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Abstract

A classic problem in computational biology is the identi�cation of altered subnetworks: subnetworks
of an interaction network that contain genes/proteins that are di�erentially expressed, highly mutated,
or otherwise aberrant compared to other genes/proteins. Numerous methods have been developed to
solve this problem under various assumptions, but the statistical properties of these methods are o�en
unknown. For example, some widely-used methods are reported to output very large subnetworks
that are di�cult to interpret biologically. In this work, we formulate the identi�cation of altered
subnetworks as the problem of estimating the parameters of a class of probability distributions which
we call the Altered Subset Distribution (ASD). We derive a connection between a popular method,
jActiveModules, and the maximum likelihood estimator (MLE) of the ASD. We show that the MLE is
statistically biased, explaining the large subnetworks output by jActiveModules. We introduce NetMix,
an algorithm that uses Gaussian mixture models to obtain less biased estimates of the parameters of the
ASD. We demonstrate that NetMix outperforms existing methods in identifying altered subnetworks on
both simulated and real data, including the identi�cation of di�erentially expressed genes from both
microarray and RNA-seq experiments and the identi�cation of cancer driver genes in somatic mutation
data.
Availability: NetMix is available online at h�ps://github.com/raphael-group/netmix.
Contact: braphael@princeton.edu

1 Introduction

A standard paradigm in computational biology is to use interaction networks as prior knowledge in the
analysis of high-throughput ’omics data, with applications in protein function prediction [79, 73, 65, 25, 18],
gene expression [32, 91, 16, 48, 27], germline variants [55, 12, 56, 43, 45], somatic variants in cancer
[66, 87, 57, 84, 64, 42], and other data [39, 10, 20, 89, 35, 77, 13, 60]. One classic approach is to identify
active, or altered, subnetworks of an interaction network that contain outlier measurements. �e altered
subnetwork problem takes as input: (1) an interaction network whose nodes are biological entities (e.g.,
genes or proteins) and whose edges represent biological interactions (e.g., physical or genetic interactions,
co-expression, etc.); and (2) a measurement or score for each node. �e goal is to �nd high-scoring
subnetworks that correspond to functionally related or correlated alterations. �is problem was introduced
in [48] for gene expression analysis, where gene scores were derived from p-values of di�erential expression.
[48] developed the jActiveModules algorithm to solve this problem and identify altered subnetworks of
di�erentially expressed genes. Subsequently, [27] introduced heinz as “the �rst approach that really tackles
and solves the original problem raised by [48] to optimality.” jActiveModules and heinz have become
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widely-used tools with diverse applications; a few recent examples include mass-spectrometry proteomics
[51, 58], damaging de novo mutations in schizophrenia and other neurological disorders [36, 17], and
single-cell RNA-seq [37, 85, 52].

In the past two decades, many algorithms have been developed to identify altered subnetworks in
biological data (reviewed in [26, 20, 63, 64]). Each publication describing a new algorithm demonstrates
the performance of their algorithm on speci�c biological datasets, and many of these publications also
benchmark their algorithm against existing algorithms on real and/or simulated data. However, few of these
publications prove theoretical guarantees for their algorithm’s performance on a well-de�ned generative
model of the data. �us, the true performance of these algorithms is o�en unknown. Indeed, recent
benchmarking studies (e.g., [40, 9]) of several widely used network algorithms – including jActiveModules
and heinz – show considerate disagreement between subnetworks identi�ed by di�erent methods on the
same biological datasets. Moreover, these benchmarking studies (and many others) do not compare network
algorithms against single-gene tests that do not use the network; thus, the tacit assumption that interaction
networks always improve gene prioritization is o�en not tested.

Separately, many publications in the statistics and machine learning literature investigate the problem
of detecting whether or not a network contains an anomalous subnetwork, or a network anomaly, e.g.,
[6, 4, 1, 3, 83, 82, 81, 80, 5]. �ese papers describe speci�c generative models of network anomalies and use
a rigorous hypothesis-testing framework to prove asymptotic results regarding the conditions under which
it is possible to detect a network anomaly. Importantly, these papers also provide theoretical guarantees
about conditions under which a network contributes to anomaly detection. However, the network anomaly
literature does not speci�cally address the altered subnetwork problem studied in computational biology,
with three key di�erences. First, the detection problem of deciding whether or not an altered subnetwork
exists is not the same as the estimation problem of identifying the nodes in an altered subnetwork. Second,
biological networks have a �nite size, and it is unclear what guarantees the asymptotic results provide for
�nite-size networks. Finally, the topological constraints on network anomalies are di�erent from those
considered in computational biology.

