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Abstract 

Humans are extremely efficient in rapidly and flexibly converting complex symbolic 

instructions into novel behaviors. Previous evidence and theoretical models suggest that 

the implementation of a novel instruction requires the reformatting of its declarative 

content into an action-oriented code optimized for the execution of the instructed 

behavior. While neuroimaging research focused on identifying the brain areas involved in 

such process, its temporal profile and electrophysiological characteristics remain 

unknown. In the present study, we recorded EEG while we asked participants to either 

simply maintain declaratively the content of novel S-R mappings for recognition or to 

proactively prepare for their implementation. By means of time-frequency analyses, we 

isolated the oscillatory features specifically associated with the proceduralization of the 

encoded instruction. Before the onset of the implementation target, we observed stronger 

delta/low-theta activity over frontal electrodes and a significant suppression in mu and 

beta activity over central electrodes. On the contrary, activity in the alpha band showed 

no differences between the two tasks. Together, these results support the crucial role 

attributed to prefrontal regions in orchestrating complex task setting and further extend 

on it by characterizing the temporal and frequency profile of this process. Moreover, we 

highlight the critical involvement of motor activity in the proactive preparation for novel 

instruction implementation. 

Keywords 

Instruction implementation; Cognitive control; Motor preparation; Attention; EEG 

oscillations 
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Significance Statement 

Humans developed the unique ability of converting novel instructions in effective 

behavior. This skill is associated with activity in frontoparietal brain regions, whose 

interplay supports the reformatting of the declarative content of the instruction into an 

action-guiding representation. However, the time-resolved unfolding of such cognitive 

processes is still poorly understood. Here, we investigated how oscillatory brain activity 

differed between simple maintenance and reformatting of novel instructions. In 

preparation to the target, we observed differences in lower frequencies over frontal 

regions, and oscillatory features of motor preparation. Together, these results suggest 

that instruction implementation is mediated by the exertion of top-down cognitive control, 

reflected in theta dynamics, and motor-related activation.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912162
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

1 Introduction 

One peculiar aspect of human cognitive flexibility involves the ability to convert complex 

symbolic instructions into novel behaviors (Cole et al., 2013). Recent evidence has put 

forward a two-step heuristic model in which instructions are first encoded and maintained 

in a declarative format before being transformed into an action plan (i.e., procedural 

representation) that allows executing the instructed task (Brass et al., 2017). 

Neuropsychological and behavioral evidence support a dissociation between ‘knowing’ 

the content of an instruction and ‘doing’ the instructed cognitive or motor action, 

suggesting that maintaining its declarative content is insufficient to implement the 

instructed task, and that additional reformatting into a procedural representation is 

needed for optimal performance (Milner, 1963; Duncan et al., 1996; Wenke et al., 2009; 

Liefooghe et al., 2012; Bhandari and Duncan, 2014). Such immediate reformatting seems 

to occur only for small sets of instructions, and only when participants have the intention 

to implement them (Liefooghe et al., 2012). 

A growing number of fMRI studies has focused on revealing which brain regions support 

the implementation of novel task sets (Hartstra et al., 2011, 2012; Demanet et al., 2016; 

González-García et al., 2017; Muhle-Karbe et al., 2017; Bourguignon et al., 2018; 

González-García et al., 2019; Palenciano et al., 2019b, 2019a). These results 

consistently point towards a crucial role of frontoparietal regions, and in particular of the 

prefrontal cortex (PFC). Similarly, they provide evidence for distinct neural mechanisms 

supporting implementing versus memorizing novel instructions (Brass et al., 2017). 

However, the temporal and spectral characteristics of instruction implementation have 

received less attention. Crucially, investigating the oscillatory dynamics of instruction 
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implementation allows to pinpoint when the proceduralization of novel instructions starts 

to diverge from their mere declarative maintenance and will provide specific information 

about the processes that are involved. 

Specifically, we reasoned that both declarative maintenance and proactive 

proceduralization of novel instructions likely engage processes of attentional selection. 

Such top-down mechanisms are associated with modulations of posterior alpha band (8 

– 14 Hz) oscillations (Sauseng et al., 2005; Jensen and Mazaheri, 2010; Bonnefond and 

Jensen, 2012; Mok et al., 2016; Poch et al., 2017). On the contrary, we expected some 

oscillatory features to be specifically associated with proceduralization. First, the 

proactive reformatting of the instruction into a proceduralized action-bound representation 

should involve the allocation of cognitive control, reflected in stronger theta 

synchronization over mid-frontal scalp electrodes mediating long-range binding (Cohen 

and Donner, 2013; Itthipuripat et al., 2013; Cavanagh and Frank, 2014; Verbeke and 

Verguts, 2019). Moreover, this reformatting is expected to induce the preparation of the 

instructed motor plan, and therefore a desynchronization of beta (20 – 30 Hz) and mu (8 

– 12 Hz) frequency bands over central electrodes, revealing motor activation (Pineda, 

2005; Cheyne, 2013; Tzagarakis et al., 2015; Schneider et al., 2017b; Rhodes et al., 

2018). Moreover, since these features are sensitive to the set size, we were additionally 

interested in investigating whether they would be modulated by the number of instructions 

to be proceduralized (Onton et al., 2005; Schneider et al., 2017a; Poch et al., 2018). 

