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Abstract 

Single-particle cryo-electron microscopy has emerged as the method of choice for structure 

determination of proteins and protein complexes. However, particle identification and selection 

which is a prerequisite for achieving high-resolution still poses a major bottleneck for automating 

the steps of structure determination. Here, we present a generalised deep learning tool, CASSPER, 

for the automated detection and isolation of protein particles in transmission microscope images. 

This deep learning tool uses Semantic Segmentation and a collection of visually prepared training 

samples to capture the differences in the transmission intensities of protein, ice, carbon and other 

impurities found in the micrograph. CASSPER is the first method to do pixel level classification 

and completely eliminates the need of manual particle picking. Integration of Contrast Limited 

Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection 

even in micrographs with variable ice thickness and contrast. In addition, our generalized model 

for cross molecule picking works with high efficiency on unseen datasets and can potentially pick 

particles on-the-fly, thereby, enabling automation of data processing.  
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Introduction  

Single-particle Cryo-electron microscopy (Cryo-EM) has revolutionized the field of structural 

biology by facilitating the structure determination of various biological macromolecules and their 

complexes1–4 which were recalcitrant to structure determination by X-ray crystallography or were 

not suitable for structure determination via NMR. Cryo-EM enables structure determination of 

proteins in solution without the need of protein crystallization or limitations of size, making it the 

current method of choice. A number of research projects are currently being carried out in 

hardware5–7 and software8–14 in order to streamline and automate data collection and processing 

steps for structure determination. One of the obstacles that still remains unresolved is the manual 

identification and selection of particles (protein) from micrographs for extraction and subsequent 

2D classification.  

To achieve high-resolution protein structure, selection of a large number of good quality particles 

is the prime requisite. However, particle identification, picking, and selection is a very tedious and 

challenging process. This is primarily due to the low Signal to Noise Ratio (SNR) of the 

micrographs, presence of contaminants, contrast differences owing to varying ice thickness, 

absence of well segregated particles etc. To overcome these drawbacks introduced by EM grid 

vitrification and low dose imaging, one often has to rely on laborious, slow, manual or semi-

automated methods. A fast, automatic method that can replace the manual processing is thus a 

necessity for automating the structure determination process. 

Presently, considerable effort is being devoted to the development of automated particle picking 

methods in order to circumvent the manual intervention. These can be broadly categorized into 

two groups (i) Template free and (ii) Template based methods which rely mainly on cross 

correlation with the template images. Gautomatch15,16 is one of the widely used template free 
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methods based on cross correlation. In RELION11 and cryoSPARC12 , a Gaussian blob of defined 

size is used as a template for particle picking. Similarly, DoGpicker17 uses mathematically derived 

Gaussian functions as templates to recognize and select particles from the micrographs. However, 

these tools are prone to picking huge amount of contaminants, background, and ice, and do not 

work optimally for datasets with poor SNR or small particle sizes. These problems are resolved to 

a certain extent in template (reference) based particle picking tools implemented in 

SIGNATURE18, RELION11, cryoSPARC12, EMAN8, SPHIRE13, cisTEM19, FindEM16, 

gEMpicker20 etc. In all these methods, templates are generated by manually picking a few hundred 

to several thousand particles from multiple micrographs. These particles are then sorted and 2D 

classified to generate templates for automated particle selection via template matching algorithms. 

While this methodology works better than previously described reference-free methods, it is time 

consuming, computationally expensive, and also requires manual intervention preventing its 

integration into automated pipelines for structure determination. In addition, manual particle 

picking usually introduces a strong template bias that may result in high false picking rate. 