In this paper, we aim to bridge the gap between the theoretical guarantees in the network anomaly
literature and the practical problem of identifying altered subnetworks in biological data. We provide a
rigorous formulation of the Altered Subnetwork Problem, the problem that jActiveModules [48], heinz [27],
and other methods aim to solve. Our formulation of the Altered Subnetwork Problem is inspired by the
generative model used in the network anomaly literature, but requires that the altered subnetwork is a
connected subnetwork, a constraint motivated by the topology of signaling pathways [11, 50] and by the
seminal works of [48] and [27].

We show that the Altered Subnetwork Problem is equivalent to estimating the parameters of a distribu-
tion which we de�ne as the Altered Subset Distribution (ASD). We prove that the jActiveModules problem
[48] is equivalent to �nding a maximum likelihood estimator (MLE) of the parameters of the ASD for
connected subgraphs. At the same time, we demonstrate that if (1) the size of the altered subnetwork
is moderately small and (2) the scores of nodes inside and outside of the altered subnetwork are not
well-separated, then the MLE is a biased estimator of the size of the altered subnetwork. �is statistical
bias provides a rigorous explanation for the large subnetworks produced by jActiveModules [48]. We also
show that the size of the altered subnetworks identi�ed by heinz [27] are biased for most choices of its
user-de�ned parameter.

We introduce a new algorithm, NetMix, that combines a Gaussian mixture model and a combinatorial
optimization algorithm to identify altered subnetworks. We show that NetMix is a reduced-bias estimator of
the size of the altered subnetwork. We demonstrate that NetMix outperforms other methods for identifying
altered subnetworks on simulated data, gene expression data, and somatic mutation data.
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Figure 1: Altered Subnetwork Problem. Measurements, or scores, X from a high-throughput experi-
ment are drawn from one of two distributions: genes/proteins in an altered subnetwork A of an interaction
network G “ pV,Eq have scores drawn from an altered distribution Npµ, 1q with µ ą 0, while genes/pro-
teins not in A have scores drawn from a background distribution Np0, 1q. �e di�culty in identifying A
depends on the separation µ between the distributions and the size |A| of the altered subnetwork.

2 Altered Subnetworks, Altered Subsets, and Maximum Likelihood Es-
timation

2.1 Altered Subnetwork Problem

LetG “ pV,Eq be a biological interaction network with a measurement, or score, Xv for each vertex v P V .
We assume that there is a connected subnetwork A in G, the altered subnetwork, whose scores are derived
from a di�erent distribution than the scores of the vertices not in A (Figure 1). �e goal of the Altered
Subnetwork Problem is to �nd A. �e problem is de�ned formally as follows.

Altered Subnetwork Problem (ASP). Let G “ pV,Eq be a graph with vertex scores X “ pXvqvPV , and
let A Ď V be a connected subgraph of G. Suppose that

Xv
i.i.d.
„

#

DA, if v P A,
DB, if v P V zA,

(1)

where DA is the altered distribution and DB is the background distribution. Given G and X, �nd A.

Note that the ASP assumes that the network G has a single altered subnetwork A. When the network
has multiple altered subnetworks, one can recursively solve the ASP to identify more than one altered
subnetwork.

�e seminal algorithm for solving the ASP is jActiveModules [48]. jActiveModules takes as input a
p-value pv for each vertex v; e.g., a p-value of di�erential gene expression. Under the null hypothesis, the
p-values pv across genes are distributed according to the uniform distribution Up0, 1q. jActiveModules
transforms the p-values into scoresXv “ Φ´1p1´pvq, where Φ is the CDF of a standard normal distribution.
�us, jActiveModules solves the ASP with background distribution DB “ Np0, 1q. jActiveModules aims to
�nd a connected subgraph Â that maximizes1 ΓpSq “ 1?

|S|

ř

vPS Xv , i.e.,

Â “ argmax
connected SĎV

ΓpSq “ argmax
connected SĎV

1
a

|S|

ÿ

vPS

Xv. (2)

1 jActiveModules actually maximizes ΓnormpSq “ pΓpSq ´ µ|S|q{σ|S|, a z-score normalized version of ΓpSq, where µ|S| and
σ|S| are the mean and standard deviation, respectively, of ΓpT q over all subsets T Ď V of size |S|. We show in the supplement that
maximizing ΓnormpSq is equivalent to maximizing the unnormalized ΓpSq when the data is generated from normal distributions.
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�e presentation of jActiveModules in [48] does not specify the altered distribution DA. However, in
Section 2.2, we argue that the choice of the objective function in (2) implicitly assumes that DA “ Npµ, 1q
for some parameter µ ą 0. �us, we de�ne the normally distributed ASP as follows.

Normally Distributed Altered Subnetwork Problem. Let G “ pV,Eq be a graph with vertex scores
X “ pXvqvPV , and let A Ď V be a connected subgraph of G. Suppose that for some µ ą 0,

Xv
i.i.d.
„

#

Npµ, 1q, if v P A,
Np0, 1q, if v P V zA.

(3)

Given G and X, �nd A.

