature of the original 237

PR-model [3]. In the PR model, this interplay depended strongly on the coupling 238

strength (coupling conductance) between the soma and dendrite compartment. A weak 239

coupling resulted in a wobbly ping-pong effect, where a somatic AP triggered a 240

dendritic Ca2+ spike, which in turn fed back to the soma, giving rise to secondary 241

oscillations in φm (Fig 5A). With a strong (about five times stronger) coupling, the 242

somatic and dendritic responses became more similar in shape, as expected (Fig 5B). 243

January 15, 2020 9/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912378
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Original PR Model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
EDPR Model

17.70 17.72 17.74

−65

0

20

m
V

A soma

dendrite

10.06 10.07 10.08 10.09 10.10

−65

0

20 B

17.56 17.58 17.60

time [s]

−65

0

20

m
V

C

10.01 10.03 10.05

time [s]

−65

0

20 D

Figure 5. Short term dynamics of the PR and edPR models. The original PR
model (top row) and the edPR model (bottom row) exhibit the same spike shape
characteristics. (A) Spike shape in PR model for weak coupling (low coupling
conductance) between the soma and the dendrite. (B) Spike shape in PR model for
strong (high intracellular conductivity) coupling between the soma and the dendrite.
(C) Spike shape in edPR model for weak coupling between the soma and the dendrite.
(D) Spike shape in edPR model for strong coupling between the soma and the dendrite.
(A-D) A step-stimulus current was turned on at t = 10s, with stimulus strength being
1.35µA/cm2 in (A), 0.78µA/cm2 in (B), 31 pA in (C), and 28 pA in (D). The panels
show snapshots of a selected spike. See the Parameterizations section in Methods for a
full description of the parameters used.

Since the edPR model contained membrane mechanisms and ephaptic effects not 244

present in the PR model, selected parameters in the edPR model had to be re-tuned in 245

order to obtain similar firing as the PR model (see Methods). With the selected 246

parameterization of the edPR model (see the Parameterizations section), we were able 247

to reproduce the characteristic features seen in the PR model for a weak (Fig 5C) and 248

strong (about five times stronger) coupling between the soma and dendrite (Fig 5D). 249

The edPR model predicts homeostatic failure due to high firing 250

rate. 251

As previously discussed, the PR model was, as most existing neuronal models, 252

constructed under the assumption that ion concentration effects are negligible, an 253

assumption that is justified for short term neurodynamics, and for long term dynamics 254

provided that the activity level is sufficiently low for the homeostatic mechanisms to 255

maintain concentrations close to baseline over time. Hence, we expect there to be a 256

scenario (S1) with a moderately low firing rate, where the PR and edPR can fire 257
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continuously and regularly over a long time exhibiting similar firing properties, and 258

another scenario (S2) with a higher firing rate, where the PR and edPR models exhibit 259

similar firing properties initially in the simulation, but where the dynamics of the two 260

models diverge over time due to homeostatic failure accounted for by the edPR model, 261

but not the PR model (which ad hoc assume perfect homeostasis). Simulations of two 262

such scenarios are shown in Figs 6 and 7. 263
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Figure 6. Model comparison for scenario with low frequency firing.
Simulations on the PR model and edPR model when both models are driven by a
constant input, giving them a firing rate of about 1 Hz. Simulations covered one hour
(3600 s) of biological time. (A-D) A 10 s sample of the dynamics of the somatic
membrane potential φm and dendritic Ca2+ concentration in the PR model (A-B) and
edPR model (C-D). This regular firing pattern was sustained over the full 3600 s
simulation in both models (inset panels). (D) Of the total amount of intracellular
Ca2+, only 1% (as plotted) was assumed to be free (unbuffered). (E-F) Ionic reversal
potentials and (G-J) ion concentrations in the edPR model did not vary on a long time
scale. Indices i, e, s, and d indicate intracellular, extracellular, soma, and dendrite,
respectively. (A-J) Stimulus onset was t = 10 s in both models, and stimulus strength
was istim = 0.78µA/cm2 in the PR model (A-B) and istim = 28 pA in the edPR model
(C-J). See the Parameterizations section in Methods for a full description of the
parameters used.

To simulate scenario S1, the PR model (Fig 6A-B) and edPR model (Fig 6C-J) were 264

given a constant input (see figure caption) that gave them a firing rate of about 1 Hz. 265

Both models then settled at a regular firing rate, and in neither of them the firing 266

pattern changed over time, even in simulations of as much as an hour of biological time. 267

For the edPR model, the S1 scenario is the same as that simulated for only a brief 268

period in Fig 3. There, we observed that the ion concentrations gradually changed 269

during the first seconds after the onset of stimulus (Fig 3E-H). However, for endured 270
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Figure 7. Model comparison for scenario with high frequency firing.
Simulations on the PR model and edPR model when both models are driven by a
constant input, giving them a firing rate of about 3 Hz. Simulations covered 200 s of
biological time. (A-D) A 12 s sample of the dynamics of the somatic membrane
potential φm and dendritic (free) Ca2+ concentration in the PR model (A-B) and
edPR model (C-D). The regular firing pattern in the PR model (A-B) was sustained
over the full 200 s simulation (inset panels), while the edPR model stopped firing and
entered depolarization block around t = 19 s. (D) Of the total amount of intracellular
Ca2+, only 1% (as plotted) was assumed to be free (unbuffered). (E-F) Ionic reversal
potentials and (G-J) ion concentrations in the edPR model varied throughout the
simulation, and gradually diverged from baseline conditions. Indices i, e, s, and d
indicate intracellular, extracellular, soma, and dendrite, respectively. Main panels show
12 s samples of the ion concentration dynamics, while insets show the dynamics over the
full 200 s simulations. (A-J) Stimulus onset was t = 10 s in both models, and stimulus
strength was istim = 1.55µA/cm2 in the PR model (A-B) and istim = 46 pA in the
edPR model (C-J). See the Parameterizations section in Methods for a full description
of the parameters used.

firing, the ion concentrations and reversal potentials settled on a (new) dynamic steady 271

state (Fig 6E-J), where they deviated by ∼ 1 mM from the baseline concentrations 272

during rest (i.e., for edPR receiving no input). The apparent ”thickness” of the curves 273

(e.g., the orange curve for K+ in Fig 6I) is due to concentration fluctuations at the short 274

time scale of AP firing. However, after each AP, the homeostatic mechanisms managed 275

to re-establish ionic gradients before the next AP occurred, so that no slow 276

concentration-dependent effect developed in the edPR model at a long time scale. 277

To simulate scenario S2, the PR model (Fig 7A-B) and edPR model (Fig 7C-J) were 278

given a constant input (see figure caption) that gave them a firing rate of about 3 Hz. 279