To test our hypotheses, we recorded EEG activity while participants performed a 

Memorization task, which encouraged a declarative maintenance of novel Stimulus–

Response (S-R) mappings for recognition, and an Implementation task, intended to 
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prompt their proactive reformatting for execution. After the presentation of four mappings, 

a retro-cue selected a subset of them as potential targets for the subsequent recognition 

or execution task. We reasoned that brain activity during the Cue-Target interval (CTI) 

would reflect a two-steps action (Myers et al., 2017): attention would first be internally 

oriented towards the selected items, and then the prioritized representations would be 

reformatted into a behavior-optimized state. In the context of instruction implementation, 

the task-optimized representation is a procedural, action-bound code of the S-R mapping, 

whereas successful maintenance is optimally achieved by means of a declarative 

representation of stimulus and response that does not entail any action plan. 

 

2 Materials and Methods 

2.1 Participants 

Thirty-nine participants took part in the experiment (Mage = 21.74, SD = 4.50, 33 females) 

and received 30 euros as compensation. Sample size was not computed a priori but, 

based on previous research, we aimed for a sample size of at least thirty. All participants 

had normal or corrected-to-normal vision and thirty-three reported to be right-handed. 

Data from two participants were discarded due to low task performance (individual mean 

accuracy exceeded by 2.5 standard deviations the group mean accuracy in one of the 

two tasks and/or accuracy in response to catch trials in one of the tasks was below 60%); 

data from two additional participants were discarded following visual inspection because 

of excessive noise in the EEG recordings, resulting in a final sample size of thirty-five 

participants. All participants gave their informed consent prior to the beginning of the 
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experiment, in accordance with the Declaration of Helsinki, and the protocols were 

consistent with the general ethical protocol of the Faculty. 

2.2 Materials 

The same set of stimuli was used as in previous studies on instruction implementation 

(González-García et al., 2020; Formica et al., submitted). It consisted of 1550 pictures, 

grouped in two macro categories: animate non-human animals and inanimate objects 

(vehicles and musical instruments) (Griffin et al., 2007; Konkle et al., 2010; Brady et al., 

2013; Brodeur et al., 2014). All images had their background removed, were centered in 

a 200x200 pixels square and were converted to grayscale. Stimuli presentation and 

response collection were performed using Psychopy toolbox (Pierce, 2007). 

 2.3 Experimental design 

Participants performed two tasks (from now on we will refer to them as “Implementation 

task” and “Memorization task”) during one single session, and the order of the two tasks 

was counterbalanced between participants. The structure of the trials for the two tasks 

was identical up to the presentation of the target (Figure 1). Each trial started with a red 

fixation cross presented for 2000ms (± 100ms) signaling the inter-trial interval and 

allowing participants to blink if needed, followed by a white fixation cross for 250ms. Next, 

the encoding screen containing four S-R mappings (arranged in two rows) appeared for 

5 seconds. Mappings consisted of a new image associated with a bimanual response: 

“index” referred to both index fingers (keys r and i) and “middle” referred to both middle 

fingers (keys e and o). These responses were used instead of the more traditional left 

and right options to avoid automatic motor activations elicited by the mere presentation 
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of lateralized response words (Bundt et al., 2015). Out of the four presented mappings, 

two contained images of animals and two images of inanimate objects. After a 750ms 

delay, the retro-cue appeared and remained on the screen for 250ms. This consisted of 

a square presented centrally, with one, two or four (i.e., neutral retro-cue) colored 

corner(s). Importantly, when the retro-cue selected two mappings, these were always on 

the same side of the screen. Participants were instructed that the retro-cue signaled which 

mapping(s) could be probed, with 100% validity (except in the case of catch trials, see 

below). The subsequent cue-target interval (CTI) had a jittered duration, lasting on 

average 1750ms (± 100ms). Finally, participants were presented with the target screen, 

which differed depending on the task. In the Implementation task, the image of one of the 

cued mappings was presented centrally and participants were required to press the 

associated pair of keys (both index or both middle fingers). In the Memorization task, one 

mapping (i.e., image and associated response) was presented centrally. Participants had 

to report whether the presented mapping matched one of those selected by the retro-cue, 

by pressing with both fingers of one hand for “yes” or both fingers of the other hand for 

“no”. The sides for “yes” and “no” were randomly assigned on a trial basis to ensure that 

participants could not prepare any response during the CTI. Labels with “yes” and “no” 

appeared at the bottom of the target screen together with the mapping. In 50% of the 

trials, the target screen showed the same mapping as in the encoding (“yes” response). 

In the other 50% of trials, the image was presented associated with a different response 

with respect to encoding (“no” response). Crucially, despite the similarities in trial 

structure, the Memorization task relied on the declarative maintenance of the mappings 

as no response could be prepared, whereas the Implementation task encouraged a 
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proactive preparation of the selected mappings for the execution of the required action 

plan. Both tasks included catch trials (  2̴5% for each task), in which the target screen 

displayed a different image than the four displayed in the encoding screen. In this case, 

participants were required to press the spacebar. This was done to discourage 

participants to adopt specific strategies, such as memorizing only the mappings 

associated with one response option. Since we were interested in the brain activity before 

the onset of the target, EEG recordings from catch trials were analyzed together with 

regular trials. For each task, participants completed 5 experimental blocks, for a total of 

180 trials (60 per load, Figure 1). 