�e Normally Distributed ASP has a sound statistical interpretation: if the p-values pv of the genes are
derived from an asymptotically normal test statistic, as is o�en the case, then the transformed p-values
Xv “ Φ´1p1´pvq are distributed asNp0, 1q for genes satisfying the null hypothesis andNpµ, 1q for genes
satisfying the alternative hypothesis [46]. Normal distributions also have been used to model transformed
p-values from di�erential gene expression experiments [69, 61, 90].

More generally, the Normally Distributed Altered Subnetwork Problem is related to a larger class of
network anomaly problems, which have been studied extensively in the machine learning and statistics
literature [6, 4, 1, 3, 83, 82, 81, 80, 5]. To be�er understand the relationships between these problems
and the algorithms developed to solve them, we will describe a generalization of the Altered Subnetwork
Problem. We start by de�ning the following distribution, which generalizes the connected subnetworks in
the Normally Distributed Altered Subnetwork Problem to any family of altered subsets.

Normally Distributed Altered Subset Distribution (ASD). Let n ą 0 be a positive integer, let S be a
family of subsets of t1, . . . , nu, and let A P S . X “ pX1, . . . , Xnq is distributed according to the Normally
Distributed Altered Subset Distribution ASDSpA,µq provided

Xi
i.i.d.
„

#

Npµ, 1q, if i P A,
Np0, 1q, if i R A.

(4)

Here, µ ą 0 is the mean of the ASD and A is the altered subset of the ASD.

More generally, the Altered Subset Distribution can be de�ned for any background distribution DB and
altered distribution DA. We will restrict ourselves to normal distributions in accordance with the Normally
Distributed Altered Subnetwork Problem, and we will subsequently assume normal distributions in both
the Altered Subset Distribution and the Altered Subnetwork Problem.

�e distribution in the Altered Subnetwork Problem is the ASDSpA,µq, where the family S of subsets
are connected subgraphs of the network G. In this terminology, the Altered Subnetwork Problem is
the problem of estimating the parameters A and µ of the Altered Subset Distribution given data X „

ASDSpA,µq and knowledge of the parameter space S of altered subnetworks A. �us, we generalize the
Altered Subnetwork Problem to the ASD Estimation Problem, de�ned as follows.

ASD Estimation Problem. Let X “ pX1, . . . , Xnq „ ASDSpA,µq. GivenX and S , �nd A and µ.

�e ASD Estimation Problem is a general problem of estimating the parameters of a structured alternative
distribution. Di�erent choices of S for the ASD Estimation Problem yield a number of interesting problems,
some of which have been previously studied.

• S “ Pn, the power set of all subsets of t1, . . . , nu. We call the distribution ASDPnpA,µq the
unstructured ASD.
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• S “ CG, the set of all connected subgraphs of a graph G “ pV,Eq. We call ASDCGpA,µq the
connected ASD. �e connected ASD Estimation Problem is equivalent to the Altered Subnetwork
Problem described above.

• S “ DGpρq, the set of all subgraphs of a graphG “ pV,Eq with edge densityě ρ. [38, 88, 7] identify
altered subnetworks with high edge density, and [2] identi�es altered subnetworks with edge density
ρ “ 1, i.e., cliques.

• S “ NG “ tN pvq : v P V u, the set of all �rst-order network neighborhoods of a graph G “ pV,Eq.
[15, 44] use �rst-order network neighborhoods to prioritize cancer genes.

• S Ă Pn, a family of subsets. Typically, |S| ! |Pn| and S is not de�ned in terms of a graph. A classic
example is gene set analysis; see [47] for a review.

2.2 Bias in Maximum Likelihood Estimation of the ASD

One reasonable approach for solving the ASD Estimation Problem is to compute a maximum likelihood
estimator (MLE) for the parameters of the ASD. We derive the MLE below and show that it has undesirable
statistical properties. All proofs are in the supplement.

�eorem 1. Let X „ ASDSpA,µq. �e maximum likelihood estimators (MLEs) ÂASD and µ̂ASD of A and µ,
respectively, are

ÂASD “ argmax
SPS

ΓpSq “ argmax
SPS

1
a

|S|

ÿ

vPS

Xv and µ̂ASD “
1

|ÂASD|

ÿ

vPÂASD

Xv. (5)

�e maximization of Γ over S in (5) is a version of the scan statistic, a commonly used statistic to study
point processes on lines and rectangles under various distributions [53, 34]. Comparing (5) and (2), we see
that jActiveModules [48] computes the scan statistic over the family S “ CG of connected subgraphs of the
graph G. �us, although jActiveModules [48] neither speci�es the anomalous distribution DA nor provides
a statistical justi�cation for their subnetwork scoring function, �eorem 1 above shows that jActiveModules
implicitly assumes that DA is a normal distribution, and that jActiveModules aims to solve the Altered
Subnetwork Problem by �nding the MLE ÂASD.