The PR model, which included no concentration-dependent effects, settled on a regular 280
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firing rate that it could maintain for an arbitrarily long time. Unlike the PR model, the 281

edPR model did not settle at a steady state, but had a firing rate of ∼ 3 Hz only for a 282

period of ∼ 5 s after stimulus onset. During this period, the ion concentrations 283

gradually diverged from the baseline levels (Fig 7G-J). The corresponding changes in 284

ionic reversal potentials (Fig 7E-F) affected the neuron’s firing properties and caused its 285

firing rate to gradually increase before it eventually entered the depolarization block 286

and got stuck at about φm = −30 mV. The main explanation behind the altered firing 287

pattern was the change in the K+ reversal potential, which, for example, at 7 s after 288

stimulus onset (t = 17 s) had increased by as much as 15 mV from baseline. This shift 289

led to a depolarization of the neuron, which explains both the (gradually) increased 290

firing rate and the (final) depolarization block, i.e., the condition where φm could no 291

longer repolarize to levels below the firing threshold, and AP firing was abolished due to 292

a permanent inactivation of active Na+ channels. Neuronal depolarization block is a 293

well-studied phenomenon, which is often caused by high extracellular K+
294

concentrations [66]. 295

The homeostatic failure in S2 was due to the edPR model having a too high firing 296

rate for the ion pumps and cotransporters to maintain ion concentrations close to 297

baseline. The firing rate of 3 Hz was the limiting case (found by trial and error), i.e., for 298

lower firing rates than this, the model could maintain regular firing for an arbitrarily 299

long time. As many neurons can fire at quite high frequencies, a tolerance level of 3 Hz 300

might seem a bit low, and we here provide some comments to this. Firstly, we note that 301

the edPR model could fire at 3 Hz (and gradually higher frequencies) for about 9 s, and 302

could also maintain a higher firing rate than this for a limited time. Secondly, the PR 303

model, and thus the edPR model, represented a hippocampal CA3 neuron, which has 304

been found to have an average firing rate of less than 0.5 Hz [67], so that endured firing 305

of ≥ 3 Hz may be abnormal for these neurons. Thirdly, under biological conditions, glial 306

cells, and in particular astrocytes, provide additional homeostatic functions [68] that 307

were not accounted for in the edPR model, and the inclusion of such functions would 308

probably increase the tolerance level of the neuron. Fourthly, the (3 Hz) tolerance level 309

was a consequence of modeling choices and could be made higher, e.g., by increasing 310

pump rates or compartment volumes. However, we did not do any model tuning in 311

order to increase the tolerance level, as we, in light of the above arguments, considered a 312

3 Hz tolerance level to be acceptable. 313

The edPR model predicts homeostatic failure due to impaired 314

homeostatic mechanisms. 315

Above we simulated homeostatic failure occurring because the firing rate became too 316

high for the homeostatic mechanisms to keep up (S2). Homeostatic failure may also 317

occur due to impairment of the homeostatic mechanisms, either due to genetic 318

mutations (see, e.g., [69]) or because the energy supply is reduced, such as after a stroke 319

(see, e.g., [25]). Here, we have used the edPR model to simulate an extreme version of 320

this, i.e., a third scenario (S3) where all the homeostatic mechanisms were turned off. 321

In S3, the neuron received no external input, so that the dynamics of the neuron was 322

solely due to gradually dissipating transmembrane ion concentration gradients. After an 323

initial transient, we observed a slow and gradual increase in the membrane potential for 324

about 30 s (Fig 8A). This coincided with a slow and gradual change in the ion 325

concentrations (Fig 8D-G) and ionic reversal potentials (Fig 8B-C) due to 326

predominantly passive leakage over the membrane. 327

At about t = 30 s, the membrane potential reached the firing threshold, at which 328

point the active channels started to use what was left of the concentration gradients to 329

generate action potentials and Ca2+ spikes. This resulted in a burst of activity. During 330
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Figure 8. The wave of death. Simulations on the edPR model when all homeostatic
mechanisms were turned off. The model received no external stimulus. Simulations
covered 10 minutes of biological time. (A) A 60 s sample of the dynamics of the
somatic membrane potential φm. Inset shows a close-up of the burst of activity
occurring at about t = 30 s. (B-C) Reversal potentials in the soma (B) and dendrite
(C). (D-G) Ion concentrations in all four compartments. Somatic and dendritic
concentrations were almost identical for all ion species except for Ca2+. Indices i, e, s,
and d indicate intracellular, extracellular, soma, and dendrite, respectively. See the
Parameterizations section in Methods for a full description of the parameters used.

this bursts of activity, ion concentrations changed even faster, since both active and 331

passive channels were then open. As a consequence, the ”resting” membrane potential 332

was further depolarized and the neuron went into depolarization block [66]. After this, 333

the neuron continued to ”leak” until it settled at a new steady state. The non-zero final 334

equilibrium potential is known as the Donnan equilibrium or the Gibbs-Donnan 335

equilibrium [70]. The reason why the cell did not approach an equilibrium with φm = 0 336

and identical ion concentrations on both side of the membrane, is that the model 337

contained static residual charges, representing negatively charged macromolecules 338

typically residing in the intracellular environment (see Methods), the sum of which 339

resulted in a final state with a negatively charged inside. In addition, the membrane 340

was also impermeable to Ca2+ in its final state (t > 1 min) since the Ca2+ channel 341

inactivated, and the model contained no passive Ca2+ leakage. This explains why the 342
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Ca2+ reversal potential did not end up at Donnan-equilibrium potential, as did the 343

reversal potential of the other mobile ions. 344

A pattern resembling that in Fig 8A, i.e., period of silence, followed by a burst of 345

activity, and then silence again, has been seen in experimental EEG recordings of 346

decapitated rats [71], where the activity burst was referred to as ”the wave of death”, 347

and the phenomenon was ascribed to the lack of energy supply to homeostatic 348

mechanisms. The simulations in Fig 8A represents the single-cell correspondence to this 349

death wave. We note that this phenomenon has been simulated and analyzed 350

thoroughly in a previous modeling study, using a simpler, single compartmental model 351

with ion conservation [40]. We, therefore, do not analyze it further here. 352

Loss in accuracy when neglecting electrodiffusive effects on 353

concentration dynamics 354

The concentration-dependent effects studied in the previous subsection were 355

predominantly due to changes in ionic reversal potentials. Effects like this could 356

therefore be accounted for by any model that in some way incorporates ion 357

concentration dynamics [27–29,33–57], provided that the ion concentration dynamics is 358

accurately modeled. As we argued in the Introduction, previous multicompartmental 359

neuron models that do incorporate ion concentration dynamics have not done it in a 360

complete, ion conserving way that ensures a biophysically consistent relationship 361

between ion concentration, electrical charge, and electrical potentials (see, 362

e.g., [27, 48–57]). To specify, the change in the ion concentration in a given 363

compartment will, in reality, depend on (i) the transmembrane influx of ions into this 364

compartment, (ii) the diffusion of ions between this compartments and its neighboring 365

compartment(s), and (iii) the electrical drift of ions between this compartment and its 366

neighboring compartment(s). Some of the cited models account for only (i) [27,49,51], 367

others account for (i) and (ii) [48, 50, 52–57], but neither account for (iii). When (iii) is 368

not accounted for, electrical and diffusive processes are implicitly treated as independent 369

processes, a simplifying assumption which is also incorporated in the reaction-diffusion 370

module [72] in the NEURON simulation environment [73]. In models that apply this 371

assumption, there will therefore be drift currents (along axons and dendrites) that affect 372

