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Abstract 16 

Reinforcement learning enables the brain to learn optimal action selection, such as go or not go, 17 

by forming state-action and action-outcome associations. Does this mechanism also optimize the 18 

brain’s willingness to learn, such as learn or not learn? Learning to learn by rewards, i.e., 19 

reinforcement meta-learning, is a crucial mechanism for machines to develop flexibility in 20 

learning, which is also considered in the brain without empirical examinations. Here, we show 21 

that humans learn to learn or not learn to maximize rewards in visuomotor learning tasks. We also 22 

show that this regulation of learning is not a motivational bias but is a result of an instrumental, 23 

active process, which takes into account the learning-outcome structure. Our results thus 24 

demonstrate the existence of reinforcement meta-learning in the human brain. Because motor 25 

learning is a process of minimizing sensory errors, our findings uncover an essential mechanism 26 

of interaction between reward and error. 27 

 28 

 29 
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 33 

Learning is considered a skill that can be improved by experience and motivation1,2. In 34 

fact, animals and humans often exhibit accelerated learning over training sessions3. How does the 35 

brain learn to learn quickly in variable tasks and environments? 36 

Accelerated learning has often been reported in motor learning tasks where human 37 

participants learn to compensate for force or visual perturbations to generate a planned movement 38 

trajectory4-8. After motor memories formed in the initial learning session have been washed out, 39 

learning in the second learning session becomes faster than learning in the first session, a 40 

phenomenon that is known as the ‘saving effect’4,9. In this task, motor learning is considered a 41 
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process of minimizing sensory prediction errors, i.e., the discrepancy between the generated and 42 

predicted movement trajectories is independent of the motivational signals10-12. Research has 43 

shown that this saving effect is achieved by updating the learning rate (i.e., the policy of how 44 

much the motor memory is updated in response to the perceived sensory errors), which is driven 45 

by prior experience of the errors7. Additionally, recent studies suggest that there is a significant 46 

effect of motivational signals on the learning speed13-17. How does the brain incorporate 47 

motivational signals into the history of errors to regulate learning rates? 48 

One suggested mechanism is a passive, Pavlovian (cue-outcome-based) process in 49 

which the valence (reward or punishment) biases the learning rates. For example, in the go and 50 

no-go learning task, valence biases the speeds as well as the asymptotes of learning curves18. In 51 

saccadic adaptation, rewards increase the speeds of adaptation, which is induced by dopaminergic 52 

modulation of error signals19. While this motivational, hard-wired process might induce biases in 53 

error sensitivity of motor learning, it might not explain variations in reward influence of motor 54 

learning: some studies show that learning is facilitated by motivational signals14, while others 55 

report no effect16,17, or even decelerated learning15. Thus, these variations imply that another 56 

mechanism other than the hard-wired mechanism regulates the speed of learning. 57 

In theory, the ultimate goal of motor learning is to maximize future rewards20. Thus, 58 

reinforcement learning, which is driven only by reward feedback without any sensory prediction 59 

error, also forms motor memory21-23. Because the spatial generalization function of learned 60 

memory, which reflects properties of neural basis of adaptation, is significantly different for error-61 

based and reward-based learning, two dissociable neural mechanisms are likely involved in error- 62 

and reward-based motor learning24. 63 

However, how these two learning systems interact with each other is still not known. 64 

Here, we hypothesized that the integration of error-based and reward-based learning systems 65 

reinforces motor learning, which we call ‘reinforcement meta-learning.’ In contrast to a passive 66 
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process, this learning process is active and instrumental (action-outcome-based), where a higher-67 

level reinforcement learning mechanism trains a lower-level motor learning mechanism. 68 

This idea of reinforcement meta-learning is based on a theory developed in machine 69 

learning where the parameters characterizing learning behaviors such as learning rates are 70 

modulated by high-order reinforcement learning25,26. This idea can account for changes in learning 71 

rates in decision-making tasks in animals and humans27. However, the existence of reinforcement 72 

meta-learning in the brain has been difficult to verify experimentally because in decision-making 73 

tasks, both learning and meta-learning are updated by a reward feedback, obscuring the 74 

contribution of each learning layer. 75 

Here, we devise a reinforcement meta-learning task in which the feedback for learning 76 

and that for meta-learning are dissociated: sensory error feedback is provided in a motor learning 77 

trial, and reward feedback that depends on the rate of motor learning is provided in a subsequent 78 

meta-learning trial. If the brain employs reinforcement meta-learning, it integrates sensory error 79 

feedback and reward feedback to form associations between these two to regulate how large motor 80 

commands should be updated in response to the observed sensory error. Thus, manipulating the 81 

relationship between the extent of learning and the reward feedback should influence how motor 82 

learning rates are modulated as a result of meta-learning regardless of which reward and 83 

punishment are presented. Alternatively, if the modulation of learning rate is hard-wired to 84 

valence, such manipulation might not influence learning rates. 85 

Results 86 

Forty one healthy participants gave informed consent before participating in the 87 

experiment, which was approved by the Institutional Review Board at the University of Tsukuba. 88 