Artificial Intelligence/Machine Learning (AI/ML) based approaches have the potential to 

overcome the problems discussed above and pave the way for full-automation of the data 

processing pipeline. Not surprisingly, multiple AI/ML based methods have also been proposed, 

such as, XMIPP21, APPLE picker22, DeepPicker23, DeepEM24, FastParticle Picker25, crYOLO26, 

PIXER27, PARSED28 etc that are based on Convolutional Neural Networks (CNN), Region-based 

Convolutional Neural Networks (R-CNN), cross correlation, and segmentation respectively. These 

deep learning classifiers are first trained on available datasets with known labels. The training 

process allows them to learn intrinsic and unique features/characteristics of the particles. A trained 

classifier can later be used to automatically pick similar particles from other micrographs. In 
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Convolutional Neural Network (CNN) based methods like DeepPicker and DeepEM, a sliding 

window is used to analyze the image for classification. In crYOLO, which is also a CNN based 

tool, the entire image is split into grids and part of the image in each grid is taken as an input to 

the classifier. However, all the above mentioned methods require individual particles to be 

manually picked for training, which is a time consuming procedure. Further, the exposure 

difference, noise level and the variable ice thickness in micrographs also limits the performance 

of these tools.  

Here, we present a novel method packaged as “CASSPER” (Cryo-EM Automatic Semantic 

Segmentation based Particle pickER) based on Semantic Segmentation (SS) for automated particle 

picking with high precision and accuracy. To our knowledge, CASSPER is the first method to 

carry out labelling and prediction of different kinds of particles (protein, ice, carbon etc) in a 

micrograph. Employing SS, CASSPER learns how to differentiate each pixel of the image by 

considering the transmittance of the medium. Since protein, ice and carbon contamination differ 

in transmittance, CASSPER can differentiate between them and provide unique labels with high 

confidence and reliability. CASSPER, like other AI based techniques, requires a training data. 

However, it has a Graphical User Interface (GUI) with a few sliding bars that can be used to label 

all the particles in a micrograph in one go, making it highly efficient and time saving in the 

preparation of the training data. Further, CASSPER utilizes the Contrast Limited Adaptive 

Histogram Equalization (CLAHE)29 algorithm for efficient particle identification even in 

micrographs with large regional contrast variability. Since CASSPER learns the pixel differences 

and not the particle morphologies, it yields high accuracy even on unseen micrographs. 

 

Results 
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Implementation of Semantic Segmentation in CASSPER 

Unlike the traditional image classification methods that use either derived features or 

morphological characteristics of the target image for its identification, CASSPER uses Semantic 

Segmentation (SS) for identifying the protein molecule at the pixel level30. CASSPER is coded in 

the Python language and the Deep Learning model uses InceptionV431 for feature extraction and 

a Full Resolution Residual Network (FRRN)32 model for SS. The FRRN has two different 

processing streams; namely, a full resolution residual stream that holds high resolution details for 

recovering the location of the detections and a pooling stream for extracting the hidden features 

required for learning the abstract relationships in the image. By using a set of Full Resolution 

Residual Units (FRRU) to merge the residual stream and the information from the pooling layers 

at each stage, it ensures localisation as well as classification accuracy during reconstruction. This 

is one advantage of using FRRN instead of the more popular Convolution Neural Network (CNN). 

Each FRRU is a combination of Residual Units (RU) and Feed Forward Networks, where the latter 

are built using a linear sequence of  layers. The output of the	𝑛#$ layer of the Feed Forward 

Network is given by𝑦& = 𝑓(𝑦&*1;𝑊&) and can be represented as a function of output of 

(𝑛 − 1)#$layer and the 𝑊& parameters of the layer. The Residual Network33 is composed of a series 

of RUs  and for them, the output of the 𝑛#$	layer is given as 𝑦& = 𝑦&*1 + 𝑓(𝑦&*1;𝑊&), 

where𝑓(𝑦&*1;𝑊&)is the Residual of the layer. The outputs of the 𝑛#$	layer FRRU is given by: 

𝑗& = 𝑗&*1 + 𝑔(𝑗&*1, 𝑘&*1;𝑊&) 

𝑘& = ℎ(𝑗&*1, 𝑘&*1;𝑊&) 

Where  𝑗&*1and 𝑘&*1are the residual and pooling inputs to FRRU.  The FRRN architecture that is 

used for the present study employs 5 FRRUs for upsampling and 4 FRRUs for downsampling.  
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Also it has 5 maxpooling and 4 unpooling layers in the pooling stream. The network design is 

explained in Figure 1 (A). CASSPER uses the SS implementation by George Seif34. 