Each of the two tasks was preceded by a practice session. This consisted of mini-blocks 

of 12 trials, including all possible load conditions (i.e. number of mappings selected by 

the retro-cue) and at least one catch trial. The only difference with the main task was the 

presence of feedback at the end of each trial, signaling the accuracy of the response or 

encouraging participants to respond faster in case no response was registered within the 

maximum response time of 3 seconds. Performance was assessed at the end of each 

mini-block: if accuracy was above 80%, practice was concluded, otherwise a new mini-

block started, up to a maximum of 3 blocks. S-R mappings used during the practice were 

never presented again during the main task. The total duration of the experiment, 

including cap preparation and cleaning, practices, main tasks and breaks was 

approximately 150 minutes.  
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Figure1: Behavioral paradigm. Participants had to first encode four S-R mappings, for subsequent 

recognition (Memorization task) or for a choice-reaction task (Implementation task). During the retention 

interval, a valid Retro-Cue selected one, two or all four mappings as relevant for the upcoming probe. 

Participants performed the two tasks separately in a block design. 

 

2.4 EEG Recordings and pre-processing 

Electrophysiological data were recorded using a BioSemi ActiveTwo system (BioSemi, 

Amsterdam, Netherlands) with 64 Ag–AgCl electrodes arranged in the standard 

international 10–20 electrode mapping (Klem et al., 1999), with a posterior CMS-DRL 

electrode pair. Two reference electrodes were positioned at the left and right mastoids. 

Eye movements were registered with a pair of electrodes above and below the left eye 

and two additional electrodes at the outer canthi of both eyes. EEG signals were recorded 

at a 1024 Hz sampling rate. 

EEG data were preprocessed using the Fieldtrip toolbox (Oostenveld et al., 2010), 

running in MATLAB (MATLAB R2017b, The MathWorks, Inc., Natick, Massachusetts, 
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United States). First, the data were downsampled to 512 Hz and re-referenced to the 

average of the mastoids. Then, a 0.5 – 45 Hz band-pass FIR filter was applied to the data, 

together with a Notch filter at 50 Hz and its harmonics. Data were epoched relative to the 

onset of the retro-cue (from -1000 to 2500 ms) and demeaned to the average of the whole 

epoch, to improve independent component analysis (ICA) (Groppe et al., 2009). Only 

trials in which the participant performed the correct response were retained for 

subsequent analyses. Trials exhibiting movement artifacts or excessive noise were 

removed following visual inspection of the data. Next, eye movements artifacts were 

removed by means of ICA, using the EEGLAB (Delorme and Makeig, 2004) runica 

algorithm as implemented in Fieldtrip. Components to discard were selected based on 

their topography, the correlation between their time course and the horizontal and vertical 

electrooculography, and their power spectrum. For most participants, two components 

were removed (capturing blinks and horizontal eye movements, respectively); in six 

participants blinks were reflected in two components, leading to the removal of three IC, 

and in two participants only one component was removed. Finally, data were visually 

inspected again to ensure successful cleaning and one (N = 6), two (N = 2) or three (N = 

1) excluded channels were interpolated by means of spherical spline interpolation (Perrin 

et al., 1989). This cleaning procedure resulted in an average of 151.09 trials for the 

Implementation task (SD = 12.29, 83.94%) and 143.06 trials for the Memorization task 

(SD = 14.07, 79.48%). For each load condition, an average of 81.7% of trials were 

retained (Implementation, Load 1: 52.14 (SD = 3.64) trials, Load 2: 50.26 (SD = 5.19) 

trials, Load 4: 48.68 trials (SD = 5.74); Memorization, Load 1: 49.88 trials (SD = 4.84), 

Load 2: 47.86 trials (SD = 5.86), Load 4: 45.31 trials (SD = 5.94). 
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 2.5 Spectral Analysis 

For each Task x Load condition (Memorization-Load 1, Memorization-Load 2, 

Memorization-Load 4 and Implementation-Load 1, Implementation-Load 2, 

Implementation-Load 4), time-frequency analysis was performed separately using 

complex Morlet wavelet convolution, to estimate spectral power from 1 to 45 Hz in steps 

of 1 Hz. The number of cycles in the wavelet was frequency-specific, ranging from 2 at 1 

Hz and linearly spaced up to 7 cycles at 45 Hz, to achieve a good trade-off between 

temporal and frequency precision (Cohen, 2014). This analysis resulted in one time-

frequency spectrogram for each channel, condition and participant. Condition-specific 

decibel normalization was then applied, using the time window between -600 and -300ms 

before the onset of the retro-cue as baseline. To avoid data contamination due to the 

smearing in time of the processing of the target, all statistical analyses are performed on 

the time window from 0 to 1800ms with respect to retro-cue onset, therefore leaving 

100ms gap between the end of our analyses window and the earliest jittered target onset. 

 2.6 Statistical Analyses 

For behavioral data, reaction times (RTs) and error rates (ER) were separately entered 

in 2 (Task: Memorization vs Implementation) x 3 (Load: 1, 2, 4) repeated measure 

ANOVAs, performed in JASP (Jasp Team, 2019) 

To evaluate the statistical significance of differences between two EEG time-courses or 

time-frequency spectra, we adopted a cluster-based permutation approach (Maris and 

Oostenveld, 2007), which is appropriate to assess the reliability of neural patterns over 

neighboring data points. Moreover, this approach is robust against the multiple-
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comparison problem, as the significance of clusters found in the observed group-level 

data is estimated against a distribution of clusters obtained by randomly permuting the 

data at the participant level. First, we performed a two-sided t-test (α = 0.05) between the 

two conditions to be compared. Then, we considered as cluster a group of adjacent data 

points with same sign significance and as cluster-size the sum of all t-values in the cluster. 

Next, we used 10000 permutations of participant-level data to estimate a distribution of 

cluster sizes under the null hypothesis that there are no differences between conditions. 