One subject was excluded from the analysis since he reported an explicit strategy to perform task. 89 

The participants sat on a chair, held the handle of a robot manipulandum with their right arm, and 90 

made shooting-like quick movements by displacing the handle of the robot on a horizontal plane24. 91 
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A computer projector displayed all visual stimuli onto a flat opaque board that occluded both the 92 

manipulandum and the arm. The visuomotor meta-learning paradigm was composed of a sensory-93 

error (S) trial and a monetary feedback (M) trial. In the S trial, the visual cursor was projected on 94 

the screen, which provides online feedback of the hand (Figure 1A, left). This cursor was rotated 95 

±7° with respect to the hand movement to induce a sensory prediction error, i.e., the error between 96 

the predicted and generated movements. The goal for the shooting was presented with an arc of 97 

±45° instead of a target, and the participants were asked to randomly choose a movement direction 98 

and cross somewhere on the arc except the edge, which emphasizes the sensory prediction error 99 

and minimizes the extent of how reach error interferes with task performance. This S trial was 100 

followed by M trials, in which the small visual target, instead of the arc, was presented, and the 101 

participants were asked to shoot at the center of the target as accurately as possible without the 102 

cursor feedback. After the shooting movement, the participants received monetary feedback, 103 

which was presented as a numerical score (Figure 1A, right). This score was computed as a 104 

function of the size of the memory update (learning), which was measured by the aftereffect (i.e., 105 

the changes in the reach direction following the previous sensory prediction error). The 106 

participants repeated the cycles of one S trial followed by four M trials. 107 

This task structure implements a reinforcement learning problem among trial sequences 108 

formalized as a Markov decision process, whereby the agent observes the environmental state, 109 

responds according to its policy and is rewarded for the action28. In our task, observation of the 110 

sensory prediction error (state observation) and the learning rate (policy) yielded a memory update 111 

(action), which subsequently generated a monetary feedback (outcome, Figure 1A, bottom). Thus, 112 

if the brain learns to maximize the monetary feedback, the action-outcome structure (i.e., how 113 

much is gained by how much is learned) should determine the change in learning rate. In addition, 114 

if the effect of this action-outcome structure is dominant, the valance which has been considered 115 

to influence learning rates13 does not influence the change in learning rate. 116 

 117 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.19.912048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.19.912048


6 
 

The experiment contained five blocks, each of which comprised a training phase 118 

followed by a generalization phase. The training phase had 28 cycles, each containing one S trial 119 

and four M trials. The generalization phase included four short sequences of visuomotor rotation 120 

trials to assay the generalizability of meta-learned learning rates to a conventional visuomotor 121 

learning task (Figure 1B). 122 

An example of the visual rotation pattern (+7° after −7°) is shown in Figure 1C. In the 123 

first (baseline) block, no score was given in M trials. Nevertheless, after the sensory prediction 124 

error led by visual cursor rotation was observed at the kth trial (S trial), the reach direction was 125 

updated to compensate for the given rotation. Thus, the change in movement direction at the kth + 126 

1 trial was significantly different from that at the kth - 1 trial (cyan arrow in Figure 1C, Wilcoxon 127 

paired signed-rank tests, V = 726, p < 0.00001, r=0.70), indicating that the robust aftereffects of 128 

memory updates were induced by the sensory prediction errors, which is congruent with previous 129 

reports of the roles of sensory prediction errors on updates of motor memory29. 130 

In subsequent blocks, the participants were randomly assigned to one of four groups (n 131 

= 10/group) with different action-outcome structures and valences. In the learn (Lrn) structure, 132 

larger aftereffects yielded larger scores, whereas in the not-learn (NLrn) structure, smaller 133 

aftereffects yielded larger scores, indicated by the background gradation colors in Figure 1D. The 134 

valence determined whether the monetary feedback was positive (reward [Rwd]) or negative 135 

(punishment [Pun]). This design required the participants to either learn more to gain more 136 

rewards (Lrn-Rwd) and avoid larger punishments (Lrn-Pun) or learn less to gain more rewards 137 

(NLrn-Rwd) and avoid larger punishments (NLrn-Pun). To visually observe differences in the 138 

regulation of memory updates among these conditions, we focused on the same example rotation 139 

pattern (+7° after −7°) as that for the baseline analysis (Figure 1D), and the same Wilcoxon paired 140 

signed-rank test was performed. The analysis showed robust aftereffects in the Lrn groups but not 141 

in the NLrn groups (Lrn-Rwd: V = 53, p = 0.0059, r=0.80; Lrn-Pun: V = 55, p = 0.002, r=0.91; 142 