 

CASSPER pipeline and preparation of training data 

The entire pipeline of CASSPER can be divided into two phases - Training phase and Prediction 

phase. Like all other supervised Machine Learning methods35, SS also requires a training data. The 

training data is prepared by labeling the different objects of interest in the image by assigning them 

different colours. Thus, the label itself is an image with coloured  pixel masks indicating their type. 

Since it is a pixel based learning method, the accurate labeling of each pixel is crucial. In order to 

carry out labelling with minimum user intervention, we developed a graphical labelling tool. The 

tool enables visual enhancements in the image by varying its contrast, bilateral filter size, intensity 

and  threshold values. All controls are implemented with the help of slide bars explained in the 

methods. A schematic of the functionalities of the slide bars are shown in Figure 1 (B). The 

method is independent of the structural details of the protein and hence its efficiency is unaltered 

by the differences in shape or size of the projected image of the protein. An illustration of the same 

is shown in Figure 2 where the micrographs are labeled to show four different constituents 

(referred to as classes hereafter), namely crystalline ice, carbon edges, background and the protein 

molecules. About 15-25 micrographs of each protein were labelled and used to train the network. 

The raw and labelled micrographs for training were provided with the same root names in the 

pipeline and about 90% of them were cycled in ~300 epochs to train the network. The remaining 

10% of the data was used for validating the performance of the trained network. The training round 

that gives best F1 scores (see section Statistics for details) during validation was taken as the 

criterion for choosing the final trained model. Subsequent prediction on the larger set of unlabelled 
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micrographs was done using the trained model. F1 scores for a few proteins during validation are 

shown in Figure 3 (A). CASSPER labels each particle with the same colours that were used to 

represent them in the training data. Since we are interested only in finding the coordinates of the 

protein,  everything other than the protein is masked out from the image. The user is then allowed 

to specify the size of a circular mask approximately the size of protein. The reason to take it as an 

input is that, occasionally, the image of the protein may appear fragmented and the machine needs 

this information to include those fragments as part of the same particle. CASSPER then estimates 

the centers of those contours and its coordinates are provided in the “star format” for particle 

extraction and subsequent processing steps. 

The evaluation of the performance of CASSPER was carried out in three steps: 

1. The number of good 2D classes and the number of particles therein. 

2. The resolution of 3D map generated using a uniform processing pipeline as described 

below. 

3. F1 and IoU scores for labels created by CASSPER on randomly selected micrograph were 

compared with ground truth values.  

Uniform pipeline for comparison 

The performance of CASSPER was evaluated by comparing the results with two popular particle 

picking  tools - machine learning based crYOLO and  cross correlation based Gautomatch. A 

uniform pipeline for cryo EM data processing was adopted to rationally assess the quality of results 

from the three methods over a limited number of steps. The uniform pipeline scheme can be 

divided into three phases illustrated in Figure 3 (B). Phase 𝛂 predicts the particle coordinates using 

Gautomatch, CASSPER and crYOLO. The same micrographs were used for particle prediction by 
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all the three tools. Comparison for the true positive (actual protein particles) and false positive 

(wrong prediction as protein) particles on one representative micrograph for each protein is 

depicted by Figure 3(C) and the comparison has been summarized in Figure 3(D). In this phase, 

each tool outputs a star file with the particle coordinates they identify.  In Phase 𝝱, the  particle 

coordinates were imported into RELION11 and the particles were extracted from the CTF estimated 

micrographs. The extraction box size is kept uniform for each protein predicted with different 

tools. Phase 𝛄 of the pipeline is carried out in cryoSPARC v1 to accelerate the data processing 

steps. The extracted particle stack obtained by the three tools for a sample of four datasets 

(explained in the next section) were imported into cryoSPARC v1 where 2D classification was 

performed. After a single round of 2D classification, class averages with discernible features were 

selected and used for ab initio reconstruction with C1 symmetry. Later the 3D models generated 

from them were refined with single step homogenous refinement in their respective symmetry 

groups. The number of good 2D classes and particles therein and the resolution of the map in 

subsequent 3D reconstruction achieved indirectly reflects the performance of the particle picking 

tools (Table 1). 

