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Abstract 
 

Large neuroimaging datasets, including information about structural (SC) and functional connectivity (FC), 
play an increasingly important role in clinical research, where they guide the design of algorithms for automated 
stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features (e.g., lack 
of concurrent DTI SC and resting-state fMRI FC measurements for many of the subjects). 

We propose here to address the missing connectivity features problem by introducing strategies based on 
computational whole-brain network modeling. Using the ADNI dataset for proof-of-concept, we demonstrate 
the feasibility of virtual data completion (i.e., inferring “virtual FC” from empirical SC or “virtual SC” from 
empirical FC), by using self-consistent mean-field network simulations and analytic approaches. Furthermore, 
we use similar procedures to perform dataset augmentation, i.e., complementing the original dataset with a 
large number of realistic surrogate connectivity matrices. We thus show that algorithms trained on virtual SCs 
and/or FCs can achieve performance in the unsupervised classification of control subjects and patients 
comparable to when trained on actual empirical data. Furthermore, the combination of empirical with virtual 
data allows algorithms to learn better how to extract information relevant for discrimination, resulting 
ultimately in superior classification performance. 
 
Introduction 
 

Despite decades of massive investment in Alzheimer’s disease (AD) research and the daunting literature on 
the topic, the partial and, sometimes contradictory nature of the reported results (World Alzheimer Report 
2018) still prevents a complete understanding of the factors governing the progression of the disease (Braak & 
Braak, 1991; Braak et al., 2006; Komarova & Thalhauser, 2011; Henstridge et al., 2019) or of the diversity of 
cognitive deficits observed in different subjects (Iacono et al., 2009; Mungas et al., 2010; Allen et al., 2016). In 
this context, datasets that compile rich and diverse genetic, biomolecular, cognitive, and neuroimaging 
(structural and functional) features for a large number of patients are playing an increasingly important role 
(Rathore et al., 2017; Iddi et al., 2019). Example applications include: the early diagnosis and prognosis by using 
MRI images (Dennis & Thompson, 2014; Chiesa et al., 2017; De Vos et al., 2018); the use of machine learning for 
automated patient classification (Cuingnet et al., 2011; Zhang et al., 2012; Moore et al., 2019) or prediction of 
the conversion from early stages to fully developed AD (Rombouts et al., 2005; Moradi et al., 2015; Casanova et 
al., 2018); the extraction of decision networks based on the combination of semantic knowledge bases and data 
mining of the literature (Sanchez et al., 2011; Kodamullil et al., 2015; Iyappan et al., 2016). 

Among the factors contributing to the performance of prediction and inference approaches in AD are not 
only the large size of datasets but also the multiplicity of features jointly available for each patient. Indeed, one 
can take advantage not only of the complementary information that different features could bring but also 
capitalize on possible synergies arising from their simultaneous knowledge (Wang et al., 2015; Zimmermann et 
al., 2016; Iddi et al., 2019). Unfortunately, even gold standard publicly available datasets in AD, such as the 
datasets released by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) consortium (Wyman et al., 2013; 
Beckett et al., 2015; Weiner et al., 2017), have severe limitations. Indeed, if they include neuroimaging features 
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of different types –structural DTI and functional MRI– these features are simultaneously available for only a 
substantial minority of the subjects in the dataset (i.e., the feature coverage is not uniform over the dataset). 
Furthermore, if the number of subjects included is relatively large (hundreds of subjects), it still is too small to 
qualify as “big data" properly. 

Here we propose a new solution aiming at relieving these problems of partially missing features and limited 
sample size. To do so, we build on the quickly maturating technology of mean-field whole-brain network 
modeling (see Deco et al., 2011 for review). Importantly, the use of whole-brain modeling for pragmatic 
applications is greatly facilitated by the development of dedicated neuroinformatic platforms –such as “The 
Virtual Brain” (TVB; Sanz-Leon et al., 2013, 2015; Woodman et al., 2014)– and personalized simulation pipelines 
(Schirner et al., 2015; Proix et al., 2016), with translational impact (Jirsa et al., 2017; Proix et al., 2017). 
Computational modeling provides a natural bridge between structural and functional connectivity, the latter 
emerging as the manifestation of underlying dynamical states, constrained but not entirely determined by the 
underlying anatomy (Ghosh et al., 2008; Kirst et al., 2016). Theoretical work has shown that average functional 
connectivity properties in the resting-state can be accounted for by the spontaneous collective activity of brain 
networks informed by empirical structural connectivity (SC) when the system is tuned to operate slightly below 
a critical point of instability (Deco et al., 2011, 2012). Based on this finding, simulations of a model constructed 
from empirical DTI connectomes and then tuned to a suitable slightly sub-critical dynamic working point are 
expected to provide a good rendering of resting-state functional connectivity (FC). It becomes thus possible to 
complete the missing information in a dataset about BOLD fMRI FC by running a TVB simulation in the right 
regime embedding the available empirical DTI SC (SC-to-FC completion). Analogously, mathematical formula 
(Galán, 2008; Saggio et al., 2016) or algorithmic procedures based on mean-field modeling steps (Gilson et al., 
2016; 2018) can be used to address the inverse problem of inferring SC from FC (FC-to-SC completion). In this 
work, we provide initial proofs-of-concept of data completion using TVB-technologies, using them to “fill gaps” 
in the ADNI neuroimaging dataset, generating the missing connectivity SC (or FC) connectivity matrices from the 
available FC (or SC) ones. 