φm (through the cable equation), but not the ion concentration dynamics, although they 373

should, since also the drift currents are mediated by ions. 374

Here, we use simulations on the edPR model to test the inaccuracy introduced when 375

not accounting for the effect of drift currents on ion concentration dynamics. We do so 376

by comparing how many ions that were transferred from the somatic to the dendritic 377

compartment through the intracellular (Fig 9A) and extracellular (Fig 9B) space, due 378

to ionic diffusion (orange curves) versus electrical drift (blue curves), throughout the 379

simulation in Fig 3. We note that Fig 9 shows the accumulatively moved number of ions 380

(from time zero to t) due to axial fluxes exclusively. That is, the large number of, for 381

example, Na+ ions transported intracellularly from the dendrite to the soma (negative 382

sign) in Fig 9A1, does not by necessity mean that Na+ ions were piling up in the soma 383

compartment, as the membrane efflux of Na+ was not accounted for in the figure. 384

Although diffusion tended to dominate the intracellular transport of ions on the long 385

time scale (Fig 9A1-A4), the transport due to electrical drift was not vanishingly small. 386

For example, the number of K+ and Cl− ions transported by electrical drift was at the 387

end of the stimulus period (t = 20 s) about 30 and 42 %, respectively, of the transport 388

due to diffusion. In the extracellular space, diffusion was the clearly dominant 389

transporter of Na+ and K+ (Fig 9B1-B2), while diffusion and electrical drift were of 390

comparable magnitude for the other ion species (Fig 9B3-A4). Of course, these 391

estimates are all specific to the ICRP model, as they will depend strongly on the 392
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Figure 9. Axial transport of ions and charge due to drift versus diffusion.
(A1-A4) The number of ions transported intracellularly from soma to dendrite from
time zero to t by electrical drift versus ionic diffusion. (B1-B4) The number of ions
transported extracellularly from (outside) soma to (outside) dendrite from time zero to
t. (A5) Net charge transported intracellularly from soma to dendrite, represented as
the number of unit charges e+. (B5) Net charge transported extracellularly from soma
to dendrite, represented as the number of unit charges e+. (A-B) The simulation was
the same as in Fig 3. See the Analysis section in Methods for a description of how we
did the calculations.

included ion channels, ion pumps and cotransporters, and on how they are distributed 393

between the soma and dendrite. In general, however, the simulations in Fig 9 suggest 394

that electrical drift is likely to have a non-negligible effect on ion concentration 395

dynamics, and that ignoring this effect will give rise to rather inaccurate estimates. 396

Finally, we also converted the sum of ionic fluxes in Fig 9 into an effective current, 397

represented as the number of transported unit charges, e+ (Fig 9A5-B5). Interestingly, 398

diffusion and drift contributed almost equally to the axial charge transport in the 399

system. We note, however, that the movement of charges per time unit is indicated by 400

the slope of the curves, which was much larger for the drift case (blue curve) than for 401

diffusion (orange curve). The drift curve had a jigsaw shape, which shows that drift was 402

moving charges back and forth in the system, while the diffusion always went in the 403

same direction, explaining why it, despite being smaller than the drift current, had a 404
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comparably large accumulative effect on charge transport. The temporally averaged 405

picture of charge transport that emerges from Fig 9A5 is that of a slow current loop 406

where charge is transferred intracellularly from the soma to the dendrite (Fig 9A5), 407

where it crosses the membrane (outward current), and then is transferred extracellularly 408

back from the dendrite to the soma (Fig 9B5), before crossing the membrane again 409

(inward current). This configuration is similar to the slow loop current seen during 410

spatial buffering by astrocytes (see, e.g. Fig 1 in [68]). 411

Loss in accuracy when neglecting electrodiffusive effects on 412

voltage dynamics 413

In the previous section, we investigated the consequences of neglecting (iii) the 414

contribution of drift currents on ion concentration dynamics. Here, we investigate the 415

consequences of neglecting the effect of ionic diffusion (along dendrites and axons) on 416

the electrical potential, focusing on the extracellular potential φe. Forward modeling of 417

extracellular potentials is typically based on volume conductor (VC) 418

theory [16–18,20,21], which assumes that diffusive effects on electrical potentials are 419

negligible. Being based on a unified electrodiffusive KNP framework (Fig 1), the edPR 420

model accounts for the effects of ionic diffusion on the electrical potentials, and can thus 421

be used to address the validity of this assumption. 422

To illustrate the effect of diffusion on φe, we may split it into a component φVC,e 423

explained by standard VC-theory, and a component φdiff,e representing the additional 424

contribution caused by diffusive currents (Eq 81). In the simulation in Fig 3, the 425

diffusive contribution was found to be very small compared to the VC-component (Fig 426

10). However, while φVC,e fluctuated rapidly from negative to positive values during 427

neuronal activity, φdiff,e varied on a slower time scale and had the same directionality 428

throughout the simulation. This is equivalent to what we saw in Fig 9B5, i.e., that 429

diffusion always moved charge in the same direction. As we also have shown in previous 430

studies, diffusion is thus likely to be important for the slow (direct-current (DC) like) 431

effects on extracellular potentials [31,32,74,75]. Albeit small, the slowly varying 432

diffusion evoked shifts in φe are putatively important for explaining the DC-shifts and 433

long-time concentration dynamics reported during, e.g., spreading depression [25,26]. 434

0 10 20 30

time [s]

−5

0

5

m
V

A VC

diff

KNP

19360 19380 19400

time [ms]