We trained crYOLO for each dataset and the trained model was used for comparison. In the case 

of Gautomatch, pixel size and particle diameter were the only two parameters which were used to 

predict the particles. ( ./Gautomatch-{version} --apixM{pixel size} --diameter {particle diameter} 

/path of the folder containing micrographs). 

CASSPER Performance 

To test the performance of CASSPER, we selected four datasets, namely;  HCN136 (EMPIAR 

10081), TRPV137 (EMPIAR 10005) TcdA113,26 (EMPIAR 10089) and β-galactosidase38(EMPIAR 
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10017). Our selection includes proteins with different molecular weight (464kDa - 1.4 MDa) and 

proteins from different biological environments ranging from cytoplasmic to membrane proteins. 

TcdA1 

TcdA1 (EMPIAR 10089) is one of the well studied components of tripartite ABC type toxin 

complexes released by nematodes in case of insect invasion. It has a molecular weight of 1.4 MDa 

and its characteristic shape renders it clearly distinguishable on the micrographs making it a 

suitable candidate to develop an autopicking tool. This dataset was obtained from the EMPIAR 

database and has 97 movies which were acquired on Titan Krios with Falcon II detector (4k x 4k). 

The raw movies were  motion corrected by MotionCorr239, and CTF estimation was performed 

using CTFFIND440 in RELION. 26 micrographs were randomly picked and labelled for training 

via CASSPER. The actual training used 23 micrographs and 3 micrographs were used for 

validation. The different validation parameters were monitored in all epochs. The maximum F1 

score and mean IoU score obtained for the training data were 0.98 and 0.88 respectively. The SS 

model with highest F1 score as indicated in Figure 3 (A) was used for making the predictions. The 

coordinates of the centers of the predicted particles were returned in star format. CASSPER 

showed the best performance for TcdA1 as it produced 11245 good particles for the 3D 

reconstruction from 97 micrographs (Table1).  

β-galactosidase 

β-galactosidase (EMPIAR 10017) is a soluble protein which is routinely used for benchmarking 

cryoEM data processing tools and softwares. It is derived from E.coli and forms a biological 

tetramer whose molecular weight corresponds to 464 kDa. The data was obtained from the 

EMPIAR database and was acquired by POLARA with a Falcon II detector. For the study,  84  
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micrographs were used. The maximum F1 score and mean IoU score for training were 0.93 and 

0.75 respectively. Out of 44261 particles picked from 84 micrographs by CASSPER, 40467 were 

used for 3D reconstruction. Homogeneous refinement was performed by enforcing D2 symmetry 

for the 3D maps to obtain a resolution of 7.26 Å which is better than the other tools under uniform 

pipeline approach (Table1). 

HCN1 

HCN1 (EMPIAR 10081) is also a membrane protein which plays a pivotal role in controlling the 

rhythmic activity of cardiac and neuronal cells. A total of 997 micrographs obtained from the 

EMPIAR database were used by all the three tools to predict the protein particles. After the 2D 

classification step in the uniform pipeline, 76% of the total number of particles picked by 

CASSPER were used for 3D reconstruction. It must be noted that CASSPER picked nearly 8000 

more true positive particles than the other tools used in this study. The difference in number of 

particles picked by these three tools for 3D reconstruction through the uniform pipeline 

corresponding to the difference in their resolution are  shown in Table1.  