NLrn-Rwd: V = 37, p = 0.38, r=0.10; NLrn-Pun: V = 18, p = 0.38, r=0.10). That is, when the 143 
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memory update led to an increase in rewards and a decrease in punishment, the aftereffect was 144 

kept robust; in contrast, when the memory update led to a decrease in rewards and an increase in 145 

punishment, the aftereffect was attenuated. 146 

We considered that the participants regulated the learning rate in accordance with the 147 

action-outcome structure (Lrn v.s. NLrn). To confirm this, for all combinations of perturbations 148 

(+7° after +7°, −7° after −7°, +7° after −7°, and +7° after −7°), we estimated the learning rate, β, 149 

by taking the ratio of the memory update (aftereffect) to the sensory prediction error. In other 150 

words, we computed how much the reach direction changed relative to the sensory prediction 151 

error in an S trial (see Methods for details). The median β was taken for each individual participant 152 

and each block for analysis. Figure 2A shows the group mean of individual medians over the 153 

blocks for each group and illustrates that the increase or decrease in learning rate over the blocks 154 

was different for the groups. To confirm this, we examined the trend of the learning rate over the 155 

blocks using a linear mixed-effect model with the action-outcome structure, valence, and block 156 

as the fixed effects and participant as the random intercept effect (see Methods for details). This 157 

analysis revealed a significant interaction between the action-outcome structure and the block (t 158 

= −2.65, p = 0.009, R2=0.61). Additionally, we estimated marginal slopes for the change in 159 

learning rate over the blocks with respect to the action-outcome structure, which confirmed that 160 

the change in learning rate over the blocks was larger in the Lrn groups than in the NLrn groups 161 

(t = −2.61, p = 0.0099). However, we did not find a significant effect of valence (t = 1.76, p = 162 

0.08). Furthermore, we computed the change in learning rate compared with the baseline for each 163 

block and then took the individual participant means of this value across the blocks ( , Figure 164 

2B). This result was then analyzed by a reduced linear model with the action-outcome structure 165 

and valence as the fixed effects (see Methods for details). Then, we confirmed that the change in 166 

learning rate ( ) was larger in the Lrn group than in the NLrn group (t = −2.14, p = 0.04, 167 

R2=0.15), while neither valence (t = 1.21, p = 0.23, R2=0.15) nor the interaction between action-168 

bD

bD
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outcome and valence (t = −0.38, p = 0.70, R2=0.15) has a significant effect. These results 169 

demonstrate that the participants regulated their learning rates according to the action-outcome 170 

structure regardless of valence. 171 

If these regulations are achieved by reinforcement learning of learning rates, outcomes 172 

that were provided as scores should be maximized. Figure 2C shows the across-subjects mean of 173 

the block total score in all conditions. Notably, the baseline was not presented to the participants 174 

but was calculated in the same way as the following intervention blocks. As a result of the 175 

regulation of the learning rate, participants in all conditions increased their monetary outcome 176 

(one-sample Wilcoxon-test; Lrn-Rwd: V = 48, p = 0.04, r=0.56, Lrn-Pun: V = 49, p = 0.03, r=0.61 177 

NLrn-Rwd: V = 55, p = 0.002, r=0.91, NLrn-Pun: V = 49, p = 0.03, r=0.61). These results support 178 

the hypothesis that the participants both up- and down-regulated the learning speeds via 179 

reinforcement meta-learning: instrumental and active meta-learning processes. 180 

Does this reinforcement meta-learning regulate learning rates of motor learning or 181 

something else specific for this training task? Subsequently, after the training phase, the 182 

participants experienced the generalization phase, which involved a conventional visuomotor 183 

rotation task in which both the visual target and the hand cursor were presented and no monetary 184 

feedback was provided (Figure 1B). Then, we investigated the learning rate in the generalization 185 

phase to determine whether the effect of the action-outcome structure in the reinforcement meta-186 

learning was transferred to a conventional visuomotor rotation task. Additionally, we investigated 187 

time-dependent changes within the generalization phase to determine the temporal robustness of 188 

the effect. To do so, we estimated the learning rate, β, for each individual, block, and sequence, 189 

and then the individual mean change from baseline across the blocks, , was calculated for 190 

each sequence. Figure 3A shows the group means for individual mean change over the sequences 191 

for the Lrn and NLrn groups. The individual mean change in learning rate was analyzed with a 192 

linear mixed-effect model with the action-outcome structure, the sequence, their interaction as 193 

bD
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fixed effects and the participant as the random intercept effect (see Methods for details). The 194 

analysis revealed a significant effect of the action-outcome structure (t = −2.08, p = 0.04, R2=0.67) 195 

and its interaction with the sequence (t = 2.58, p = 0.01, R2=0.67). Furthermore, the individual 196 

mean changes in learning rate for the training phase correlated with those in the first half (Figure 197 