Despite this insight that jActiveModules computes the MLE, it has been observed that jActiveModules
o�en identi�es large subnetworks. [67] notes that the subnetworks identi�ed by jActiveModules are
large and “hard to interpret biologically”. �ey a�ribute the tendency of jActiveModules to identify large
subnetworks to the fact that a graph typically has more large subnetworks than small ones. While this
observation about the relative numbers of subnetworks of di�erent sizes is correct, we argue that this
tendency of jActiveModules to identify large subnetworks is due to a more fundamental reason: the MLE
ÂASD is a biased estimator of A.

First, we recall the de�nitions of bias and consistency for an estimator θ̂ of a parameter θ.

De�nition 1. Let θ̂ “ θ̂pXq be an estimator of a parameter θ given observed data X “ pX1, . . . , Xnq. (a)
�e bias in the estimator θ̂ of θ is Biasθpθ̂q “ Erθ̂s´θ. We say that θ̂ is a biased estimator of θ if Biasθpθ̂q ‰ 0,
and is an unbiased estimator of θ otherwise. (b) We say that θ̂ is a consistent estimator of θ if θ̂ p

Ñ θ, where
p
Ñ denotes convergence in probability as nÑ8, and is an inconsistent estimator of θ otherwise.

When it is clear from context, we omit the subscript θ and write Biaspθ̂q for the bias of estimator θ̂.
LetX „ ASDPnpA,µq be distributed according to the unstructured ASD. We observe that the estimators

|ÂASD|{n and µ̂ASD are both biased and inconsistent when both |A|{n and µ are moderately small (Figure
2). We summarize these observations in the following conjecture.
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Figure 2: Scores X „ ASDPnpA,µq are distributed according to the unstructured ASD. (A) Biasp|ÂASD|{nq
in the maximum likelihood estimate of |A|{n as a function of the mean µ and altered subset size |A|{n for
n “ 104. (B) Biasp|ÂASD|{nq for n “ 104 and several values of |A|{n. Do�ed lines indicate �rst and third
quartiles in the estimate of the bias. (C) Biasp|ÂASD|{nq as a function of n for µ “ 3 and for several values
of |A|{n.

Conjecture. Let X “ pX1, . . . , Xnq „ ASDPnpA,µq. �en there exist µ0 ą 0 and β ą 0 such that, if
µ ă µ0 and |A|{n ă β, then |ÂASD|{n and µ̂ASD are biased and inconsistent estimators of |A|{n and µ,
respectively.

Note that there are many examples in the literature of biased MLEs; e.g., the MLE for the variance of
a (univariate) normal distribution or the MLE for the inverse of the mean of a Poisson distribution [30].
However, examples of inconsistent MLEs are somewhat rare [29].

Although we do not have a proof of the above conjecture, we prove the following results that partially
explain the bias and inconsistency of the estimators |AASD| and µASD. For the bias, we prove the following.

�eorem 2. Let X “ pX1, . . . , Xnq „ ASDPnpA,µq with A “ H. �en |ÂASD| “ cn for su�ciently large
n and with high probability, where 0 ă c ă 0.35 is independent of n.

Empirically, we observe c « 0.27, i.e., ÂASD contains more than a quarter of the scores (Figure 2).
�is closely aligns with the observation in [67] that jActiveModules reports subnetworks that contain
approximately 29% of all nodes in the graph. Based on �eorem 2, one may suspect that |ÂASD| « cn when
µ or |A|{n is su�ciently small, providing some intuition for why |ÂASD|{n is biased. For inconsistency, we
prove that the bias is independent of n.

�eorem 3. Let X “ pX1, . . . , Xnq „ ASDPnpA,µq, where |A| “ θpnq. For su�ciently large n,
Biasp|ÂASD|{nq and Biaspµ̂ASDq are independent of n.

3 �e NetMix Algorithm

Following the observation that the maximum likelihood estimators of the distribution ASDPnpA,µq are
biased, we aim to �nd a less biased estimator by explicitly modeling the distribution of the scores X. In
this section, we derive a new algorithm, NetMix, that solves the Altered Subnetwork Problem by ��ing a
Gaussian mixture model (GMM) to X.
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|Â

A
S
D
|/n

) |A|/n

0

0.01

0.05

0.15

0.25

102 103 104 105 106

n

°0.1

0.0

0.1

0.2

0.3

B
ia

s(
|Â
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Figure 3: Scores X „ ASDPnpA,µq are distributed according to the unstructured ASD, and parameters
α̂GMM and µ̂GMM are obtained by the EM algorithm. (A) Biaspα̂GMMq as a function of the mean µ and
altered subnetwork size |A|{n for n “ 104. Compare with Figure 2A. (B) Biaspα̂GMMq and Biasp|ÂASD|{nq
as functions of the mean µ for |A|{n “ 0.05 and n “ 104. (C) Biaspα̂GMMq as a function of n for mean
µ “ 3 and several values of |A|{n. Compare with Figure 2C.