TRPV1 

TRPV1 (EMPIAR 10005) is involved in mediating response to various physical and chemical 

stimuli from the environment. For this dataset, 771 micrographs obtained from the EMPIAR 

database (collected on FEI POLARA 300 using GATAN K2 detector)  were used to compare the 

performance of CASSPER with other tools through the uniform pipeline approach. Even though 

the total number of particles picked by CASSPER is less, 2D class averages and 3D maps are 

comparable with other tools. 
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The 2D class averages for all the datasets obtained by processing the coordinates from different 

tools showed similar features (Figure 4).  However, the final 3D maps after refinement clearly 

indicate the difference in the resolution. The EM density maps for β-galactosidase, TcdA1, TRPV1 

and HCN1 are shown in Figure 5 (A). Resolutions for all the EM density maps were estimated by 

Fourier shell correlation at FSC= 0.143 criterion  indicated in Figure 5 (B-E) 

Evaluation of the predicted labels 

The labels generated in the training step using the CASSPER labelling tool were treated as the 

ground truth labels to evaluate the quality of the predicted labels. 12 micrographs which do not 

constitute the training dataset were randomly selected for each protein and mean values of F1, IoU 

and accuracy scores, shown in Figure 6, were obtained by comparing the predicted labels with the 

corresponding ground truth. The high scores of evaluation metrics comprised of mean F1, IoU and 

accuracy scores suggest that our model is robust and performs proficiently irrespective of varying 

protein sizes and contrast differences across the micrographs. 

High-resolution 3D reconstruction  

The ultimate goal of macromolecular structure determination is to explore biologically relevant 

intramolecular and intermolecular interactions in its native environment. This is possible only if 

we achieve high-resolution structure which furnishes atomic level details. To demonstrate the 

utility of CASSPER in obtaining high-resolution 3D reconstruction, we processed cryo-EM data 

for TcdA1 and TRPV1 datasets following the homogeneous, non-uniform and local refinement 

protocols implemented in cryoSPARC v2 and obtained a resolution of 3.5 Å and 3.19 Å 

respectively. The resolution for TcdA1 obtained with CASSPER is equal to the previous report, 

however for TrpV1 the resolution with CASSPER was better than that of the published report.13,37 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.912139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912139
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7 and 8 show the final 3D maps of TcdA1 and TRPV1 obtained using the coordinates 

derived from CASSPER where high-resolution features are clearly visible. This clearly 

demonstrates the ability of CASSPER to automatically pick high-quality particles for high-

resolution structure determination.  

Analysis of Generalization ability 

The ability of SS method to learn the intrinsic features and composition of different objects along 

with their context was used to implement a cross protein classification model to predict the particle 

coordinates in unseen micrographs. The cross model was trained on 74 micrographs from six 

datasets (HCN1, TRPV1, β-galactosidase, RNA Polymerase III (EMPIAR 10168), Influenza 

Hemagglutinin (EMPIAR 10096), T20S proteasome (EMPIAR 10057)) and predicted for TcdA1. 

The cross model predicted 13209 particles from 97 micrographs of TcdA1 which after undergoing 

data processing steps in uniform pipeline resulted in 3D reconstruction with 4.38 Å resolution 

which is comparable with the CASSPER trained model under uniform pipeline scheme. Similarly 

the prediction for HCN1 based on cross model training gave a resolution of 5.7 Å.  

In an attempt to improve the generalization ability of the cross model, we developed a cross 

CASSPER model trained with 180  micrographs from fifteen different proteins. To analyze the 

generalization ability of the cross model, 12 micrographs each from HIV-1 envelope 

glycoprotein (EMPIAR 10004), T20S proteasome (EMPIAR 10057), 80S ribosome 

(EMPIAR 10028) and afTMEM16/nanodisc complex (EMPIAR 10240) were predicted using 

the cross model. These four proteins were totally new and unseen by CASSPER during the training 

phase. The predicted images were compared with the ground truth labels prepared using 

CASSPER labelling tool. Different metrics such as F1, Accuracy and mean IoU scores were used 
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to evaluate the performance of the predicted labels. The representative images of the  predicted 

micrographs along with box plot showing Accuracy, Precision, F1 and Mean IoU scores are given 

in Figure 9. The plots, with more than 90% scores, ascertain that our cross CASSPER model 

performs very efficiently in predicting the particles even for the unseen datasets, making it suitable 

for integration in any of the available cryo-EM data processing pipelines. 