3B, R = 0.43, t38 = 2.90, p = 0.006) but not with those in the second half (R=0.25, t38 = 1.61, p = 198 

0.12) of the generalization phase. Notably, although the change in learning rate was greater in the 199 

Lrn groups than in the NLrn groups in the first half (vertical axis of Figure 3B, t = −2.78, p = 200 

0.008, d = .88), this phenomenon was not observed for the second half (t = −0.74, p = 0.46, d 201 

= .23). These results demonstrate that the regulation of the learning rate by reinforcement meta-202 

learning in the training phase was generalized to the learning rate in motor learning for 203 

conventional visuomotor rotation tasks. This suggests that what is updated in the training phase 204 

overlaps with the learning rate of visuomotor learning. 205 

Discussion 206 

We found that by presenting rewards as a function of the amount of memory update that 207 

was induced by sensory prediction errors, the brain both up- and down-regulated the learning 208 

rates to increase rewards as well as to avoid punishment. This effect was gradually developed 209 

over the training sessions, and the directionality of regulation (i.e., learn or not-learn) was 210 

determined by the action-outcome structure, not by valence. These results suggest that 211 

reinforcement learning is employed to regulate learning rates. Furthermore, by examining the 212 

generalization of these regulations from the training task to the conventional visuomotor rotation 213 

task, we found that these meta-learning effects were transferred to motor learning. This 214 

observation indicates that there is an overlapping neural basis between reinforcement meta-215 

learning and visuomotor learning. Thus, our results demonstrate the existence of a reinforcement 216 

meta-learning mechanism for motor learning in the human brain. 217 

In machine learning studies, automatic tuning of learning parameters has been a long-218 
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standing problem30. A computational model of biological reinforcement learning suggests that, in 219 

the brain, neuromodulators such as noradrenaline, acetylcholine, and noradrenaline adjust 220 

learning parameters of reinforcement learning31 via reward-based modulation of these 221 

parameters32. Recent algorithms of meta-learning in machine learning studies have highlighted a 222 

hierarchical structure composed of two reinforcement learning systems: while a low-order 223 

reinforcement learning optimizes the weight parameters for action selections in a single learning 224 

episode, a high-order reinforcement learning optimizes meta-parameters of the low-order 225 

reinforcement learning network to maximize rewards across multiple learning episodes25,26. 226 

Although the neural implementation of such reinforcement meta-learning was recently 227 

discussed27, there was no experimental examination. Here, we devised a meta-learning paradigm 228 

in which reward feedback for meta-learning, which was provided independently from the sensory 229 

error feedback for motor learning, was manipulated as a function of the learning rate of motor 230 

learning. Our data demonstrated that while motor memory was updated to minimize the given 231 

sensory prediction errors in a single trial, the learning parameter of motor learning was updated 232 

to maximize rewards over multiple trials. 233 

The observed meta-learning effect may account for previous reports of learning-rate 234 

flexibility during motor learning tasks6,7,13,33. For instance, the learning rate increases over the 235 

sessions when the perturbation is relatively constant but decreases when the direction of 236 

perturbation frequently changes. Importantly, a typical learning paradigm with constant 237 

perturbation shares the same action-outcome structure as that for Lrn-Pun, whereby a memory 238 

update attenuates movement errors on the next trial, which can be considered avoidance of 239 

aversive outcomes34,35. In this case, reinforcement meta-learning accelerates learning rates to 240 

quickly reduce errors in re-learning (e.g., saving)6 or learning with additional punishment 241 

signals13. Conversely, a non-typical learning paradigm with rapidly changing perturbation shares 242 

the same action-outcome structure as NLrn-Pun because the memory update increases errors in 243 

the next trial. In this case, reinforcement meta-learning decreases the learning rate. Thus, 244 
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reinforcement meta-learning explains how the statistics of the perturbation affect learning rates7,33. 245 

According to a conventional theory of motor learning, the brain updates motor 246 

commands independent of reward to minimize sensory prediction errors36. Although motor 247 

memory has also recently been found to be updated by rewards, the neural basis of this reward-248 

based motor learning is likely distinct from that of sensory error-based motor learning24,37. 249 