3.1 Gaussian Mixture Model

We start by recalling the de�nition of a GMM.

Gaussian Mixture Model.. Let µ ą 0 and α P p0, 1q. X is distributed according to the Gaussian mixture
model GMMpα, µq with parameters α and µ provided

X „ αNpµ, 1q ` p1´ αqNp0, 1q. (6)

An alternate interpretation of the GMM is to draw a latent variable Z „ Bernoullipαq and select
X „ Npµ, 1q if Z “ 1, and X „ Np0, 1q if Z “ 0.

Given data X “ pX1, . . . , Xnq, we de�ne µ̂GMM and α̂GMM to be the MLEs for µ and α, respectively,
obtained by ��ing a GMM to X. In practice, µ̂GMM and α̂GMM are obtained by the EM algorithm, which
is known to converge to the MLEs as the number of samples goes to in�nity [92, 23]. Furthermore, if
Xi

i.i.d.
„ GMMpµ, αq are distributed according to the GMM with α ‰ 0, then µ̂GMM and α̂GMM are consistent

(and therefore asymptotically unbiased) estimators of µ and α, respectively [14].
Analogously, by ��ing a GMM to data X „ ASDPnpA,µq from the unstructured ASD, we observe

that α̂GMM is a less biased estimator of |A|{n than |ÂASD|{n (Figure 3A,B). We also observe that α̂GMM is a
consistent estimator of |A|{n (Figure 3C). We summarize our �ndings in the following conjecture.

Conjecture. Let X „ ASDPnpA,µq with |A| ą 0, and let ÂASD be the MLE of A as de�ned in (5).
Let α̂GMM and µ̂GMM be the MLEs of α and µ obtained by ��ing a GMM to X. �en Bias|A|{npα̂GMMq ă

Bias|A|{np|ÂASD|{nq. Moreover, α̂GMM and µ̂GMM are consistent estimators of |A|{n and µ, respectively.

Although we do not have a proof of the above conjecture, a partial justi�cation is the following relation-
ship between the unstructured ASD and the GMM distribution. Let X “ pX1, . . . , Xnq be drawn from a
mixture of unstructured ASDs over all possible anomalous setsA of size k, i.e., X „ B

ř

|A|“k ASDPnpA,µq,

where B “ 1

pnkq
is a normalizing constant. Let Y1, . . . , Yn

i.i.d.
„ GMMpα, µq be independent samples from

the GMM for µ ą 0 and α “ k
n with corresponding latent variables Z1, . . . , Zn. �en, the joint distribution

of the GMM samples Y “ pY1, . . . , Ynq conditioned on
řn
i“1 Zi “ k is equal to the distribution of X:

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2020. ; https://doi.org/10.1101/2020.01.18.911438doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911438
http://creativecommons.org/licenses/by-nc-nd/4.0/


X
d
“

˜

Y

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Zi “ k

¸

. (7)

3.2 NetMix Algorithm

We derive an algorithm, NetMix, that uses the maximum likelihood estimators (MLEs) µ̂GMM and α̂GMM
from the GMM to solve the Altered Subnetwork Problem. Note that the GMM is not identical to ASD,
the distribution that generated the data. Despite this di�erence in distributions, the above conjecture
provides justi�cation that the GMM will yield less biased estimators of A and µ than the MLEs of the ASD
distribution.

Given a graph G “ pV,Eq and scores X “ pXvqvPV , NetMix �rst computes the responsibility rv “
Pr pv P A |Xvq, or the probability that v P A, for each vertex v P V . �e responsibilities rv are computed
from the GMM MLEs µ̂GMM and α̂GMM (which are estimated by the EM algorithm [24]) according to the
formula

r̂v “
α̂GMMφpXv ´ µ̂GMMq

α̂GMMφpXv ´ µ̂GMMq ` p1´ α̂GMMqφpXvq
, (8)

where φ is the PDF of the standard normal distribution.
Next, NetMix aims to �nd a connected subgraph C of size |C| « nα that maximizes

ř

vPC rv . In order
to �nd such a subgraph, NetMix assigns a weight wpvq “ r̂v ´ τ to each vertex v, where τ is chosen so
that approximately nα̂GMM nodes have non-negative weights. NetMix then computes the maximum weight
connected subgraph (MWCS) ÂNetMix in G by adapting the integer linear program in [27]. �e use of τ is
motivated by the observation that, if α̂GMM « α, then we expect |ÂNetMix| « nα̂GMM « nα “ |A|.

We formally describe the NetMix algorithm for solving the Altered Subnetwork Problem below.

NetMix algorithm. Given a network G “ pV,Eq and vertex scores X “ pXvqvPV ,
1. Compute α̂GMM and µ̂GMM, the MLEs of α and µ, by ��ing a GMM to X using expectation

maximization (EM).