 

Discussion 

In this study, a novel tool named CASSPER that can be used for automated particle picking from 

cryoEM images is presented. Using a powerful Semantic Segmentation Deep Learning framework, 

CASSPER colour codes all pixels in the cryo-EM micrographs to their probable classes. 

CASSPER is the first  particle picking tool implementing the Residual Network architecture for 

efficient pixel-wise classification. Rather than searching for morphological features, it exploits the 

difference in the transmittance level of protein and non protein entities in the micrographs to locate 

the particles. This advantage translates into the ability of CASSPER to distinguish and pick the 

proteins in micrographs with ice contamination or carbon edges as shown in Figure1.  

CASSPER offers complete automation as it eliminates the need of manual particle picking at any 

stage in its operation. In the training phase, labels are generated using a GUI having four sliding 

bars to optimally adjust various filters as explained in the Methods section. It takes into account 

the intrinsic differences in the transmissivity of the particles in the image to generate colour coded 

labels for the particles in the micrographs. The particle coordinates are then extracted and returned 

in the popular star format for easy integration with any data processing software package such as 

RELION. 
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The advantage of learning the pixels that differentiate a protein from the rest of the image is that 

it can then be efficiently used for the discovery of the structures of new, unknown proteins. This 

is because in a Transmission Electron Microscope (TEM) image, what constitutes the image 

basically is the  transmissivity of the media. If a machine can learn how each pixel, corresponding 

to the protein particle, differs from the rest, the collection of connected pixels can locate the 

position and shape of the protein. The method is only limited by the intrinsic differences in protein 

transmissivity that may cause fragmentation in the label for a single protein structure. Since this 

can be corrected visually, we allow the user to specify a size threshold based on the labels predicted 

by CASSPER before it is used to count and pick individual particles.  

In earlier segmentation based tools like PIXER27, the feature map is segmented to get the protein 

containing regions and these regions are then given to a trained classifier to determine the particle 

centers. In CASSPER, the output of the SS network itself is classified into different classes in the 

micrograph and no additional post processing steps are needed for classification.  

The prediction for TcdA1 and HCN1 using the CASSPER cross model trained on six other proteins 

yielded a resolution similar to the resolution achieved through the uniform pipeline. The promising 

results of evaluation metrics for unseen proteins using the cross model proves the capability of 

Semantic Segmentation network to distinguish the pixels based on their transmittance level. 

 

Methods  

Training Data Preparation 

Semantic Segmentation is a very powerful tool to learn the relation between an object and its 

surroundings. The semantically segmented labels required for training the network is made using 

the CASSPER labelling tool. The processing steps of the tool is explained in Figure 1. The raw 
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micrograph image is enhanced using a Gaussian filter followed by contrast enhancement. The 

combination of range and domain filtering in bilateral filter preserves the image edges and removes 

the noise in it. In our implementation, the filter size is tuned using the slide bars (Figure 10 (B)). 

Sample vitrification usually leads to variable ice thickness in EM grid holes, this results in contrast 

difference in the micrographs. To overcome this situation, we employed a Contrast Limited 

Adaptive Histogram Equalization (CLAHE)29  on the images. The contrast limiting (CL) value for 

CLAHE can be adjusted using the slide bar. Usually low positive CL values are suitable for most 

proteins.  The final segmentation in the enhanced image is done in two steps: a) Intensity 

thresholding and b) size filtering. Trackbars are used to set the intensity threshold value and the 

threshold value for the area of the particles. Based on these inputs, the final labels are created. This 

is a one time procedure and the generated values can be used for all the micrographs of the dataset 

under consideration, thereby, making the labeling procedure fast and accurate. In addition to 

protein particles, by following the same procedure, ice and carbon contaminants that have different 

transmittance are also labeled with different colors.  