The P-value for each cluster in the observed group-level data corresponds to the 

proportion of permutations in which the largest cluster size was larger than the size of the 

considered observed cluster. Again, we used a significance alpha level of 0.05, therefore 

only observed clusters whose size was larger than the size of the largest cluster in at 

least 95% of permutations are reported. 

When needed, averaged Task- and Load-specific power values were extracted from time 

window and frequency ranges of interest (see below) and entered in repeated measures 

ANOVAs, performed in JASP (Jasp team, 2019). 

2.7 Contralateral alpha suppression 

Consistent findings reported alpha desynchronization over posterior regions contralateral 

to the attended spatial location, indicating top-down anticipatory mechanisms of orienting 

attention in the perceptual or internal space (Sauseng et al., 2005; Thut et al., 2006; Rihs 

et al., 2007; van Dijk et al., 2008; Rihs et al., 2009; Jensen and Mazaheri, 2010; Gould et 

al., 2011; Rohenkohl and Nobre, 2011; Bonnefond and Jensen, 2012; Capilla et al., 2014; 

Myers et al., 2015; Wallis et al., 2015; Mok et al., 2016). 
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To estimate the suppression of alpha contralateral to the cued hemifield, we used the 

time-frequency spectra corresponding to Load 1 and Load 2, separately for the two tasks. 

Trials with neutral retro-cues were excluded from this analysis because they did not elicit 

attentional orienting towards one of the two visual hemifields. Based on previous 

literature, two pairs of electrodes were selected in right (P8, PO8) and left (P7, PO7) 

posterior parietal regions (Gould et al., 2011; Schneider et al., 2017b; de Vries et al., 

2019b; van Ede et al., 2019). Power spectra were extracted from these electrode pairs, 

averaged in the alpha frequency range (8 – 14 Hz), and collapsed between retro-cues 

pointing to the left and right hemifield, in order to extract one power time series for the 

contralateral hemisphere and one for the ipsilateral hemisphere. The two time series were 

compared by means of cluster-based permutation testing, separately for the two tasks 

(see Statistics section). Additionally, the cluster-based permutation approach was also 

used to compare the contralateral alpha suppression between the two tasks. Namely, for 

each task the ipsilateral power time series was subtracted to the contralateral one, 

separately for each participant, and the resulting difference waves were compared. This 

analysis was performed to test whether the deployment of alpha to orient attention 

towards relevant mental representations was analogous in both tasks. 

2.8 Load-dependent alpha increase 

Posterior alpha power has been observed to increase with the number of items relevant 

after attentional selection in a WM task (Jensen, 2002), also following retrospective 

selection (Manza et al., 2014; Poch et al., 2017, 2018). To investigate the increase in 

alpha power relative to the number of retained items, we extracted the average power for 

the frequencies ranging from 8 to 14 Hz, separately for each condition and task, from the 
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electrode pair Pz and POz (Jensen, 2002). Since the cluster-based permutation approach 

adopted above is not suited for factorial designs and we expected this to be a sustained 

effect, we averaged the power values across the whole time window from 0 to 1800ms 

with respect to the onset of the retro-cue. This operation led to one averaged alpha power 

value for each Task-Load combination per participant, that were entered in a 2 (Task) x 

3 (Load) repeated measure ANOVA. 

2.9 Mid-frontal theta in Implementation 

To investigate the differences in oscillations between the the two tasks, we averaged the 

time-frequency spectrogram (2 – 30 Hz) from mid-frontal electrodes Fz and AFz, 

separately for each task (Onton et al., 2005; Popov et al., 2018; Cooper et al., 2019). We 

adopted again the described cluster-based permutation approach to find significant 

clusters of different activation. Since in this case we did not average across a specific 

frequency range, clusters were created on the basis of adjacency of data points on both 

the time and the frequency dimensions. Finally, to further investigate the load-specific 

dynamics in low frequencies, we extracted the averaged power in the frequency range 2 

– 5 Hz (‘low theta’) and 6 – 8 Hz (‘high theta’) in the time window of the observed 

significant cluster (600 – 1200ms), separately for each Load condition and Task. We 

entered these values in a 2 (Task) x 3 (Load) x 2 (Theta range) repeated measure 

ANOVA. 

2.10 Motor-related mu and beta suppression in Implementation 

We hypothesized Implementation to be associated with proactive motor preparation of 

potential responses, in comparison with the Memorization task. To test for this, we first 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912162
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

adopted a cluster-based permutation approach, to look for significant clusters of 

difference in power across a broad group of electrodes over motor and pre-motor cortices 

(FC1, FC2, FCz, FC3, FC4, C3, CP3, C1, CP1, Cz, CPz, C2, CP2, C4, CP4) (McFarland 

et al., 2000; Marchesotti et al., 2016). It is worth pointing out that we averaged activity in 

a large cluster of non-lateralized channels. Responses were bimanual in the 

Implementation task, while they were lateralized in the Memorization task. Nevertheless, 

we think the difference in response lateralization between tasks does not represent a 

confound for our hypothesis, since we aimed at investigating pre-movement preparatory 

oscillatory activity, rather than the effector-specific M1 activation (Pfurtscheller and 

Neuper, 1997; Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2006). To further 

investigate the effect of the number of proceduralized mappings on motor preparation, 

we extracted the average mu (8 – 12 Hz) and beta (20 – 30 Hz)1 power in the time window 

700 – 1600ms after retro-cue onset separately for each Task and Load condition, and 

entered these values in two separate repeated-measures ANOVAs with factors Task 

(Implementation vs Memorization) x Load (1, 2, 4).  