According to these previous studies, rewards might not interact with sensory prediction errors 250 

during motor learning. Here, our data demonstrate that the sensory prediction errors and the 251 

rewards presented in separated trials were integrated at the higher-level motor learning system, 252 

i.e., meta-learning, to regulate learning rates. 253 

In theory, to establish reinforcement meta-learning for motor learning, the sensitivity to 254 

sensory prediction errors should be evaluated by the rewards. Thus, our results suggest a close 255 

interaction between rewards and sensory prediction errors during motor learning. Because 256 

research evidence suggests the involvement of cortico-basal ganglia networks in reinforcement 257 

meta-learning27 and the cerebellum in sensory error-based learning38,39, reinforcement meta-258 

learning for motor learning is likely mediated by the functional connectivity between these two 259 

learning systems. Thus, the anatomical projections between the basal ganglia and the cerebellum 260 

could have a computational role in reinforcement meta-learning40. This possibility is further 261 

supported by recently reported reward-related signals in cerebellar inputs41 and outputs42 during 262 

motor control tasks. We suggest that these interactions between the basal ganglia and the 263 

cerebellum play a key role in optimizing learning parameters for motor learning via reinforcement 264 

learning. 265 
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 279 

Figure 1. Reward-based visuomotor meta-learning paradigm. (A) Training paradigm. Cursor 280 

rotation (orange arrow)-induced sensory prediction error observation (state) in the sensory error 281 

(S) trial. The aftereffect size (action, cyan arrow) was scored (outcome) in the monetary feedback 282 

(M) trial. (B) One block consisted of the training phase, which included 28 cycles of 1 S trial 283 
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followed by 4 M trials. After brief washout (null) trials, the generalization phase was composed 284 

of four short sequences of visual rotation trials without scores. (C) Plot of reach direction w.r.t. 285 

the target direction (memory) for one example rotation pattern in baseline. The aftereffect (cyan 286 

arrow) was developed in the opposite direction to the rotation (orange line) in the S (kth) trial, 287 

showing a motor memory update. (D) Memory profile for the same rotation pattern for each group. 288 

The scores improved with memory updates toward the yellow zone (large reward) or away from 289 

the red zone (large punishment). The error bars indicate standard error of the mean (SEM). 290 

  291 
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 292 

Figure 2. Mean performance scores and learning rates. (A) Estimated changes in learning 293 

rates by block. (B) The learning rates changed more in the Lrn group than in the NLrn group. The 294 

error bars indicate SEM. (C) Total scores for each block. The baseline (BL) scores were calculated 295 

and are shown here. 296 

  297 
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 298 

 299 

Figure 3. Mean learning-rate changes in the generalization phase. (A) Mean learning-rate 300 

changes across the blocks for each sequence. (B) The learning-rate changes in the training phase 301 

corresponded with those in the first half of the generalization phase. Each dot represents the data 302 

from an individual participant. The error bars indicate SEM.303 
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Methods 304 

Participants 305 

Forty one right-handed participants (25 males; aged 19–37 years, µ = 24) volunteered for this 306 

experiment. Their handedness was confirmed by the Edinburgh Handedness Inventory, and they 307 

reported no history of neurological or motor disorders. We excluded one subject who reported an 308 

explicit strategy to perform the task from the analysis. They were paid 1,640 JPY for their 309 

participation, with an additional performance-based compensation up to 1,000 JPY.  310 

Task design 311 

General 312 

Participants performed the task using a robot manipulandum24 that moved only in the horizontal 313 

plane. They sat on a chair and held the robot handle in their right hand. A horizontal, flat, opaque 314 

board covered the task space, occluding the hand and forearm. A computer projector was fixed 315 

above and displayed visual information on the board. 316 

In each trial, participants made a rapid shooting movement when a target appeared 10 cm away 317 

from the starting point. To control for use-dependent learning43, the target location was pseudo-318 

randomly selected from 1 of 7 locations: -15°, -10°, -5°, 0° (directly in front of the participant), 319 

5°, 10°, and 15°. The counter-clockwise direction was defined as positive in the angular 320 

coordinates (Figure 1A). To maintain similar kinematics across trials, “Too Fast” or “Too Slow” 321 

was displayed as a warning when the movement duration was <200 ms or >300 ms, respectively. 322 

Trial type and task schedule 323 
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There were four trial types: Null, Sensory-error feedback (S), Monetary feedback (M), and 324 

Generalization. In Null trials, participants made shooting movements toward the targets with 325 

veridical online cursor feedback. In S trials, the targets were replaced with an arc spanning ±45°, 326 

centered on the home position and with 10 cm radius (Figure 1A) 44. Participants were asked to 327 

cross the arc while trying to distribute their reach direction across S trials. Online cursor feedback 328 

was rotated ±7° from hand movements to induce errors between the predicted hand position and 329 

the visual feedback. The rotation direction was pseudo-randomly selected (Figure 1B). Note that 330 

the use of an arc instead of a target minimizes the extent of how reach errors interfere with task 331 

performance and, thus, emphasizes errors between the observed and predicted hand movements, 332 

i.e., sensory predictor errors.  In M trials, participants made shooting movements toward targets 333 

without online cursor feedback. Upon movement completion, monetary feedback was presented 334 

as a numerical score above the target (Figure 1A). Scores were computed based on the reach 335 

direction from the target, with different computations across the experimental conditions (see 336 

below). Finally, Generalization trials were identical to Null trials except that, similar to S trials, 337 

online cursor feedback was rotated ±7° from the hand movement, as in conventional visuomotor 338 

rotation tasks45. 339 

Participants performed first one Baseline block, in which no monetary feedback was provided, 340 

and then four blocks with monetary feedback.  Each block comprised a Train phase with 28 341 

cycles of 1 S trial and 4 M trials, followed by a Generalization phase. Brief washout blocks of 14 342 