2. Compute the estimated responsibilities r̂v for each vertex v using (8).

3. Compute τ such that |tv P V : r̂v ą τu| “ rnα̂GMMs, where r¨s is the ceiling function.

4. Find the connected subgraph ÂNetMix de�ned by

ÂNetMix “ argmax
connected CĎV

ÿ

vPC

pr̂v ´ τq (9)

using integer linear programming.

NetMix bears some similarities to heinz [27], another algorithm to identify altered subnetworks. How-
ever, there are two important di�erences. First, heinz does not solve the Altered Subnetwork Problem
de�ned in the previous section. Instead, heinz models the vertex scores (assumed to be p-values) with a
beta-uniform mixture (BUM) distribution. �e motivation for the BUM is based on an empirical goodness-
of-�t in [72]; however, later work by the same author [71] observes that the BUM tends to underestimate
the number of p-values drawn from the altered distribution. Second, heinz requires that the user specify a
False Discovery Rate (FDR) and shi�s the p-values according to this FDR. We show below that nearly all
choices of the FDR lead to a biased estimate of |A|. Moreover, the manually selected FDR allows users to
selectively tune the value of this parameter to in�uence which genes are in the inferred altered subnetwork,
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analogous to “p-hacking” [49, 68, 41]. Indeed, recently published analyses using heinz [17, 40, 52] use
a wide range of FDR values. See the supplement for more details on the di�erences between heinz and
NetMix. Despite these limitations, the ILP given in heinz to solve the MWCS problem is very useful for
implementing NetMix and for computing the scan statistic (2) used in jActiveModules (see below).

4 Results

We compared NetMix to jActiveModules [48] and heinz [27] on simulated instances of the Altered Subnet-
work Problem and on real datasets, including di�erential gene expression experiments from the Expression
Atlas [70] and somatic mutations in cancer. jActiveModules is accessible only through Cytoscape [78, 19]
and not a command-line interface, making it di�cult to run on large number of a datasets. �us, we
implemented jActiveModules*, which computes the scan statistic (5) by adapting the integer linear program
in heinz2. jActiveModules* output the global optimum of the scan statistic, while jActiveModules relies on
heuristics (simulated annealing and greedy search) to �nd a local optimum.

4.1 Simulated Data

We compared NetMix, jActiveModules*, and heinz on simulated instances of the Altered Subnetwork
Problem using the HINT+HI interaction network [57], a combination of binary and co-complex interactions
in HINT [22] with high-throughput derived interactions from the HI network [76] as the graph G. For each
instance, we randomly selected a connected subgraph A Ď V with size |A| “ 0.05n using the random
walk method of [59], and drew a sample X „ ASDCGpA,µq. We ran each method on X and G to obtain
an estimate Â of the altered subnetwork A. We ran heinz with three di�erent choices of the FDR parameter
(FDR “ 0.001, FDR “ 0.1, and FDR “ 0.5) to re�ect the variety of FDRs used in practice.

We found that NetMix output subnetworks whose size |ÂNetMix| was very close to the true size across
all values of µ in the simulations (Figure 4A). In contrast, jActiveModules* output subnetworks that were
much larger than the implanted subnetwork for µ ă 5. �is behavior is consistent with our conjectures
above about the large bias in the maximum likelihood estimator ÂASD for the unstructured ASD. Note that
µ ą 5 corresponds to a large separation between the background and alternative distributions, and the
network is not needed to separate these two distributions.

We also quanti�ed the overlap between the true altered subnetwork A and the subnetwork Â output
by each method using the F -measure, �nding that NetMix outperforms other methods across the full range
of µ (Figure 4B). heinz requires the user to select an FDR value, and we �nd that the size of the output
subnetwork and the F -measure varies considerably for di�erent FDR (Figure 4A, 4B). When µ was small, a
high FDR value (FDR “ 0.5) yielded the best performance in terms of F -measure. However, when µ was
large, a low FDR value (FDR “ 0.001) gave be�er performance. While there are FDR values where the
performance of heinz is similar to NetMix, the user does not know what FDR value to select for any given
input, as the values of µ and the size |A| of the altered subnetwork are unknown.