 

3. Results 

3.1 Behavioral results 

Concerning behavioral performance, we expected the retro-cue to have a beneficial effect 

on reaction times and error rates in both tasks (Souza and Oberauer, 2016). Repeated 

                                                           
1 There is quite a significant variability in the literature concerning the limits of each frequency band. Beta is 
usually identified as ranging from 13/15 Hz to 30 Hz. Here, we chose to focus on “high beta” (20 – 30 Hz), to avoid 
contamination from the activity of neighboring frequencies (i.e., alpha band) and because of the characteristics of 
the significant cluster. 
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measures ANOVA on RTs confirmed a significant main effect of Load2 (F1.44, 49.06 = 

104.65, p < 0.001, η2
p = 0.76): RTs increased with the number of mappings selected by 

the retro-cue (Load 1: M = 978ms, SD = 196, Load 2: M = 1168ms, SD = 150, Load 4: M 

= 1266ms, SD = 142). The main effect of Task was also significant (F1, 34 = 237.20, p < 

0.001, η2
p = 0.87), with slower RTs in Memorization (M = 1355ms, SD = 185) than 

Implementation (M = 907ms, SD = 160). The interaction between the two factors also 

resulted to be significant (F1.32, 44.88 = 4.42, p = 0.031, η2
p = 0.11). More specifically, the 

effect of Load was larger in the Implementation task (F1.44, 49.06 = 93.20, p < 0.001) 

compared to the Memorization task (F1.44, 49.06 = 45.50, p < 0.001) (Figure 2a). 

Error rates showed a significant main effect of Task (F1, 34 = 11.08, p = 0.002, η2
p = 0.25) 

and of Load (F1.67, 57.91  = 25.65, p < 0.001, η2
p = 0.43). Participants were significantly 

more accurate in the Implementation task (M = 0.14, SD = 0.09) compared to the 

Memorization task (M = 0.19, SD = 0.10), and were more accurate when less items were 

selected by the retro-cue (Load 1: M = 0.12, SD = 0.07, Load 2: M = 0.17, SD = 0.10, 

Load 4: M = 0.20, SD = 0.12). The interaction between the two factors was not significant 

(p = 0.266) (Figure 2b). 

Regarding catch trials, participants could successfully detect a new image in both the 

Memorization task (error rate in catch trials: M = 0.13, SD = 0.08) and the Implementation 

task (M = 0.09, SD = 0.07). Nevertheless, they were significantly less accurate (t34 = 3.16, 

p = 0.003, d = 0.53) in the Memorization task. 

                                                           
2 Mauchly’s test revealed that the assumption of sphericity is violated (p < 0.05). Greenhouse-Geisser correction is 
applied here and in all results where the sphericity assumption is violated. 
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Figure 2: Behavioral results. a) Reaction times (ms). b) Error rates. Both measures confirmed a benefit 

in performance (i.e., faster RTs and less errors) when the Retro-Cue selected less mappings. In each 

boxplot, the thick line inside box plots depicts the second quartile (median) of the distribution (n = 35). The 

bounds of the boxes depict the first and third quartiles of the distribution. Whiskers denote the 1.5 

interquartile range of the lower and upper quartile. Dots represent individual subjects’ scores. 

3.2 EEG Results 

3.2.1 Contralateral alpha decrease 

As hypothesized, we observed a stronger reduction in alpha power in contralateral 

compared to ipsilateral electrodes across loads, both in Implementation (P < 0.001, 

cluster-corrected) and Memorization (P = 0.03, cluster-corrected) tasks (see 

Supplementary material for the same analysis performed separately for the two load 

conditions). The significant clusters spanned the time window around 600 – 800ms. 

Notably, we did not find any difference between the two tasks (no cluster survived multiple 

comparison correction, even at a cluster threshold of P = 0.1), supporting our hypothesis 

that the mechanisms allowing for attentional orienting are engaged to a similar extent in 

the two tasks (Figure 3a). To qualitatively confirm our electrodes selection and the 
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location of the significant effect, contralateral minus ipsilateral half-topographies are 

reported separately for each task (Figure 3b).  

 

3.2.2 Load-dependent alpha increase 

We predicted alpha power to also track the number of items selected by the retro-cue to 

be relevant for the ongoing task. The repeated measures ANOVA on the averaged alpha 

power over Pz – POz in the whole CTI (0 – 1800ms) revealed a significant main effect of 

Load (F2, 68 = 37.92, p < 0.001, η2
p = 0.53) (Figure 3c). Specifically, alpha power values 

increased with the number of retained items (Load 1 vs Load 2: t = -4.72, p < 0.001 

Bonferroni-corrected; Load 2 vs Load 4: t = -4.91, p < 0.001 Bonferroni-corrected), both 

in Implementation (Load 1: M = 1.27, SD = 2.10, Load 2: M = 1.75, SD = 2.11, Load 4: M 

= 2.21, SD = 2.23) and Memorization (Load 1: M = 1.19, SD = 2.16, Load 2: M = 1.87, 

SD = 2.27, Load 4: M = 2.53, SD = 2.34). Crucially, neither the effects of Task nor the 

interaction Task x Load were significant (ps > 0.2). Scalp topographies of alpha power 

across the entire CTI are reported separately for each Task and Load condition (Figure 

3d).  
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Figure 3: Alpha power dynamics. a) Time courses of the difference waves (contralateral minus 

ipsilateral time course) of alpha power activity between contralateral and ipsilateral electrode clusters (PO8 