Null trials were inserted before each phase. The Generalization phase comprised 4 Sequences of 343 

5 consecutive cursor rotation trials, with 5 Null trials between each Sequence (Figure 1B).  The 344 

aim of the Generalization phase was to test whether the participants generalized the meta-learning 345 

effect formed in the Train phase to a conventional visuomotor learning task.  346 

Estimation of learning rates in the Train phase 347 
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We estimated the learning rates in the Train phase with a simple first order state-space model of 348 

memory updates to track transitions in reach direction in response to the experienced cursor 349 

rotation, as in previous work7. In this framework, motor learning is considered a process that 350 

estimates perturbations imposed in the task environment. Specifically in the visuomotor rotation 351 

task, the executed motor plan  at trial t determined the direction of the hand movement , 352 

 . (1) 353 

 While the hand movement was not directly observable for participants, a cursor projected on the 354 

screen provided online feedback of the hand motion while the visual rotation  was imposed 355 

between the hand movement and the visual cursor: 356 

   (2) 357 

The brain may predict hand movement direction  based on the estimation of the perturbation 358 

and the efference copy of the motor plan : 359 

 .  (3) 360 

 To minimize the sensory prediction error , the brain updates the estimate of the 361 

perturbation with the following learning rule:  362 

 ,  (4) 363 

where the learning rate  characterizes the rate of learning. 364 

( )tu ( )th

( ) ( )t th u=

( )tp

( ) ( ) ( ) .t t tc h p= +

( )ˆ th
( )tx ( )tu

( ) ( ) ( )ˆ t t th u x= +

( ) ( )ˆt tc h-

( 1) ( ) ( ) ( ) ( )ˆ )(t t t t tx x hcb+ = + -

b
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Here, we estimated the learning rate  in the Train phase using the data of hand directions in a 365 

triplet of M, S, and M trials, following previously developped methods46. That is, considering a 366 

certain trial of S trials at the trial t = k,  was estimated using the measured hand movement 367 

direction  and the given cursor rotation in S trials at t = k,  and the presented 368 

target direction in M trials at t = k - 1, as well as  and  in M trials at t = k + 369 

1. Because in M trials, the visual target  was presented and the participants were explicitly 370 

instructed to cross the target with their unseen but estimated hand position, the participants’ 371 

estimation of their hand direction should closely match the target direction. We thus assumed 372 

 and . From (1) and (3), we have  and 373 

. Importantly, because the cursor was not given to participants in M trials 374 

at t = k - 1, the sensory prediction error  was absent and thus, no memory update 375 

was engaged. Hence, we assumed . For subsequent S trials at t = k, because the 376 

sensory prediction error  was present, the memory was updated in accordance with 377 

(4).  378 

Using (4), we estimate  by:  379 

   (5) 380 

According to (1), (2) ,(3), and (5), we have:  381 

 . 382 
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Then, by applying , we have:  383 

 . 384 

Finally, by substituting  by  and  by , we have 385 

  (6) 386 

Because we measured  and  in M trials and manipulated  as 387 

a cursor rotation in S trials,  can be estimated for each triplet of M-S-M trials in the Train 388 

phase. Note that the denominator  occasionally approaches 0, resulting in 389 

an unreliable estimation of b. To prevent this, we used the median instead of the mean for each 390 

Train phase for each participant before performing statistical analyses.  391 

A potential limitation of the above method is that it does not account for the effect of another type 392 

of memory that is updated by reward signals24, which might be formed in M trials at t = k - 1. If 393 

this reward-based motor memory exists, it affects the measured reach direction in subsequent S 394 

trials at t = k and M trials at t = k + 1. This could potentially bias the approximation of the sensory 395 

prediction error by  and thus, bias the estimation of . 396 

However, according to the theory of reward-based motor memory24, the directions of the bias is 397 

opposite in the two cases of perturbation sequences: whether the direction of the perturbation 398 

switches or remains the same. Because the perturbation sequence was pseudorandomized, this 399 

bias should be predominantly eliminated when we calculate the median over each block. If a small 400 

effect of this bias remains, it would likely lead to an underestimation of for Lrn groups and 401 
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overestimation for NLrn groups; however, this was not observed in our data. As a final analysis 402 

of this potential confounding factor, we examined the generalization of the meta-learning in the 403 