Finally, both types of completion rely on algorithms, including stochastic elements. Therefore, running the 
FC-to-SC or SC-to-FC completion procedures multiple times yields different realistic surrogate connectomes. In 
this way, the completion procedure can be used to generate not just one, but as many as desired instances of 
artificially completed data (e.g. hundreds of virtual FCs associated with each given empirical SC). Schemes to 
artificially increase the size of a given sample by introducing surrogate copies of the original data, with a wide 
variety of “distortions” which preserve nevertheless the distinctive features of the initial objects are known in 
machine learning under the name of data augmentation (Yaeger et al., 1997; Taylor & Nitschke, 2018). In many 
situations, the generalization capabilities of machine learning algorithms for automated categorization can be 
enhanced by training them not on the original “true” dataset but augmented copies of it. While data 
augmentation cannot create additional information besides the one already carried by the original data, yet it 
can make it simpler for machine learning algorithms to detect and extract desired information, a task that would 
have been more difficult based on the empirical samples alone. We here extend our TVB-based strategies for 
data completion to connectomic data augmentation. We show then that actual empirical connectomic data can 
be categorized –e.g., by separating mild cognitive impairment (MCI) or AD patients from control– by machine 
learning algorithms trained uniquely on virtual data. Remarkably, we find that the use of completed and 
augmented dataset lead to performances comparable to algorithms trained on the original data themselves.  

To conclude, we provide systematic “recipes” for generating surrogate connectomic data via data-
constrained mean-field models. We show that the information that we can extract from computationally 
inferred connectivity matrices is largely equivalent to the one carried by the original empirical data. This opens 
the way to the design and sharing of veritable “virtual cohorts” data, ready for easier multi-centric federation 
and machine-learning applications in clinics. 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 
 
ADNI connectomic data have gaps 
 

In the framework of this study, we chose to focus on one of the first and most popular available datasets in 
AD research, including a substantial amount of structural and functional connectomic information, i.e. the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI is impressive for the 
variety of features it aimed at systematically gathering (Figure 1A). Importantly, based on the T1, DTI and resting-
state (rs) BOLD fMRI images available through the ADNI data-sets, state-of-the-art processing pipelines can be 
used to extract subject-specific Structural and resting-state Functional Connectomes, compiled into connectivity 
matrices adapted to the brain parcellation of choice (Figure 1B, see Materials and Methods for details). 

We had access to an empirical of 244 overall subjects (119 labeled as “MCI”, 51 as “AD”, in addition to 74 
control subjects, see Materials and Methods) for which MRI data had been gathered. We could extract an FC 
matrix for 168 subjects (starting from rsfMRI) and an SC matrix (starting from DTI) for 88 subjects. However, only 
for a minority of 12 subjects rsBOLD and DTI information were both available. In a majority of cases, either DTI 
or rsBOLD were missing (Figure 1C). This reduced number of “complete” subjects constitutes a serious challenge 
to attempts of automatedly categorize them through machine learning or inference approaches capitalizing on 
both SC and FC features simultaneously. As a matter of fact, the total numbers of AD- and MCI-labeled subjects 
in this complete subset decreased respectively to just 2 and 4, against 6 controls. In these conditions, the 
development of effective data completion strategies would be an important asset toward the development of 
classifier schemes exploiting FC/SC synergies. Therefore, approaches to “fill gaps” (completion) and, possibly, 
even artificially boosting sample size (augmentation) are veritably needed. 