- P8 and PO7 - P7). Both difference waves show a significant deflection from 600 to 800ms after the onset 

of the retro-cue. Horizontal lines above the x-axis indicate significant temporal clusters (blue: 
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Implementation, red: Memorization), obtained with cluster-based permutation testing). Shading represents 

± 1 s.e.m., calculated across participants (n = 35). b) Half topographies showing differences in alpha power 

for contralateral minus ipsilateral electrodes collapsed across hemispheres. White dots indicate the a-priori 

selected electrodes used in the cluster-based permutation analysis. c) Alpha power values averaged in the 

time window 0 – 1800 ms after Retro-Cue onset from electrodes Pz and POz. The asterisks indicate 

significance values (p < 0.001) of the effect of Load in the repeated measures ANOVA. Error bars 

represents the s.e.m. calculated across participants (n = 35). d) Topographies of each Task x Load 

condition. White dots indicate the a-priori selected electrodes (Pz and POz) from which activity was 

extracted for the ANOVA. 

 

3.2.3 Mid-frontal theta in Implementation 

According to our predictions, we expected to find stronger theta synchronization over mid-

frontal electrodes in the Implementation task compared to the Memorization task. The 

comparison in the time-frequency domain (2 – 30 Hz, 0 – 1800ms) revealed a significant 

cluster (P = 0.045, cluster-corrected) of difference in power between the two tasks at low 

frequencies (< 5 Hz), spanning from 600 to 1200ms (Figure 4a, b). To further explore this 

effect, we extracted the average power values from the time window of the significant 

cluster, separately for each Load condition, in different frequency bands: ‘low theta’ (2 – 

5 Hz) and ‘high theta’ (6 – 8 Hz). A 2 (Task) x 3 (Load) x 2 (Frequency Range) repeated 

measures ANOVA revealed a significant main effect of Frequency Range (F1, 34 = 11.02, 

p = 0.002, η2
p = 0.24) and Load (F2, 68 = 4.90, p = 0.010, η2

p = 0.13). Crucially, the factor 

Frequency Range significantly interacted with both Task (F1, 34 = 16.45, p < 0.001, η2
p = 

0.37) and Load (F1.44, 49.04 = 6.75, p = 0.006, η2
p = 0.17). More specifically, differences 

between the two tasks were significant in the low theta range (F1, 34 = 6.51, p = 0.015) but 
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not in the high theta range (F1, 34 = 0.15, p = 0.699). On the contrary, a significant effect 

of Load was found in the high theta range (F2, 68 = 9.77, p < 0.001), but was not present 

for low theta range (F2, 68 = 0.12, p = 0.884). The main effect of Task, the interaction of 

Task and Load, and the three-way interaction of Task, Load and Frequency Range were 

not significant (all ps > 0.15) (Figure 4c). 

 

Figure 4: Oscillatory theta dynamics in Implementation compared to Memorization. a) Time-

frequency spectrogram of the difference between Implementation and Memorization, averaged across the 

electrodes Fz and AFz. The contoured area outlines the significant cluster (P = 0.045) obtained with a 

cluster-based permutation approach. b) Scalp topography of the difference in activity in low theta (2 – 5 

Hz) between Implementation and Memorization, averaged in the time window 600 – 1200ms. White dots 

indicate the a-priori selected electrodes (Fz and AFz) used for the cluster-based permutation test. c) 
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Average power values in the time window 600 – 1200ms, separately for low theta (2 – 5 Hz) and high theta 

(6 – 8 Hz). Error bars represent the s.e.m. calculated across participants (n = 35).  

 

One potential confound when investigating activity in low frequency bands is that this 

might be reflecting sustained ERPs. We ruled out this possibility by comparing across 

tasks the Contingent Negative Variation (CNV), a slow negative potential over centro-

frontal electrodes during preparation for an upcoming target (Walter et al., 1964). The 

CNV did not show a differential pattern between Implementation and Memorization (see 

Supplementary material), suggesting that our frontal activity is better described by low 

frequency oscillations, rather than a sustained ERP. Furthermore, at the lowest estimated 

frequency of 2 Hz, the wavelet was two-cycles long, therefore spanning a 1s interval. This 

is generally assumed to be selective enough to reflect a true oscillations (Cohen, 2014). 

3.2.4 Motor-related mu and beta suppression in Implementation 

We hypothesized proceduralization to be linked also with an increased engagement of 

motor and premotor regions, in preparation for the instructed upcoming movement, 

compared to memorization. Specifically, we predicted a suppression of oscillations in the 

of mu (8 – 12 Hz) and beta (20 – 30 Hz) frequency ranges, which have been shown to 

reflect motor cortex activity (Pineda, 2005; Cheyne, 2013; Tzagarakis et al., 2015; 

Schneider et al., 2017b; Rhodes et al., 2018). To test for this hypothesis, we compared 

Implementation and Memorization tasks in the time-frequency domain across a large 

cluster of electrodes over the motor and pre-motor cortices. We found a significant 

negative cluster (P < 0.001, cluster corrected) approximately in the time window 700 – 

1600ms, spanning a broad range of frequencies above 8 Hz (Figure 5a). Next, we 
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extracted the average power in the two distinct frequency bands (mu: 8 – 12 Hz and beta: 

20 – 30 Hz) between 700 and 1600ms after Retro-Cue onset, separately for each Task 

and Load condition. These power values were entered in two separate repeated 

measures ANOVAs, that yielded analogous results in both frequency bands. For mu, we 

found a significant main effect of Task (F1, 34 = 6.61, p = 0.015, η2
p = 0.16) and of Load 