Train phase to a conventional visuomotor rotation task where no monetary feedback was given.  404 

Estimation of learning rates in the Generalization phase 405 

Using the state-space model of the memory update (1)-(4), the learning rate was estimated via 406 

least square to fit each subject’s data of measured hand directions. In the Generalization phase, 407 

we assumed that the participants aimed at the presented target  with their prediction of the 408 

hand direction  , so that  closely matched with  (i.e, ). They observed 409 

the error between the cursor and the prediction of the hand - . Thus, the state-space model 410 

of the memory update (4) provides us the simulated sequences of over trials using the 411 

measured sequence of  for a given . The model also generates simulated sequence 412 

of participants’ reach error   in accordance with (1) and (3). In the experiment, 413 

we measured the actual participants’ reach error . Thus, following a previous  414 

method4, we estimated the learning rate  that minimized the sum of the least square error 415 

between and  over each step-perturbation sequence of the three Null trials and the 416 

five cursor rotation trials.  417 

Experiment groups and score calculations 418 

There were two independent variables, Action-Outcome structure and Valence, respectively, with 419 

two levels for each. This resulted in four experiment groups (Figure 1D). The Action-Outcome 420 

structure determined how the monetary feedback was computed in four consecutive M trials (t = 421 

) after the S trial (t = k) both as a function of the memory , measured as 422 
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a reaching angle with respect to the target , and as a function of the given 423 

perturbation . This regulated whether the memory updates in response to the sensory 424 

prediction error  were encouraged (Lrn) or discouraged (NLrn). Specifically, 425 

for Lrn, larger aftereffects of the exposure to the cursor rotation corresponded to larger scores, 426 

whereas, for NLrn, smaller aftereffects corresponded to larger scores. In contrast, Valence 427 

determined whether monetary feedback was positive (i.e., reward) or negative (i.e., punishment). 428 

Therefore, participants could learn more from sensory prediction error to gain more rewards (Lrn-429 

Rwd) or to avoid larger punishments (Lrn-Pun), allowing them to improve their scores with 430 

greater memory updates. Alternatively, they could learn less from sensory prediction error to gain 431 

more rewards (NLrn-Rwd) or to avoid larger punishments (Lrn-Pun), allowing them to improve 432 

their score with less memory updates.  433 

The score ranges for the Rwd and Pun groups were set to [0,20] and [-20,0], respectively. The 434 

Lrn-Rwd/Pun group earned the highest score by showing 100% or more memory for the last 435 

experienced rotation in the previous S trial (i.e., !
(#$%)'((#$%)

)(#)
	≥ 1 in ith M trial within the same 436 

cycle), and the score was reduced by 1 point for every 10% less memory until the lowest score 437 

(i.e., -100% learning) was reached. The Lrn-Rwd/Pun group earned the highest score by showing 438 

0% memory, (i.e. ), and the score was reduced by 1 point for every 10% 439 

more/less memory until the lowest score was reached. These were represented as background 440 

color patterns in Figure 1D.  441 

Instructions 442 

Before the task, participants were instructed about the experimental flow for the Train phase and 443 

the stimuli and feedback in the S and M trials. They were also explicitly informed that the total 444 

score would determine their additional monetary compensation and that the task goal was to 445 

( ) ( )k i k iT h+ +-
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maximize their compensation by crossing the target with their hand as closely as possible. In the 446 

Rwd conditions, they were told that additional compensation was initially minimum (0 JPY) and 447 

accumulated throughout the task. In the Pun condition, participants were told that additional 448 

compensation was initially maximum (1,000 JPY) and subtracted throughout the task. In addition, 449 

in the S trial, they were told to vary movement directions from trial to trial. This was to avoid the 450 

formation of use-dependent behavior43. In addition, they were not informed of visual rotation or 451 

the relationship between their reach direction and score size to prevent the use of cognitive 452 

strategy47. Their unawareness of visual rotation throughout the task was confirmed by a written 453 

questionnaire after the task was completed asking if they felt a discrepancy between the hand and 454 

the cursor during movements.  455 

Statistical analyses 456 

Removal of target location-dependent bias 457 

Due to a gap in height between the physical hand position and the cursor projected on the screen, 458 

a bias between the target direction and the reach direction was inevitable. To remove this bias 459 

from the analysis, we calculated the mean reach direction for each target location in the Baseline 460 

and subtracted from it in the Train phase for all blocks.  461 

Memory update following a specific visual rotation 462 

In Figure 1C, individual mean reach directions with respect to target direction, , in the k-463 

1th and k+1th trials were compared by Wilcoxon paired signed-rank test to examine the aftereffect 464 