 

Linking SC and resting-state FC via computational modeling 
 

As previously mentioned, FC and SC are related only indirectly through the rich non-linear dynamics 
supported by brain networks (Ghosh et al., 2008; Deco et al., 2011; Kirst et al., 2016). Mean-field modeling of 
large-scale brain networks has emerged initially as the key tool to predict the emergent dynamic patterns of 
resting-state FC, from spontaneous dynamics constrained by SC (Ghosh et al., 2008). It is thus natural to propose 
the use of model-based solutions to perform data-completion, which, in both the SC-to-FC and FC-to-SC 
directions, requires to capture the inter-relation between the two as mediated by dynamics. 

Large-scale mean-field brain network models are specified by: i) a parcellation of cortical and subcortical 
brain areas; ii) a co-registered input SC matrix in the same parcellation; iii) a forward solutions linking source 
and sensor space; iv) a neuronal mass model, describing the non-linear dynamics of the regions at each of the 
nodes of the SC matrix; v) a choice of a few global parameters (e.g. scale of strength of inter-regional connectivity 
or speed of signal propagation along fiber tracts); vi) an external input given to the different regions, that, in the 
simplest case, corresponds to simple white noise uncorrelated across each of the different sites and of 
homogeneous strength. The Virtual Brain enables the complete workflow from brain images to simulation (TVB; 
Sanz-Leon et al., 2013, 2015). Personalization is accomplished by the subject-specific structural skeleton –
ingredients (i) though (iv)–, which has been demonstrated to be predictive (Proix et al 2017; Melozzi et al 2019). 
Simulations of the model can be run to generate surrogate BOLD time-series of arbitrary length (see Materials 
and Methods for details) and the associated simulated resting-state FC, time-averaged (static FC) or even time-
resolved (FC dynamics or FCD, Hansen et al., 2015). The thus obtained simulated FC will depend on the chosen 
global parameters, setting the dynamic working point of the model. The model dynamics will eventually switch 
between alternative dynamical regimes when its global control parameters cross specific critical points. Tuning 
global parameters will thus uniquely determine, in which regime the model operates. Mean-field large scale 
models constrained by empirical SC tend to generate simulated resting-state FC that best matches empirical 
observations when the dynamic working point of the model lies in the proximity of a model’s critical point (Deco 
et al., 2011; Deco et al., 2013; Hansen et al., 2015).  

We here chose one of the simplest possible whole-brain network model designs, which emphasizes activity-
based network organization (as opposed to reorganization due to synchronization) and thus ignores inter-
regional propagation delays. This approach is frequently used in the literature (e.g., Deco et al., 2013; Hansen et 
al., 2015; Aerts et al., 2018) and has the advantage of avoiding the need for complex delay differential equation 
integration schemes (see Discussion for more details). Activation-based approaches adopt particularly simple 
neural mass models such as the reduced Wong-Wang model (Deco et al., 2013), in which the dynamics of an 
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isolated brain region is approximated by either one of two possible steady states, one “down state” at low firing 
rate and an “up state” at high firing rate, a feature initially meant to mimic bi-stability in working memory or 
decision making (Wong & Wang, 2006). By varying G the model will switch from a low-coupling regime, in which 
all regional activations are low to a high-coupling regime, in which all regional activations are high, passing 
through an intermediate range, in which both regimes can exist in a multistable manner and regions display 
spatially and temporally heterogeneous activations (a changing mix of high and low firing rates). The best fit 
between simulated and empirical FC occurs slightly before the critical rate instability, at which modes of activity 
with low firing rate disappear (Deco et al., 2013). 

 
As alternatives to the just described non-linear mean-field models (MFMs) of resting-state brain dynamics, 

simpler stochastic linear models (SLMs) have also been considered (Goñi et al., 2014; Messé et al., 2014; Saggio 
et al., 2016).  In these models, the activity of each region is modeled as a stochastic process (linear, in contrast 
to the non-linear neural mass dynamics of conventional MFMs), biased by the fluctuations of the other regions 
weighted by the SC connectome (see Materials and Methods). SLMs have also two different regimes. In the first 
regime, the activities of all regions converge to a fixed-point of constant mean fluctuating activities, while, in the 
second, regional activities diverge with exponential growth. Once again, the best fit between the simulated and 
the empirical resting-state FCs is observed when tuning the model parameters slightly below the critical point 
(Hansen et al., 2015; Saggio et al., 2016). 