(F1.70, 57.93 = 32.60, p < 0.001, η2
p = 0.49). Mu suppression was stronger for 

Implementation compared to Memorization task, and for lower compared to higher Loads 

(Implementation, Load 1: M = 0.21, SD = 1.51, Load 2: M = 0.55, SD = 1.29, Load 4: M = 

1.53, SD = 1.48; Memorization, Load 1: M = 0.46, SD = 1.57, Load 2: M = 1.10, SD = 

1.67, Load 4: M = 1.60, SD = 1.50). Similarly, for beta the results revealed significant 

differences between the two tasks (F1, 34 = 5.23, p = 0.028, η2
p = 0.13) and across Loads 

(F2, 68 = 7.90, p < 0.001, η2
p = 0.19). Again, beta suppression was stronger in 

Implementation and for lower Loads (Implementation, Load 1: M = -0.27, SD = 0.69, Load 

2: M = -0.21, SD = 0.49, Load 4: M = 0.01, SD = 0.63; Memorization, Load 1: M = -0.11, 

SD = 0.67, Load 2: M = 0.04, SD = 0.64, Load 4: M = 0.13, SD = 0.67). For both frequency 

ranges, the interaction of Task x Load did not reach significance (ps > 0.35) (Figure 5b, 

c). To qualitatively estimate the topographies of these effects, scalp maps are depicted, 

separately for each Task and Load (Figure 5d, e). 
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Figure 5: Motor-related mu and beta suppression. a) Time-frequency spectrogram of the difference 

between Implementation and Memorization, averaged across a cluster of a-priori selected centro-parietal 

electrodes. The contoured area outlines the significant cluster (P < 0.001) obtained with a cluster-based 

permutation approach. b) and c) Average power values in the time window 700 – 1600ms after Retro-Cue 

onset, separately for the two frequency bands of interest. Error bars represent the s.e.m., computed across 

participants (n = 35). d) and e) Scalp topographies for each Task x Load condition, averaged in the time 
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window 700 – 1600ms, separately for the two frequency bands of interest. White dots indicate the 

electrodes from which the power amplitude was extracted for the cluster-based permutation and the 

ANOVAs. 

 

4. Discussion 

In the present study, we investigated the temporal dynamics underlying novel instruction 

implementation. In line with our predictions and the framework proposed by Myers and 

colleagues (2017), we observed an analogous unfolding of early attentional mechanisms 

between tasks, reflected in similar patterns of alpha power dynamics. Crucially, 

Implementation and Memorization showed dissociable oscillatory features starting after 

alpha suppression, suggesting that Implementation-specific processes are occurring after 

the relevant items are prioritized. These mechanisms are likely involved in the 

reformatting of the selected S-R mappings, a process requiring the exertion of cognitive 

control and resulting in the preparation of the instructed motor plan.  

4.1 Low frequencies oscillations for S-R binding in Implementation 

Based on previous research, we predicted low frequency oscillations over frontal sensors 

to be associated with the proactive reformatting of the S-R mapping into an action-

oriented code. The crucial contribution of the PFC in quickly converting symbolic 

instructions into task-sets for prospective action has been widely established in several 

fMRI studies (Brass et al., 2009; Cole et al., 2010; Ruge and Wolfensteller, 2010; 

Dumontheil et al., 2011; Hartstra et al., 2011; González-García et al., 2017; Palenciano 

et al., 2019b). Activation of prefrontal areas was associated with the creation and 

activation of procedural condition-action rules from the instructed mappings, a process 
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that is thought to involve cognitive control (Brass et al., 2017). Analogously, the need for 

top-down control over complex goal-directed cognitive operations is traditionally linked 

with oscillations in the theta frequency range over prefrontal cortices (Cavanagh and 

Frank, 2014; Cooper et al., 2019). Moreover, recent influential models of large-scale brain 

interactions attribute to theta the crucial role of orchestrating information exchange 

between distant areas by synchronizing their firing pattern (Fries, 2005, 2015; Lisman 

and Jensen, 2013; McLelland and VanRullen, 2016; Verguts, 2017). We assumed the 

Implementation task in our experiment to require a more extensive allocation of cognitive 

control, given the need to manipulate the declarative representations of the selected S-R 

mappings into their procedural counterparts, leading to increased power in low 

frequencies over frontal sensors (Itthipuripat et al., 2013). As expected, we found a 

significant cluster of frontal activity dissociating the two tasks. Interestingly, this cluster 

was restricted to frequencies below 5 Hz. While the higher theta band (6 – 8 Hz) tracked 

the number of selected items (Onton et al., 2005), slower oscillations were sensitive to 

the task. Recent studies found that switching internal attention between items in WM for 

prospective use was associated with an increase in delta/low-theta oscillations (de Vries 

et al., 2018, 2019c). We found low theta activity to be different between tasks and 

sustained during the CTI. This suggests that its role might go beyond the exertion of short-

lasting top-down control over attentional prioritization, but also encompasses the 

reformatting of the prioritized memoranda into behavior-guiding representations. This is 

possible for the Implementation task, while in the Memorization task the prioritized 

representation(s) can only be used as a template to guide the upcoming task (Olivers et 

al., 2011; Olivers and Eimer, 2011; de Vries et al., 2019a). Although not significant, the 
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pattern of low theta activity suggests a different contribution of this frequency in the 

Implementation task across loads, possibly reflecting capacity limits in the 

proceduralization process. 