-0.25

0

0.25

B

Extracellular potential

Figure 10. Effect of diffusion on extracellular potential. The extracellular
potential φe in the edPR model, split (cf. Eq 81) into a component explained by
standard VC-theory (φVC,e) and a ”correction” (φdiff,e) when diffusive contributions are
accounted for. (A-B) The simulation was the same as in Fig 3. (B) Close-up of
selected AP in (A). See the Analysis section in Methods for a description of how we
calculated φVC,e and φdiff,e. mean(φe)= −0.0021 mV, mean(φdiff,e)= 0.0034 mV,
mean(φVC,e)=−0.0055 mV
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Discussion 435

The original Pinsky-Rinzel (PR) is a reduced model of a hippocampal neuron, which 436

reproduces the essential somatodendritic firing properties of CA3 neurons despite 437

having only two compartments [3]. Simplified neuron models like that are useful, partly 438

because their reduced complexity makes them easier to analyze, and as such, can lead to 439

insight in key neuronal mechanisms, and partly because they demand less computer 440

power and can be used as modules in large scale network simulations. Whereas the PR 441

model, as most available neuron models, assumes that ion concentrations remain 442

constant during the simulated period, the electrodiffusive Pinsky-Rinzel (edPR) 443

proposed here models ion concentration dynamics explicitly. The edPR model may thus 444

be seen as a supplement to the PR model, which should be applied to simulate 445

conditions where ion concentrations are expected to vary with time. 446

In the results section, we showed that the edPR model closely reproduced the firing 447

properties of the PR model for short term dynamics (Fig 5), and for long term 448

dynamics provided that the firing rate was sufficiently low for the homeostatic 449

mechanisms to maintain ion concentrations close to baseline (Fig 6). We also showed 450

that if the firing rate became too high (Fig 7), or if the homeostatic mechanisms were 451

impaired (Fig 8), unsuccessful homeostasis would cause ion concentrations to gradually 452

shift over time, and lead to slowly developing changes in the firing properties of the 453

edPR model, changes that were not accounted for by the original PR model. The edPR 454

model was based on an electrodiffusive framework [60], which ensured a consistent 455

relationship between ion concentrations, electrical charge, and electrical potential in 456

four compartments. To our knowledge, the edPR model is the first multicompartmental 457

neuronal model that ensures a complete and consistent ion concentration and charge 458

conservation. 459

Model assumptions 460

The construction of the edPR model naturally involved making a set of modeling 461

choices, and the most important of these are discussed here. Firstly, in the construction 462

of the model, we focused on morphological simplicity, biophysical rigor, and mechanistic 463

understanding, rather than on replicating any specific biological scenario and 464

incorporating biological details. Secondly, simultaneous data of variations in all intra- 465

and extracellular concentrations during neuronal firing are not available, and it might 466

not even be feasible to obtain such data. Consequently, modeling based on biophysical 467

constraints may be the best means to estimate it. The concentration dynamics in the 468

edPR model were thus not directly constrained to data but constrained so that there 469

was, at all times, an internally consistent relationship between all ion concentrations 470

and all electrical potentials, ensuring an electroneutral bulk solution. Thirdly, to include 471

extracellular dynamics to models of neurons or networks of such is computationally 472

challenging, since the extracellular space, in reality, is an un-confined three-dimensional 473

continuum, locally affected by populations of nearby neurons and glial cells. As we 474

wanted to keep things simple and conceptual, we chose to use closed boundary 475

conditions, i.e., no ions and no charge were allowed to leave or enter the system 476

consisting of the single (2-compartment) neuron and its local and confined 477

(2-compartment) surrounding (Fig 2). 478

A consequence of using closed boundary conditions was that the extracellular (like 479

the intracellular) currents became one-dimensional (from soma to dendrite), while in 480

reality, extracellular currents pass through a three-dimensional volume conductor. The 481

edPR model could be made three dimensional if embedded in a bi- or tri-domain model 482

(as discussed below). However, currently, it is 1D, and the effect of the 1D assumption 483

was essentially an increase in the total resistance (fewer degrees of freedom) for 484
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extracellular currents, which gave rise to an artificially high amplitude in extracellular 485

AP signatures (Fig 3). We note, however, that the closed boundary is actually 486

equivalent to assuming periodic boundary conditions, so that the edPR model 487

essentially simulates the hypothetical case of a population of perfectly synchronized 488

neurons, i.e., one where all neurons are doing exactly the same as the simulated neuron, 489

so that no spatial variation occurs. Likely, this may give accurate predictions for ion 490

concentration shifts over time, as these reflect a temporal average of activity, but less 491

accurate predictions for brief and unique electrical events, such as action potentials, 492

which are not likely to be elicited in perfect synchrony by large population [31]. 493

Fourthly, to faithfully represent a morphologically complex neuron with a reduced 494

number of compartments is a non-trivial task. Available analytical theory for collapsing 495

branching dendrites into equivalent cylinders are generally based on certain assumptions 496

about branching symmetries, and on preserving electrotonic distances [76]. However, it 497

is unlikely that the length constants of electrodynamics and ion concentration dynamics 498

scale in the same way. Hence, in the edPR model, the volumes and membrane areas of-, 499

and cross-section areas between, the two neuronal compartments were here introduces 500

as rather arbitrary model choices, fixed at values that were verified to give agreement 501

between the firing properties of the edPR model and the PR model. 502

Outlook 503

Being applicable to simulate conditions with failed homeostasis, the edPR model opens 504

up for simulating a range of pathological conditions, such as spreading depression or 505

epilepsy [22–25], which are associated with large scale shifts in extracellular ion 506

concentrations. A particular context in which we anticipate the edPR model to be 507

useful is that of simulating spreading depression. Previous spatial, electrodiffusive, and 508

biophysically consistent models of spreading depression have targeted the problem at a 509

large-scale tissue-level, using a mean-field approach [30,77,78]. These models were 510

inspired by the bi-domain model [79], which has been successfully applied in simulations 511

of cardiac tissue [80,81]. The bi-domain model is a coarse-grained model, in which the 512

tissue is considered as a bi-phasic continuum consisting of an intracellular and 513

extracellular domain. That is, a set of intra- and extracellular variables (i.e., voltages 514

and ion concentrations), and the ionic exchange between the intra- and extracellular 515

domains, are defined at each point in space. This simplification allows for large scale 516

simulations of signals that propagate through tissue but sacrifices morphological detail. 517

In the context of spreading depression, a shortcoming with this simplification is that the 518

leading edge of the spreading depression wave in both the hippocampus and cortex is in 519

the layers containing the apical dendrites [22]. This suggests that the different 520

expression of membrane mechanisms in deeper (somatic) and higher (dendritic) layers 521

may be crucial for fully understanding the propagation and genesis of the wave. In this 522

context, the edPR model could enter as a module in a, let us say, bi-times-two-domain 523

model, where each point in (xy) space contains a set of (i) somatic intracellular 524

variables, (ii) somatic extracellular variables, (iii) dendritic intracellular variables and 525