 
MFMs and SLMs provide thus two natural ways to generate simulated resting-state FCs, depending on the 

chosen dynamic regime, starting from a selected SC. Strategies have also been devised to approximately solve 
the inverse problem of determining which SC matrix should be used as input to a model in order to give rise to 
a simulated FC matching a specific, pre-determined target matrix. For the SLM, a simple analytic solution to the 
inverse problem exists (Saggio et al., 2016). For MFMs, inverse problems have not been studied with the same 
level of rigor, but algorithms have been introduced that iteratively adjust the weights of the SC matrix currently 
embedded in the model to improve the fit between simulated and target FCs (Gilson et al., 2016; 2018). We will 
show later that these “effective connectivity” algorithms have the potential to cope with the actual problem of 
MFM inversion. 

 
 
Model-driven data completion 
 

Figure 2 summarizes many of the modeling operations described in the previous section framing them in the 
specific context of connectomic data completion. MRI data can be used to generate empirical SC matrices SCemp 

(from DTI) or FCemp (from rs fMRI BOLD). By embedding the empirical matrix SCemp into a non-linear MFM or a 
linear SLM, it is possible to compute surrogate FC matrices (Figure 2A, upward arrows), denoted, respectively, 
FCMFM and FCSLM. The MFM and SLM global parameters are suitably tuned (slightly subcritical) then FCMFM and 
FCSLM will be maximally similar to the empirical FCemp (dynamic working point tuning, represented by dashed grey 
arrows in Figure 2A). Starting from the empirical matrix FCemp, one can then infer surrogate SC matrices (Figure 
2A, downward arrows), either by using a linear theory –developed by Saggio et al. (2016)– to compute a 
surrogate SCSLM; or by exploiting non-linear effective connectivity algorithm –generalized from Gilson et al. 
(2016; 2018)– to infer a surrogate SCMFM starting from a random initial guess (see later section). 
When connectomic data are incomplete (only SCemp or only FCemp are available, but not both simultaneously), 
computational simulation or inference procedures can be used to fill these gaps: by using FCMFM or FCSLM as 
virtual replacements for a missing FCemp (Figure 2B); or by using SCMFM or SCSLM as virtual replacements for a 
missing SCemp (Figure 2C). The quality of the model-generated virtual SCs and FCs can be assessed by comparing 
them with the actual empirical counterparts for the small subset of subjects for which both SCemp and FCemp are 
simultaneously available. Optimizing the quality of the virtually completed matrices on the subset of 
“SCemp+FCemp” subjects, also allows extrapolating target criteria for identifying when the model is operating a 
suitable dynamic working point, that can be evaluated solely based on simulated dynamics when a fitting target 
matrix is missing and thus fitting quality cannot be explicitly measured (cf. Figures 3 and 4). We can thus translate 
these criteria into precise algorithmic procedures that inform linear or non-linear SC-to-FC and FC-to-SC 
completion (see Tables 1-4). 

We now, provide more details on implementation and performance for each of the four mentioned types of 
data completion. 
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Linear SC-to-FC completion 
 

In linear SC-to-FC completion, a simple SLM (see Materials and Methods) is constructed based on the 
available SCemp and its direct simulations or even, in a much faster manner, analytical formulas deriving from the 
model’s theory are used to generate the associated virtual Pearson correlation matrix FCSLM (Figure S1). In this 
stochastic linear modeling scheme, once the driving noise strength is arbitrarily chosen and fixed and the input 
connectome SCemp is specified, there remains a single parameter to adjust, the global scale of long-range 
connectivity strength G. Figure S1A shows a systematic exploration, performed on subjects from the 
“SCemp+FCemp” subset, of how the completion quality depends on tuning this parameter G. As shown by the main 
plot in Figure S1A for a representative subject, increasing G the correlation between the empirical FCemp and the 
simulated FCSLM, derived here from direct SLM simulations, initially grows to peak in proximity of a critical value 
G*. The correlation then drops dramatically when further increasing G beyond the critical point G*. 

The exact value of G* depends on the specific personalized SCemp connectome embedded into the SLM and 
is therefore different for each subject. The small boxplot inset in Figure S1A gives the distribution of the 
personalized G* over all the subjects in the “SCemp+FCemp” subset. However, when performing linear FC 
completion because BOLD data and FCemp are missing, the exact location of the fitting optimum cannot be 
determined. To perform linear SC-to-FC completion for the ADNI subjects with missing BOLD we chose to always 
use a common prescribed value G*ref = 0.83, set to be equal to the median of the personalized G* over the 
“SCemp+FCemp” subset of ADNI subjects. 