Therefore, the stronger activity in Implementation likely reflects the inherently more 

extensive reformatting process of proceduralization, which we assume involves a theta-

driven binding between the stimulus and its corresponding motor plan. The Memorization 

task also requires the prioritization and the binding of stimulus and response, but this 

would engage theta dynamics to a lesser extent, given the impossibility to activate a motor 

plan. 

4.2 Motor preparation in Implementation is reflected in mu and beta suppression  

Previous fMRI studies showed that the proactive proceduralization of novel instructions 

is accompanied by increased neural activity in pre-motor areas, suggesting motor 

preparation (Ruge and Wolfensteller, 2010; Hartstra et al., 2011, 2012; Muhle-Karbe et 

al., 2017; Bourguignon et al., 2018). This motor involvement is thought to boost instruction 

implementation by enabling mental simulation of the overt application of the instructed 

mappings (Brass et al., 2017). Motor imagery has been associated with suppression in 

mu and beta bands over motor cortices (Pfurtscheller and Neuper, 1997; McFarland et 

al., 2000; Pineda, 2005; Pfurtscheller et al., 2006; Cheyne, 2013). Consistently, we found 

these markers to be larger in Implementation compared to Memorization, already during 

the CTI. While in both tasks participants had to perform an overt motor response at the 

end of the trial, only during Implementation they could proactively start preparing their 

response to the upcoming target. This rules out the possibility that the observed 

differences reflect more general mechanisms of unspecific motor energization, temporal 
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estimation or target expectancy (Van Elswijk et al., 2007; Nobre and Van Ede, 2018; 

Wiener et al., 2018). Moreover, we found mu and beta dynamics to be sensitive to load: 

the lower the number of relevant mappings, the stronger the suppression. This finding 

supports the assumption that proceduralization is subject to capacity limitations and 

proceduralizing less mappings leads to stronger procedural representations and motor 

activation (Liefooghe et al., 2012). Engagement of motor regions is also occurring during 

Memorization, although to a lesser extent, as revealed by the observed Load effect. One 

possibility is that our responses, despite being bilateral and more abstract than the 

traditional ‘left’ and ‘right’, are automatically processed also when held declaratively, 

causing motor activation (Bundt et al., 2015). Overall, our results suggest that preparing 

to execute novel mappings involves the activation of a specific motor plan corresponding 

to the instructed response. 

4.3 Alpha-mediated attentional orienting is analogous in Implementation and 

Memorization 

We observed no task-dependent modulation in the dynamics of alpha oscillations. Activity 

in the alpha frequency band has been consistently associated with attentional processing 

(van Ede, 2017). In particular, posterior alpha power decreases over electrodes 

contralateral to the attended hemifield, both in perceptual and in WM tasks (Sauseng et 

al., 2005; Jensen and Mazaheri, 2010; Poch et al., 2017). In our experiment, participants 

were encouraged to focus on the selected items and discard the unselected ones. 

Coherently, in both tasks we found after the retro-cue a significant suppression of alpha 

oscillations contralateral to the attended hemifield. The most influential model proposed 

to account for this phenomenon is referred to as Gating by Inhibition (Jensen and 
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Mazaheri, 2010). According to it, top-down alpha modulation of sensory cortices allows 

for the inhibition of irrelevant inputs, contributing to the creation of a functional network 

optimized to perform the task (Mazaheri et al., 2014; Van Diepen et al., 2019). Our 

clusters of alpha lateralization extended around 600 – 800ms after retro-cue. This 

dynamic is consistent with previous findings on retrospective attention orienting, showing 

modulations within 500 and 1000ms (Wallis et al., 2015; Wolff et al., 2015, 2017; Mok et 

al., 2016; Poch et al., 2017, 2018). The effectiveness of the selection process is further 

supported by load-dependent centro-posterior alpha power modulation (Jensen, 2002). 

The time course of alpha power has been observed to be sensitive to the number of items 

retained during a WM task. In both our tasks, alpha increased with load. Crucially, 

lateralized and load-dependent alpha activity was not different between tasks, confirming 

that the information provided by the retro-cue is used to analogously orient attention and 

select the items that are likely to be probed, independently of task demands. 

5. Conclusions 

Our study shed light for the first time on the oscillatory dynamics associated with the 

retrospective prioritization and proceduralization of novel instructions. We showed that 

alpha-mediated mechanisms of attentional orienting are in place to prioritize the relevant 

items, independently from the upcoming task demands. Conversely, other neural features 

were sensitive to the task. The implementation of novel mappings, as opposed to their 

declarative maintenance, is characterized by increased power in low frequencies and by 

stronger suppression of mu and beta activity. We interpreted the former to be a signature 

of the allocation of cognitive control for the successful binding of stimulus and response 

into a behavior-optimized procedure, and the later to reflect the motor preparation of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912162
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

instructed motor responses by means of motor imagery. Crucially, these differences were 

found during the CTI, supporting the idea that under appropriate task conditions, 

proceduralization can occur proactively in preparation for the upcoming response 

execution demands. 

Future research should investigate how proceduralization affects the underlying neural 

representation of the instructed mapping, under the assumption that it is recoded from a 

declarative to a procedural format, and how prefrontal regions mediate this reformatting 

process. Moreover, future studies should explore the capacity limits of proceduralization: 

whether they are caused by the concurrent activation of interfering motor plans or by a 

failure in recoding more instructions into procedures is still an open question to be 

addressed. 
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