(iv) dendritic extracellular variables, and thus accounts for the differences between the 526

higher and lower layers. We should note that the state of the art models of spreading 527

depression are not bi-domain models but rather tri-domain models, as they also include 528

a glial domain to account especially for the work done by astrocytes in K+
529

buffering [30,77,78]. Hence, to use the edPR model to expand the current spreading 530

depression models, a natural first step would be to include a glial (astrocytic) 531

compartment in it, so that it eventually could be implemented as a 532

tri-times-two-domain model. 533
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Methods 534

The Kirchoff-Nernst-Planck (KNP) framework 535

In the following section, we derive the KNP continuity equations for a one-dimensional 536

system containing two plus two compartments (Fig 2A), with sealed boundary 537

conditions (i.e., no ions can enter or leave the system). The geometrical parameters 538

used in the edPR model were as defined in Table 1. 539

Table 1. Geometrical parameters

Parameter Value

∆x (distance between the two compartments) 667 · 10−6 m
As (somatic membrane area) 616 · 10−12 m2

Ad (dendritic membrane area) 616 · 10−12 m2

Ai (intracellular cross-section area) α ·As
†

Ae (extracellular cross-section area) Ai/2
V si (somatic intracellular volume) 1437 · 10−18 m3

V se (somatic extracellular volume) 1437 · 10−18 m3

V di (dendritic intracellular volume) 718.5 · 10−18 m3

V de (dendritic extracellular volume) 718.5 · 10−18 m3

The intracellular volumes (V si, V di) and membrane areas (As, As) correspond to
spheres with radius 7 µm. We used the same intra-/extracellular volume ratio as in [40].
† The parameter α describes the coupling strength of the model and is defined in the
Parameterizations section. Its default value was 2.

Two kinds of fluxes are involved: transmembrane fluxes and intra- and extracellular 540

fluxes. The framework is general to the choice of the transmembrane fluxes. A 541

transmembrane flux of ion species k (jk,m) represents the sum of all fluxes through all 542

membrane mechanisms that allow ion k to cross the membrane. 543

Intracellular flux densities are described by the Nernst-Planck equation: 544

jk,i = −Dk

λ2i

γk([k]di − [k]si)

∆x
− DkzkF

λ2iRT
[k]i

φdi − φsi
∆x

. (1)

In Eq 1, Dk is the diffusion constant, γk is the fraction of freely moving ions, that is, 545

ions that are not buffered or taken up by the ER, λi is the tortuosity, which represents 546

the slowing down of diffusion due to obstacles, γk([k]di − [k]si)/∆x is the axial 547

concentration gradient, zk is the charge number of ion species k, F is the Faraday 548

constant, R is the gas constant, T is the absolute temperature, [k]i is the average 549

concentration, that is, γk([k]di + [k]si)/2, and (φdi − φsi)/∆x is the axial potential 550

gradient. Similarly, the extracellular flux densities are described by 551

jk,e = −Dk

λ2e

[k]de − [k]se
∆x

− DkzkF

λ2eRT
[k]e

φde − φse
∆x

. (2)

In Eq 2, we do not include γk, as all ions can move freely in the extracellular space. 552

Diffusion constants, tortuosities, and intracellular fractions of freely moving ions used in 553

the edPR model were as in Table 2. 554

Ion conservation 555

The KNP framework is based on the constraint of ion conservation. To keep track of ion 556

concentrations we solve four differential equations for each ion species k: 557

d[k]si
dt

= −jk,sm · As

V si
− jk,i ·

Ai

V si
, (3)
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Table 2. Diffusion constants, tortuosities, and intracellular fractions of
freely moving ions

Parameter Value Reference

DNa (Na+ diffusion constant) 1.33 · 10−9 m2/s [31,82]
DK (K+ diffusion constant) 1.96 · 10−9 m2/s [31,82]
DCl (Cl− diffusion constant) 2.03 · 10−9 m2/s [31,82]
DCa (Ca2+ diffusion constant) 0.71 · 10−9 m2/s [31,82]
λi (intracellular tortuosity) 3.2 [60,83]
λe (extracellular tortuosity) 1.6 [60,83]
γNa, γK, γCl (intracellular fractions of free ions) 1
γCa (intracellular fraction of free ions) 0.01

d[k]di
dt

= −jk,dm · Ad

V di
+ jk,i ·

Ai

V di
, (4)

d[k]se
dt

= +jk,sm · As

V se
− jk,e ·

Ae

V se
, (5)

d[k]de
dt

= +jk,dm · Ad

V de
+ jk,e ·

Ae

V de
. (6)

For each compartment, all flux densities are multiplied by the area they go through and 558

divided by the volume they enter to calculate the change in ion concentration. If we 559

insert the Nernst-Planck equation (Eq 1) for the intracellular flux density, the first of 560

these equations becomes: 561

d[k]si
dt

= −jk,sm · As

V se
+

AiDk

V siλi2∆x

[
γk([k]di − [k]si) +

zkF

RT
[k]i(φdi − φsi)

]
, (7)

where the voltage variables so far are undefined. 562

Four constraints to derive φ 563

If we have four ion species (Na+, K+, Cl−, and Ca2+) in four compartments, we have 564

20 unknown parameters (16 for [k] and four for φ), while Eqs 3-6 for four ion species 565

give us only 16 equations. To solve this, we need to define additional constraints that 566

allow us to express the potentials φ in terms of ion concentrations. 567

(i) Arbitrary reference point for φ. As we may define an arbitrary reference 568

point for φ, we take 569

φde = 0, (8)

as our first constraint, i.e., the potential outside the dendrite is defined to be zero. 570

(ii) Membrane is a parallel plate capacitor The second constraint is that the 571

membrane is a parallel plate capacitor that always separates a charge Q on one side 572

from an opposite charge −Q on the other side, giving rise to a voltage difference 573

φm = Q/Cm. (9)

Here, Cm is the total capacitance of the membrane, i.e., Cm = cmAm, where cm is the 574

more commonly used capacitance per membrane area. As, by definition, φm = φi − φe, 575

we get: 576

φdm = φdi = Qdi/Cm, (10)
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in the dendrite (since φde = 0), and 577

φsm = φsi − φde = Qsi/Cm, (11)

in the soma. 578

(iii) Bulk electroneutrality. The KNP scheme is based on the assumption of bulk 579

electroneutrality, which means the net charge associated with the ion concentrations in 580

a given compartment by constraint must be identical to the membrane charge in this 581

compartment. The intracellular dendritic charge is thus Qdi = F
∑
k

zk[k]diV di. By 582

inserting this into Eq 10, we obtain the final expression for φdi: 583

φdi = (F
∑
k

zk[k]diV di)/(cmAd). (12)