(i.e., if the reach direction changed after the participants experienced a sensory prediction error in 465 

the kth trial). Because there was no difference across groups in Baseline, all individual data were 466 

combined (n = 40). The same test was performed for memory updates in the other four blocks on 467 

T h-
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individual mean differences of  in the k-1th and k+1th trials across the blocks for each group 468 

(Figure 1D, n = 10/group).  469 

  470 

Learning rate in the Train phase  471 

We first used a linear mixed effect model (LMEM) with Action-Outcome structure, Valence, and 472 

Block as the fixed effects and Participant as the random intercept effect to examine the change in 473 

𝛽 over the course of the task, as shown in Figure 2A. All interactions between the fixed effects 474 

were included. In R with lme4 package48, the model was written as: 475 

𝑙𝑚𝑒𝑟(𝛽~	𝐴𝑐𝑡𝑖𝑜𝑛-𝑂𝑢𝑡𝑐𝑜𝑚𝑒	 ∗ 	𝑉𝑎𝑙𝑒𝑛𝑐𝑒	 ∗ 𝐵𝑙𝑜𝑐𝑘 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)). In addition, to estimate 476 

the marginal slopes of the learning rate change over blocks with respect to Action-Outcome or 477 

Valence, we then developed a reduced model without interactions between Action-Outcome and 478 

Valence. The model was written as: 𝑙𝑚𝑒𝑟(𝛽~	(𝐴𝑐𝑡𝑖𝑜𝑛-𝑂𝑢𝑡𝑐𝑜𝑚𝑒 + 	𝑉𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 	𝐵𝑙𝑜𝑐𝑘 +479 

(1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)).  480 

Then, to examine the overall change in learning rate across the task, the change in 𝛽 from Baseline 481 

(Δ𝛽) was calculated for each block and then averaged across blocks for each participant and fit 482 

with the following model:	𝑙𝑚(∆𝛽~	𝐴𝑐𝑡𝑖𝑜𝑛-𝑂𝑢𝑡𝑐𝑜𝑚𝑒	 ∗ 	𝑉𝑎𝑙𝑒𝑛𝑐𝑒). Note that because one data 483 

point was obtained for each participant, no random effects were included in this model.  484 

Block total score performance 485 

To evaluate whether score performance improved, we calculated the total score for each block 486 

including Baseline where the score was calculated in the same manner without being presented 487 

to the participants, as shown in Figure 2C. Then, the change from Baseline was calculated and 488 

averaged across blocks for each participant. The change for each group was analyzed by one-489 

T h-
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sample Wilcoxon signed-rank test with a hypothetical mean of 0 (n = 10/group). 490 

Learning rate in the Generalization phase 491 

The change in learning rate Δ𝛽 in the Generalization phase was analyzed similarly to that in the 492 

Train phase. Again, individual mean change from Baseline across blocks was calculated by 493 

subtracting the Baseline average 𝛽 across Sequence from 𝛽 in the subsequent blocks. Then, Δ𝛽 494 

was analyzed with a LMEM, with Action-Outcome structure, Sequence, and their interaction, as 495 

fixed effects and Participant as random effect intercepts: 𝑙𝑚𝑒𝑟(∆𝛽~	𝐴𝑐𝑡𝑖𝑜𝑛-𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ∗496 

	𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)). Note that Valence was removed from the model based on the 497 

analysis of the change in 𝛽 in the Train phase, which failed to show its significant effect. 498 

In addition, to examine time-dependent changes within the Generalization phase more closely, 499 

the data were separated into the first and second half of the phase. To examine if the change in 500 

each half of the Generalization phase reflected the change in the Train phase, a Pearson correlation 501 

analysis was then performed on the changes between the Train and the first/second half of 502 

Generalization phases. Finally, Δ𝛽 from each half were analyzed with a linear model with Action-503 

Outcome as the only factor.  504 

Statistical package, coding, and validation of linearity 505 

All data processing and statistical analyses were performed in R version 3.5.1 using the lm, lme448,  506 

lmerTest49, and emmeans50 packages. For the linear model analyses, effect coding was used to 507 

represent the categorical variables (i.e., Action-Outcome and Valence), except in estimation of 508 

marginal slopes where dummy coding was used, and the numerical variables (i.e., Block and 509 

Sequence) were represented in z-score (i.e., centered and normalized). Lrn and Rwd were set as 510 

reference in coding (i.e., negative value in effect coding and zero in dummy coding). The 511 
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assumption of linearity was validated by (1) confirming by log-likelihood ratio test on BIC that a 512 

model that treats numerical variables as categorical does not produce significantly better fit than 513 

a model that treats them as continuous, and (2) confirming the normality of residuals by Shapiro-514 

Wilk test.   515 

 516 
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