�e bias in |Â|{n observed using jActiveModules* with the interaction network (Figure 4A) was similar
to the bias for the unstructured ASD (Figure 2A). �us, we also evaluated how much bene�t the network
provided for each method. For small µ, we found that NetMix had a small but noticeable gain in performance
when using the network; in contrast, other methods had nearly the same performance with or without the
network (Figure 4C with further details in the supplement). �ese results emphasize the importance of
evaluating network methods on simulated data and demonstrating that a network method outperforms a

2�e scan statistic (2) is the maximization of a non-linear objective function, but for �xed subnetwork size |S| the objective
function is linear. We computed the scan statistic by modifying the ILP in heinz [27] and running this ILP over all possible
subnetwork sizes.
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heinz (FDR = 0.5)Figure 4: Comparison of altered subnetwork identi�cation methods on simulated instances of the Altered
Subnetwork Problem using the HINT+HI interaction network with n “ 15074 nodes, and where the altered
subnetwork A has size |A| “ 0.05n. [Dashed vertical line (µ “ 1) represents the smallest µ such that one
can detect whether G contains an altered subnetwork3]. (A) Size |Â|{n of identi�ed altered subnetwork Â
as a function of mean µ. (B) F -measure for Â as a function of µ. (C) F -measure for Â at µ “ 1, comparing
performance with the network (le� series for each method) and without the network (right series for each
method).

single-gene test; neither of these were done in the jActiveModules [48] and heinz [27] papers, nor are they
common in many other papers on biological network analysis.

4.2 Di�erential Gene Expression Subnetworks

We compared NetMix, jActiveModules*, and heinz on gene expression data from the Expression Atlas
[70]. We analyzed 945 di�erential expression experiments including 292 RNA-seq experiments and 653
microarray experiments. For 84% of these experiments, the GMM used by NetMix provided a be�er �t to
the p-value distributions than the beta-uniform mixture (BUM) [72] used by heinz (see the supplement for
more details). In addition, the GMM provided a be�er �t in 83{85 experiments where the null proportion
(fraction of genes not di�erentially expressed) estimated by the GMM and BUM di�ered by ě 0.25. In all
85 of these experiments, the BUM estimated a higher null proportion, consistent with the report in [71]
that the BUM tends to overestimate the null proportion.

As many experiments had a small null proportion (i.e., most genes in the experiment were di�erentially
expressed), we restricted our analysis to the 157 experiments from the Expression Atlas with a null
proportion ě 0.8 as estimated by the GMM. We ran NetMix, jActiveModules*, and heinz on these 157
experiments with the HINT+HI network. For heinz, we used three FDR values: FDR “ 0.1, FDR “ 0.001,
and the FDR value such that |ÂNetMix| genes have a positive weight in the heinz scoring. �ese choices
demonstrate how users might “p-hack” the FDR value to achieve desirable results. We also compared to a
method that ignores network topology, selecting the |ÂNetMix| genes with the lowest p-values; we call this
method “top p-values”. See the supplement for speci�c details on these methods.

Both NetMix and heinz identi�ed subnetworks that were signi�cantly smaller than jActiveModules*
(Figure 5A), which is consistent with previous observations [67] that jActiveModules estimates overly large
subnetworks. At the same time, NetMix identi�ed subnetworks with signi�cant overlap (FDR ď 0.01)
with more biological process GO terms than heinz (p “ 3.3 ¨ 10´12, t-test; Figure 5B) or top p-values

3Formally, µ is the smallest mean such that the hypotheses H0 : X „ ASDCGpH, 0q and H1 : X „ ASDCGpA,µq are
asymptotically distinguishable. See [83] for details.
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Figure 5: (A) Fraction of genes in the HINT+HI interaction network that are in the subnetwork identi�ed
by each method. ˚ : p ď 0.01, ˚˚ : p ď 0.001, ˚ ˚ ˚ : p ď 10´4 indicate signi�cant p-values in paired
t-test between NetMix and other methods. (B) Number of enriched GO biological process terms for altered
subsets identi�ed by each method. (C) F -measure of the k most enriched GO terms.

(p ă 2.2 ¨ 10´16, t-test; Figure 5B). We also found that subnetworks identi�ed by NetMix had greater
overlap (as quanti�ed by F -measure) with genes in the top k GO terms (Figure 5C). �ese results suggest
that NetMix identi�es subnetworks that are more relevant to di�erential expression experiments than other
methods.

We examined the experiment E-GEOD-11199 in more detail. �is experiment compared Mtb-stimulated
and unstimulated macrophages [86]. NetMix identi�ed a subnetwork containing 706 genes, half the size
of the jActiveModules* subnetwork containing 1450 genes. Both of these subnetworks contained 37 of
the 42 genes whose di�erential expression was experimentally validated by RT-PCR [86]. Although the
NetMix subnetwork was less than half the size of the jActiveModules* subnetwork, the NetMix subnetwork
overlapped more GO terms (445 vs. 179). In contrast, heinz (using FDR “ 0.27) identi�ed a subnetwork of
382 genes containing only 25 RT-PCR validated genes. Finally, the 692 genes with the smallest p-values
include only 7 validated genes. �ese results show that the NetMix subnetwork contains many biologically
relevant genes, including most of the RT-PCR validated genes, without being overly large.