By inserting the equivalent expression for Qsi into Eq 11, we get 584

φsi − φse = Qsi/Cm = (F
∑
k

zk[k]siV si)/(cmAs). (13)

Here, the extracellular potential is not set to zero, so we need a fourth constraint to 585

determine φsi and φse separately. 586

(iv) Current anti-symmetry. For the charge anti-symmetry between the two sides 587

of the capacitive membrane (Qi = −Qe) to be preserved in time, we must define our 588

initial conditions so that this is the case at t = 0, and the system dynamics so that this 589

stays the case. Hence, the system dynamics must ensure that dQdi/dt = −dQde/dt and 590

dQsi/dt = −dQse/dt. The membrane currents (in isolation) will always fulfill this 591

criterion, as any charge that crosses the membrane by definition disappears from one 592

side of it and pops up at the other. Hence, we thus need to make sure that also the 593

axial currents (in isolation) fulfill the criterion. The system must thus be constrained so 594

that, if an extracellular current transports a charge δq into a given extracellular 595

compartment, the intracellular current must transport the opposite charge −δq into the 596

adjoint intracellular compartment. That is, we must have that: 597

Aiii = −Aeie, (14)

where ii and ie are the intra- and extracellular current densities, respectively. To find an
expression for these, we multiply Eqs 1 and 2 by Fzk and sum over all ion species k.
The expressions for the intra- and extracellular current densities then become:

ii = − F

λ2i ∆x

∑
k

Dkzkγk([k]di − [k]si) −
F 2

λ2iRT∆x

∑
k

Dkzk
2[k]i(φdi − φsi), (15)

ie = − F

λ2e∆x

∑
k

Dkzk([k]de − [k]se) −
F 2

λ2eRT∆x

∑
k

Dkzk
2[k]e(φde − φse). (16)

In Eq 15, the first term is the diffusion current density: 598

idiff,i = − F

λ2i ∆x

∑
k

Dkzkγk([k]di − [k]si), (17)

which is defined by the ion concentrations. The second term is the field driven current 599

density 600

ifield,i = −σi
(φdi − φsi)

∆x
, (18)
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where we have identified the conductivity as 601

σi =
F 2

RTλ2i

∑
k

Dkzk
2[k]i. (19)

Similarly, Eq 16 can be written in terms of idiff,e, ifield,e, and σe. By combining Eqs 14, 602

15, and 16, we obtain: 603

−Aiidiff,i +Aiσi ·
(φdi − φsi)

∆x
= Aeidiff,e −Aeσe ·

(φde − φse)

∆x
. (20)

In Eq 20, φdi and φde are already known from Eqs 8 and 12, while idiff and σ are
expressed in terms of ion concentrations. We may thus solve Eqs 13 and 20 for the last
two voltage variables φse and φsi:

φse =

(
φdi −

∆x

σi
· idiff,i −

Ae∆x

Aiσi
· idiff,e −

Qsi

cmAs

)
/

(
1 +

Aeσe

Aiσi

)
, (21)

φsi =
Qsi

cmAs
+ φse. (22)

Membrane mechanics 604

Leakage channels 605

In the original PR model, the membrane leak current represents the combined 606

contribution from all ion species. When using the KNP framework, on the other hand, 607

where we keep track of all ions separately, the leak current must be ion-specific. We 608

modeled this as in [45], that is, for each ion species k, we implemented a passive flux 609

density across the membrane 610

jk,leak = ḡk,leak(φm − E
k
)/(Fzk), (23)

where ḡk,leak is the conductance, φm is the membrane potential, E
k

is the reversal 611

potential, F is the Faraday constant, and zk is the charge number. The reversal 612

potential is a function of ion concentrations, and is calculated using the Nernst equation: 613

Ek =
RT

zkF
ln

[k]e
γk[k]i

. (24)

Here, R is the gas constant, T is the absolute temperature, γk is the intracellular 614

fraction of free ions, and [k]e and [k]i are the concentrations of ion k outside and inside 615

the cell, respectively. We included Na+, K+, and Cl− leak currents in both 616

compartments. 617

Active ion channels 618

All active ion channel currents were adopted from the original PR model [3], as they
were described in [8], and converted to ion channel fluxes. The soma compartment
contained a Na+ flux (jNa) and a K+ delayed rectifier flux (jK−DR), while the dendrite
contained a voltage-dependent Ca2+ flux (jCa), a voltage-dependent K+ AHP flux
(jK−AHP), and a Ca2+-dependent K+ flux (jK−C):

jNa = gNa(φsm − ENa,s)/(FzNa), (25)

jK−DR = gDR(φsm − EK,s)/(FzK), (26)

jCa = gCa(φdm − ECa,d)/(FzCa), (27)

jK−AHP = gAHP(φdm − EK,d)/(FzK), (28)

jK−C = gC(φdm − EK,d)/(FzK). (29)
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The voltage-dependent conductances were modeled using the Hodkin-Huxley
formalism with differential equations for the gating variables:

dx

dt
= αx(1 − x) − βxx, with x = m,h, n, s, c, q, (30)

dz

dt
=
z∞ − z

τ
z

. (31)

The conductances and gating variables were given by:

gNa = ḡNam
2
∞h, (32)

gDR = ḡDRn, (33)

gCa = ḡCas
2z, (34)

gC = ḡCcχ([Ca2+]), (35)

gAHP = ḡAHPq, (36)

αm = − 3.2 · 105 · φ1
exp(−φ1/0.004) − 1

, with φ1 = φm + 0.0469 (37)

βm =
2.8 · 105 · φ2

exp(φ2/0.005) − 1
, with φ2 = φm + 0.0199 (38)

m∞ =
αm

αm + βm
(39)

αh = 128 exp
−0.043 − φm

0.018
, (40)

βh =
4000

1 + exp(−φ3/0.005)
, with φ3 = φm + 0.02 (41)

αn = − 1.6 · 104 · φ4
exp(−φ4/0.005) − 1

, with φ4 = φm + 0.0249 (42)

βn = 250 exp(−φ5/0.04), with φ5 = φm + 0.04 (43)

αs =
1600

1 + exp(−72(φm − 0.005))
, (44)

βs =
2 · 104 · φ6

exp(φ6/0.005) − 1
, with φ6 = φm + 0.0089 (45)

z∞ =
1

1 + exp(φ7/0.001)
, with φ7 = φm + 0.03 (46)

τz = 1, (47)

αc =

{
52.7 exp

(
φ8

0.011 − φ9

0.027

)
, if φm ≤ −0.01 V

2000 exp(−φ9/0.027), otherwise
(48)

with φ8 = φm − 0.05 and φ9 = φm − 0.0535 (49)