 

Training of CASSPER 

Preprocessing 

The gray scale cryo-EM images have very low SNR hence, it has to be enhanced before submitting 

to the Semantic Segmentation algorithm. Also, the SS algorithm is designed to work on 

multichannel colour images. In our implementation, the three channel input image is obtained by 

applying three different filters to the motion corrected micrographs. Contrast enhancement and 

edge preserved noise removal of the input image are done by histogram equalization followed by 

bilateral filtering. This forms one channel. The second channel is prepared by Median thresholding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.912139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912139
http://creativecommons.org/licenses/by-nc-nd/4.0/


that retains only pixels with intensities around a set threshold of the median pixel. In effect this 

channel enhances the contrast around the median pixel range of the image. The third channel of 

the image is generated by applying a Gaussian adaptive threshold to the second channel.  These 

enhanced images are combined to form the three channel image. This image is finally adaptively 

histogram equalized using CLAHE to reduce the contrast difference effects and improve the 

efficiency of SS.  

 

Definition of the Statistical terms used. 

True positive- Number of pixels which are predicted to the correct class.  

False positive- Number of pixels which are predicted to a wrong class. 

Precision- Percentage of correct predictions. 

Recall- Ratio of correct pixels in the predicted label to the ground truth. 

Intersection over Union (IoU)- Ratio of the number of common pixels in the predicted and 

ground truth images to the union of the pixels in both images. 

F1 score- Weighted average of precision and recall, 

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 2	 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 𝑟𝑒𝑐𝑎𝑙𝑙)	 

is used as the parameter for evaluating the validation performance and the model with highest F1 

score is used for prediction of the unseen proteins.  

For evaluating the performance of the prediction using the cross model, we employed F1, accuracy 

and mean IoU (Intersection over Union) scores to pixel-wise compare the predicted labels with the 

labels made using our labelling tool. The weighted average of particle and non particle pixels are 

indicated in these scores. 
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Data Availability 

The training datasets for this study, particle stacks and 2D class stacks are available on the GitHub 

page “CASSPER” along with a detailed practical manual for download under github page 

https://github.com/airis4d/CASSPER . 

 

Code availability 

The source code is contained in the CASSPER software package and its use is restricted by the 

end user license agreement:Creative Commons License 
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Table 1. Comparison of  Gautomatch, CASSPER and crYOLO for β-galactosidase, TcdA1, 
TRPV1 and HCN1. The total number of particles picked by the respective tools were fed into the 
uniform pipeline scheme for further processing. The 2D class averages with characteristic features 
were selected and used for 3D reconstruction followed by homogeneous refinement for all proteins 
by imposing the respective symmetry. The resolution obtained through uniform pipeline scheme 
are given in the table. 
 

Protein Method 

No of 

particles 

picked 

No of particles 

selected for 3D 

reconstruction 

Resolution (Å) 

TcdA1 

EMPIAR 10089 

GAUTOMATCH 4097 3364 6.7 

CASSPER 14603 11245 4.3 

crYOLO 11127 10629 4.4 

𝝱-gal 

EMPIAR 10017 

GAUTOMATCH 25409 21476 10.8 

CASSPER 44261 40467 7.26 

crYOLO 44591 42876 7.32 

HCN1 

EMPIAR 10081 

GAUTOMATCH 195782 107332 5.31 

CASSPER 150342 115297 5.06 

crYOLO 141002 103010 6.02 

TRPV1 

EMPIAR 10005 

GAUTOMATCH 127776 38836 7.73 

CASSPER 107320 46913 3.74 

crYOLO 110153 67269 3.68 
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Figure 1. (A) Abstract structure of Full Resolution Residual Network (FRRN). FRRN 

achieves better recognition and localization performance by image processing in two different 

streams; namely, pooling and residual streams. Pooling stream learns the abstract relationships in 

the image and residual stream carries a full resolution feature map that ensure localization 

capability. (B) Flowchart of the Image labelling tool which is used for preparing training data 

for Semantic Segmentation. The motion corrected mrc is filtered using Gaussian filter after 

normalization. This step makes the micrograph more visible for the user. Contrast Limited 