4.3 Somatic Mutations In Cancer

We compared the performance of NetMix, jActiveModules* [4, 1], jActiveModules [48], heinz [27] and
Hierarchical HotNet [75] in identifying cancer driver genes, using the MutSig2CV driver p-values [54] from
the TCGA PanCanAtlas project [8]. We ran all methods on the HINT+HI interaction network described
above, as well as the iRefIndex 15.0 [74] and ReactomeFI 2016 [21, 28] interaction networks. See the
supplement for more details on the datasets.

We evaluated the quality of the subnetwork Â reported by each method by computing the overlap
with the list of cancer genes in the COSMIC Cancer Gene Census (CGC) [33, 31]. We found that Net-
Mix outperforms all other methods in F -measure across all interaction networks. For example, using
the HINT+HI network, NetMix achieved an F -measure of 0.277, compared to F -measures of 0.191 for
jActiveModules*, 0.216 for heinz (FDR “ 0.001), 0.264 for heinz (FDR “ 0.1), and 0.214 for Hierarchical
HotNet4. Both the NetMix and Hierarchical HotNet results were statistically signi�cant (p ă 0.01) on all 3

4�e jActiveModules greedy search algorithm failed to complete within 100 hours, while the jActiveModules simulated
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interaction networks according to permutation tests from [75]. �e modest F -measures for all methods are
not surprising; the genes in CGC have diverse alterations across cancer types and thus high recall is not
expected by this restricted analysis of single-nucleotide mutations in a subset of cancer types. Nevertheless,
the higher performance of NetMix on this task across all networks is encouraging. Further details of these
comparisons are in the supplement.

5 Discussion

In this paper, we revisit the classic problem of identifying altered subnetworks in high-throughput biological
data. We formalize the Altered Subnetwork Problem as the estimation of the parameters of the Altered
Subset Distribution (ASD). We show that the seminal algorithm for this problem, jActiveModules [48],
is equivalent to a maximum likelihood estimator (MLE) of the ASD. At the same time, we show that the
MLE is a biased estimator of the altered subnetwork, with especially large positive bias for small altered
subnetworks. �is bias explains previous reports that jActiveModules tends to output large subnetworks
[67].

We leverage these observations to design NetMix, a new algorithm for the Altered Subnetwork Problem.
We show that NetMix outperforms existing methods on simulated and real data. NetMix �ts a Gaussian
mixture model (GMM) to observed node scores and then �nds a maximum weighted connected subgraph
using node weights derived from the GMM. heinz [27], another widely used method for altered subnetwork
identi�cation, also derives node weights from a mixture model (a beta-uniform mixture of p-values) and
�nds a maximum weighted connected subgraph. However, heinz does not solve the Altered Subnetwork
Problem in a strict sense; rather, heinz requires users to choose a parameter (an FDR estimate for the mixture
�t) that implicitly constrains the size of the identi�ed subnetwork. �is user-de�ned parameter encourages
p-hacking [49, 68, 41], and we �nd that nearly all values of this parameter lead to biased estimates of the
size of the altered subnetwork.

We note a number of directions for future work. �e �rst is to generalize our theoretical contributions
to the identi�cation of multiple altered subnetworks, a situation which is common in biological applications
where multiple biological processes may be perturbed [62]. While it is straightforward to run NetMix
iteratively to identify multiple subnetworks – as jActiveModules does – a rigorous assessment of the
identi�cation of multiple altered subnetworks would be of interest. Second, our results on simulated
data (Section 4.1) show that altered subnetwork methods have only marginal gains over simpler methods
that rank vertices without information from network interactions. We hypothesize that this is because
connectivity is not a strong constraint for biological networks; indeed the biological interaction networks
that we use have both small diameter and small average shortest path between nodes (see the supplement for
speci�c statistics). Speci�cally, we suspect that most subsets of nodes are “close” to a connected subnetwork
in such biological networks, and thus the MLE of connected altered subnetworks has similar bias as the
MLE of the unstructured altered subset distribution. In contrast, for other network topologies like the line
graph, connectivity is a much stronger topological constraint (see the supplement for a brief comparison
of di�erent topologies). It would be useful to investigate this hypothesis and characterize the conditions
when networks provide bene�t for �nding altered subnetworks. In particular, other topological constraints
such as dense subgraphs [38, 7], cliques [2], and subgraphs resulting from heat di�usion and network
propagation processes [87, 88, 57, 20] have been used used to model altered subnetworks in biological data.
Generalizing the theoretical results in this paper to these other topological constraints may be helpful for
understanding the parameter regimes where these topological constraints provide signal for identi�cation
of altered subnetorks. Finally, we note that biological networks o�en have substantial ascertainment bias,
with more interactions annotated for well-studied genes [44, 76], and these well-studied genes in turn

annealing algorithm yielded an F -measure of 0.086.
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may also be more likely to have outlier measurements/scores. �us, any network method should carefully
quantify the regime where it outperforms straightforward approaches – e.g., methods based on ranking
nodes by gene scores or node degree – both on well-calibrated simulations and on real data.
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