βc =

{
2000 exp(−φ9/0.027) − αc, if φm ≤ −0.01 V

0, otherwise
(50)

χ = min(
γCa[Ca2+] − 99.8 · 10−6

2.5 · 10−4
, 1), (51)

αq = min(2 · 104(γCa[Ca2+] − 99.8 · 10−6), 10), (52)

βq = 1. (53)

All these equations were taken from [8] (with errata [84]), and converted so that values 619

are given in SI units: units for rates (α’s, β’s, χ) are 1/s, units for τz is s, and voltages 620
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φ should be inserted with units in V. The equations were used in their original form, 621

except those related to Ca2+ dynamics, where we made the following changes: Firstly, 622

as a large fraction of intracellular Ca2+ is buffered or taken up by the ER, we multiplied 623

[Ca2+] in Eqs 51 and 52 by a factor γCa, which refers to the fraction of free Ca2+ within 624

the cell, and set this to be 0.01. As [Ca2+] in Eqs 51 and 52 were multiplied with 0.01, 625

only the free Ca2+ could affect the Ca2+ activated ion channels. We further assumed 626

that only the free Ca2+ could move between the intracellular compartments (Eq 1) and 627

affect the Ca2+ reversal potential (Eq 24). Secondly, the original PR model had an 628

abstract and unitless variable for the intracellular Ca2+ concentration, with a basal 629

concentration of 0.2, while we defined a (biophysically realistic) baseline concentration 630

of 0.01 mM, which corresponds to a concentration of free Ca2+ of 100 nM. In Eqs 51 631

and 52 we therefore subtracted 99.8 · 10−6 (mol/m3) from the Ca2+ concentration to 632

correct for the shift in baseline. Thirdly, we modified the voltage-dependent Ca2+ 633

current to include an inactivation variable z (Eqs 31 and 34). We implemented this 634

inactivation like they did in [85] (Eqs. A2-A3), but set the time constant τ z to 1 s, the 635

half-activation voltage to −30 mV, and the slope of the steady-state Boltzmann fit to 636

z∞ to 0.001. In the original PR model, inactivation was neglected due to the argument 637

that it was too slow to have an impact on simulation outcomes [2]. However, in our 638

simulations, we observed that it had a significant impact, and therefore we included it. 639

Homeostatic mechanisms 640

To maintain baseline ion concentrations for low frequency activity we added a
3Na+/2K+ pump, a K+/Cl− cotransporter (KCC2), and a Na+/K+/2Cl−

cotransporter (NKCC1). Their functional forms were taken from [45].

jpump =
ρ

1.0 + exp((25 − [Na+]i)/3)
· 1.0

1.0 + exp(3.5 − [K+]e)
, (54)

jkcc2 = Ukcc2 ln

(
[K+]i[Cl−]i
[K+]e[Cl−]e

)
, (55)

jnkcc1 = Unkcc1f([K+]e)

(
ln

(
[K+]i[Cl−]i
[K+]e[Cl−]e

)
+ ln

(
[Na+]i[Cl−]i
[Na+]e[Cl−]e

))
, (56)

f([K+]e) =
1

1 + exp(16 − [K+]e)
, (57)

where ρ, Ukcc2, and Unkcc1 are pump and cotransporter strengths. We assumed optimal 641

pump functionality and set ρ to be the pump strength used in [45] for the fully 642

oxygenated state with normal bath potassium (ρmax). 643

Intracellular Ca2+ decay was modeled in a similar fashion as in [3], but to ensure ion 644

conservation we modeled it as Ca2+/Na+ exchanger, exchanging one Ca2+ (outward) 645

for two Na+ (inward). The Ca2+ decay flux density was defined as: 646

jCa−dec = 75 · ([Ca2+]i − [Ca2+]i,0) · V i

Am
(58)

where 75 is the decay rate, same as in [3] but in SI units, and [Ca2+]i,0 is the initial 647

Ca2+ concentration. 648
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Model summary 649

We summarize the model here for easy reference. In short, we solved four differential
equations for all ion species k:

d[k]si
dt

= −jk,sm · As

V si
− jk,i ·

Ai

V si
, (59)

d[k]di
dt

= −jk,dm · Ad

V di
+ jk,i ·

Ai

V di
, (60)

d[k]se
dt

= +jk,sm · As

V se
− jk,e ·

Ae

V se
, (61)

d[k]de
dt

= +jk,dm · Ad

V se
+ jk,e ·

Ae

V de
. (62)

At each time step, φ in all four compartments was derived algebraically:

φde = 0, (63)

φdi = Qdi/(cmAd) (64)

φse =

(
φdi −

∆x

σi
· idiff,i −

Ae∆x

Aiσi
· idiff,e −

Qsi

cmAs

)
/

(
1 +

Aeσe

Aiσi

)
, (65)

φsi =
Qsi

cmAs
+ φse. (66)

The total membrane flux densities were as follows:

jms
Na = jNa + jNa,leak + 3jpump − jnkcc1 − 2jCa−dec, (67)

jms
K = jK−DR + jK,leak − 2jpump − jnkcc1 + jkcc2, (68)

jms
Cl = jCl,leak − 2jnkcc1 + jkcc2, (69)

jms
Ca = jCa−dec, (70)

jmd
Na = jNa,leak + 3jpump − jnkcc1 − 2jCa−dec, (71)

jmd
K = jK−AHP + jK−C + jK,leak − 2jpump − jnkcc1 + jkcc2, (72)

jmd
Cl = jCl,leak − 2jnkcc1 + jkcc2, (73)

jmd
Ca = jCa + jCa−dec. (74)

Figure 2 summarizes the model. The parameters involved in this model and their values 650

used in this study are listed in Tables 1-4. 651

Table 3. Temperature and physical constants

Parameter Value Reference

T (absolute temperature) 309.14 K [45]*
F (Faraday constant) 9.648 · 104 C/mol
R (gas constant) 8.314 J/(mol K)

* The temperature is not explicitly given in [45], but from Eq 3 in [45] we know that
RT
F = 26.64 · 10−3 V. By using the values of R and F listed in Table 3, we get an

absolute temperature of 309.14 K.