Adaptive Histogram Equalization (CLAHE) is applied to eliminate any exposure differences in 

the image and bilateral filtering followed by contrast enhancement makes the difference between 
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background and particles more vivid. Intensity thresholding is done to distinguish particles from 

background. Size thresholding is done for removal of contaminants or background that is not 

eliminated at intensity thresholding. The selected parts of the mrc are indicated in red. The ice and 

carbon contaminations are later labelled selecting the regions of interest.  
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Figure 2. The raw micrographs, contrast enhanced and Semantically Segmented images of 

micrographs from β-galactosidase (EMPIAR 10017), TcdA1 (EMPIAR 10189), TRPV1 

(EMPIAR 10005)  and HCN1 (EMPIAR 10081) respectively. The entire micrograph is segmented 

into different classes and each class is represented by a unique color. The background, protein, ice 

contamination and carbon contamination are represented using cyan, red, yellow and green color 

respectively.   
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Figure 3. (A) The validation F1 scores, which are used to select the best trained model in training 

epochs for prediction,  for all three proteins. (B) Schematic representation of the uniform pipeline 

used to compare the performance of Gautomatch, CASSPER and crYOLO. (C) Representative 

micrographs for (i) β-galactosidase, (ii) HCN1 and (iii) TcdA1 showing the particle picking 

performance of different tools. Highlighted areas indicate the noise picked by the respective tools. 

(D)  Table showing the number of particles picked by Gautomatch, CASSPER and crYOLO on 

same micrograph for each protein as shown in panel (C).  
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Figure 4. Comparison of Representative 2D class averages for (A) β- galactosidase, (B) 

TcdA1, (C) TRPV1 and (D) HCN1 obtained after single round of 2D classification in uniform 

pipeline using the particles picked by different tools. 
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Figure 5. Comparison of 3D models for β-galactosidase, TcdA1, TRPV1 and HCN1 generated 

using particles picked by Gautomatch (blue), CASSPER (tan), crYOLO (green). The particles 

were extracted in RELION2 and further processing was done using cryoSPARC v1  as per the 

uniform pipeline scheme. (A) Different views of the 3D models generated for β-galactosidase, 

TcdA1, TRPV1, and HCN1. FSC curves (tight mask) for the 3D reconstruction of β-galactosidase 

(B), TcdA1 (C), TRPV1 (D) and HCN1(E) showing the resolution at the gold standard cut off 

(0.143) obtained using Gautomatch (red), CASSPER(blue) and crYOLO(Green) 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.912139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 6.  The mean values of accuracy, F1 and mean IoU scores of proteins employed in uniform 

pipeline obtained by comparing the labels predicted using trained SS and ground truth labels are 

shown. The high values of these scores show that the protein particles are accurately predicted by 

the trained model.  
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Figure 7. 3D EM density map of TcdA1 obtained by implementing additional refinement steps to 

the uniform pipeline scheme. (A) Side view (B) Highlighted view of the side chains fitted (PDB 

1VW1) into the EM density (C) Top view (D) FSC curve for TcdA1 showing resolution (Å) at 

gold standard cutoff (0.143). 
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Figure 8. 3D cryo EM density of TRPV1 obtained by implementing additional refinement steps 

to uniform pipeline scheme. (a) Side view (b) Highlighted view of the side chains fitted (PDB 

3j5p) into the EM density (c) Top view (d) FSC curve for TRPV1 showing resolution (Å) at gold 

standard cutoff (0.143). 
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Figure 9. The boxplots showing the evaluation metrics of 12 micrographs from 4 proteins- HIV-

1 envelope glycoprotein (EMPIAR 10004), T20S proteasome (EMPIAR 10057), 80S 

ribosome (EMPIAR 10028) and afTMEM16/nanodisc complex (EMPIAR 10240). The box 

indicates the upper and lower quartiles and the median is shown as the line. The outliers and range 

of the data are represented by points and whiskers in the plot. The boxplots show the weighted 

average values of Accuracy, F1 and scores which are obtained by comparing the labels predicted 

using cross model with the ground truth labels.  
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Figure 10. (A) The flowchart showing the pre-processing steps of CASSPER training phase. The 

single channel micrograph is enhanced and three different filters are applied to get the inputs for 

three channel image. (B) The toolbar section of the GUI which was used for labelling the proteins. 

(C) Figure showing the ice labelling method. 
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