Original Pinsky-Rinzel model 652

We implemented the original Pinsky-Rinzel equations from Box 8.1 in [8]. The reversal 653

potential of the leak current, not specified in [8], was set to −68 mV to ensure a resting 654
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Table 4. Membrane parameters

Parameter Value Reference

cm 3 · 10−2 F/m2 [3, 8]
ḡNa,leak 0.247 S/m2 [45]
ḡK,leak 0.5 S/m2 [45]
ḡCl,leak 1.0 S/m2 [45]
ḡNa 300 S/m2 [3, 8]
ḡDR 150 S/m2 [3, 8]
ḡCa 118 S/m2

ḡAHP 8 S/m2 [3, 8]
ḡC 150 S/m2 [3, 8]
ρ 1.87 · 10−6 mol/(m2s) [45]*
Ukcc2 7.0 · 10−7 mol/(m2s) [45]*
Unkcc1 2.33 · 10−7 mol/(m2s) [45]*

* We multiplied the original values from [45] by a conversion factor 7
3 · 10−6 m to

convert the units from mM/s to mol/m2s. The conversion factor equals the initial
inverse surface area to volume ratio from [45].

potential close to that of the edPR model. We also used this as the initial potentials, 655

that is, φsm,0 = −68 mV and φdm,0 = −68 mV. The other initial conditions were 656

n0 = 0.001, h0 = 0.999, s0 = 0.009, c0 = 0.007, q0 = 0.01, and [Ca2+]0 = 0.2, same as 657

in [3]. 658

Simulations 659

Parameterizations 660

The parameters listed in Tables 1-4 were used in all the simulations of the 661

electrodiffusive Pinsky-Rinzel (edPR) model. We tuned the Ca2+ conductance ḡCa 662

manually to obtain comparable spike shapes between the edPR model and the original 663

PR model, as well as the fraction of free Ca2+ inside the cell, and the coupling strength 664

between the soma and the dendrite. 665

In the edPR model, the coupling strength between the soma and dendrite was 666

proportional to the ratio Ai/∆x, and all model outputs depended on this ratio, and not 667

on Ai or ∆x in isolation. By choice, we adjusted the coupling strength by varying 668

Ai = αAm through adjusting the parameter α. We could have obtained the equivalent 669

effect by varying ∆x instead. The default value of α was set to 2. All simulations were 670

run using this value, except in Fig 5C where α was set to 0.43. 671

In the original PR model, the coupling strength between the soma and dendrite was 672

represented by a coupling conductance gc, which had a default value of 10.5 mS/cm2. In 673

Fig 5A, gc was set to 2.26 mS/cm2. 674

Initial conditions 675

The initial conditions of the edPR model are listed in Table 5. We adjusted the initial
ion concentrations manually to ensure a stable resting state of the model. Their values
give us the following reversal potentials: ENa = 55 mV, EK = −84 mV, ECl = −79 mV,
and ECa = 124 mV. The variables [kres]i and [kres]e are static residual charges. They
represent negatively charged macromolecules typically residing in the intracellular
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environment. We defined them as

[kres]i = zNa[Na+]i + zK[K+]i + zCl[Cl−]i + zCa[Ca+2]i + φm,0
cmAm

V iF
, (75)

[kres]e = zNa[Na+]e + zK[K+]e + zCl[Cl−]e + zCa[Ca+2]e + φm,0
cmAm

V eF
, (76)

where φm,0 is the initial membrane voltage, set to −68 mV in all simulations. The 676

initial conditions were equal in both the somatic and the dendritic compartment. 677

Table 5. Initial conditions

Variables Value

[Na+]i 18 mM
[Na+]e 140 mM
[K+]i 99 mM
[K+]e 4.3 mM
[Cl−]i 7 mM
[Cl−]e 134 mM
[Ca+2]i 0.01 mM*
[Ca+2]e 1.1 mM
[kres]i −110 mM†

[kres]e −12 mM†

n 0.0003
h 0.999
s 0.007
c 0.006
q 0.011
z 1.0

* Only 1% of this total intracellular Ca2+, that is, a 100 nM, was assumed to be free
(unbuffered).
† −110 mM and −12 mM are approximate values. Excact values were calculated from
Eqs. 75 and 76.

Stimulus current 678

We stimulated the cell by injecting a K+ current istim into the soma. Previous
computational modeling of a cardiac cell has shown that stimulus with K+ causes the
least physiological disruption [33]. To ensure ion conservation, we removed the same
amount of K+ ions from the corresponding extracellular compartment:

d[K+]si
dt

+ =
istim

FzKV si
, (77)

d[K+]se
dt

− =
istim

FzKV se
. (78)

Calibration 679

To let the edPR model calibrate, all simulations were run for 15 s before setting t = 0. 680

That is, in all simulations shown in the results sections, the first 15 calibration seconds 681

have been discarded. 682
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Analysis 683

Fig 9: To calculate the accumulative transport of ion species k in the intracellular 684

solution (from time zero to t) due to diffusion, we integrated AiNAjk,diff,i from time 685

zero to t, where NA is the Avogadro constant. Similarly, we integrated AeNAjk,diff,e to 686

calculate the accumulative transport of ions in the extracellular solution due to 687

diffusion. We did the same calculations with jk,drift to study the accumulative transport 688

of ions due to drift. When knowing the accumulative transport of each ion species, 689

kakkum, we calculated the total transport of e+ from their weighted sum: 690

e+akkum = zNaNa+akkum + zKK+
akkum + zClCl−akkum + zCaCa2+akkum. (79)

Fig 10: To calculate φVC,e and φdiff,e, we looked at the extracellular axial current as it 691

is given in the KNP formalism: 692

ie = idiff,e + ifield,e = idiff,e + σe
φse
∆x

, (80)

where the last equality follows when we insert Eq 18 for the extracellular field-driven 693

current density ifield,e, and use that φde = 0. As in [32], we may split φse into two 694

components: 695

φse = φVC,se + φdiff,se, (81)

where φVC,se is the potential as it would be predicted from standard volume conductor 696

(VC) theory [20,21], and φdiff,se is the additional contribution from diffusion [32]. With 697

this, Eq 80 can be written: 698

ie = idiff,e + σe
φVC,se

∆x
+ σe

φdiff,se
∆x

. (82)

We may split this into two equations if we recognize that 699

ie = σe
φVC,se

∆x
, (83)

is the standard formula used in VC theory, which is based on the assumption that the 700

extracellular current is exclusively due to a drop in the extracellular VC-potential 701

φVC,se. The remainder of Eq 82 then leaves us with 702

idiff,e = −σe
φdiff,se

∆x
. (84)

Since we already knew ie and idiff,e from simulations on the KNP framework, we used 703

Eqs 83 and 84 to calculate φVC,se and φdiff,se separately. 704

Numerical implementation 705

We implemented the differential equations in Python 3.6 and solved them using the 706

solve ivp function from SciPy. We used its default Runge-Kutta method of order 5(4), 707

and set the maximal allowed step size to 10−4. The code is made available at 708

https://github.com/CINPLA/edPRmodel and 709

https://github.com/CINPLA/edPRmodel_analysis. 710
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