Once a G*ref value and a noise strength are set, the linear completion can be further sped-up by the fact that 
the covariance matrix FCSLM for these frozen parameters can be analytically evaluated, as discussed in Saggio et 
al. (2016). Therefore, one can directly apply the SLM analytical formulas (see Material and Methods) on the 
available SCemp as input, without the need for performing direct simulations to generate surrogate BOLD first.  
Figures S1B-C analyze the expected performance of this “simulation-less” procedure, as benchmarked by 
applying it on the “SCemp+FCemp” subset. The boxplot in S1B reports a median Pearson correlation between the 
linear virtual FCSLM and the actual empirical FCemp close to ~0.24. Panel S1C indicates then the percent loss in 
correlation that has been caused by using the common value G*ref and the analytical formula to evaluate the 
linear virtual FCSLM rather than direct simulations at the actual personalized optimum G* for each of the 
“SCemp+FCemp” subjects. The median quality loss is approximately 0.5%, indicating that the lack of personalized 
tuning of the SLM working point is only a minor issue and that is acceptable to speed-up completion by relying 
on analytical evaluations. 

Table 1 provides a pseudo-code for the linear SC-to-FC completion procedure (see Materials and Methods 
for all details). Linear SC-to-FC completions for the DTI-only subjects in the considered ADNI dataset can be 
downloaded as Supplementary File S1. 

 
Table 1. Pseudo-code for linear SC-to-FC completion 
 
algorithm linear SC-to-FC completion is 
  
external input:  empirical SC (SCemp) 
output: linear virtual FC (FCSLM) 
fixed parameters: noise level (σ), guess for optimal G (G*ref) 
  
begin 

1. Evaluate the covariance matrix C from SCemp based on SLM theory for G*ref 
return FCSLM = C  

end 

 
 
Non-linear SC-to-FC completion 
 

In non-linear SC-to-FC completion, a more complex MFM (see Materials and Methods) is constructed based 
on the available SCemp and is simulated to generate surrogate BOLD data and the associated Pearson correlation 
matrix FCMFM (Figure 3). Non-linear mechanistic MFM models are more compliant with neurophysiology than 
the phenomenological SLMs. Furthermore, because of their non-linearities, they are potentially able to capture 
complex emergent collective dynamics resulting in non-trivial FCD (which SLMs cannot render, cf. Hansen et al., 
2015). However, MFMs have also more parameters and are computationally costlier to simulate than SLMs. 

We chose here to limit ourselves to MFMs based on a reduced Wong-Wang regional dynamics (see Materials 
and Methods for model equations), which has previously been used to successfully reproduce rsFC (Deco et al., 
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2013) and FCD (Hansen et al., 2015) starting from empirical SC, despite its relative simplicity with respect to 
other possible neural masses implemented in the TVB platform. In addition to the global scale of long-range 
connectivity strength G, the MFM model dynamics depend also on regional dynamics parameters. In Figure 3, 
we froze all local parameters but the NMDA decay time-constant τ, since they affected the dynamic behavior of 
the model less than the other control parameters and, in particular, did not alter qualitatively the repertoire of 
accessible dynamical regimes (compare Figure 3A with Figure S2). The simulated collective dynamics and the 
resulting non-linear virtual FCMFM will depend on the choice of the free control parameters G and τ. In Figure 3A, 
we have explored the dependency of the correlation between FCMFM and the actual empirical FCemp as a function 
of G and τ achievable over the subjects in the “SCemp+FCemp” subset. As evident in figure 3A, this dependence is 
non-monotonic and the best-fitting qualities are concentrated in a narrow concave stripe across the G/τ plane. 
Panels 3B and 3C report zoom of Figure 3A into increasingly smaller regions, revealing an extended zone of high 
fitting quality which some absolute optimum parameters G* and τ* (here G* = ~ 1.5 and τ* = 25). 

Remarkably, this best-fitting quality zone on the G/τ plane is associated as well to other properties that can 
be evaluated just based on the simulated dynamics (and, therefore even when the actual target FCemp is 
unknown and missing). We found that the best fit quality systematically occurs in a region where three criteria 
are jointly met (Figures 3D-F).  

First, there is a mixture of “ignited” regions with large activation and of not yet ignited regions with a weaker 
firing rate (spatial heterogeneity, Figure 3D). Conversely, when moving out of the best-fitting zone, the activity 
becomes more spatially homogeneous, either with all regions stable at low (for G <<< G*) or high (for G >>> G*) 
firing rates. 

Second, the time-averaged FCMFM has a complex modular organization between order and disorder, 
associated to high average clustering coefficient, in contrast with the absence of clustering observed for 
G <<< G* or G >>> G* (structured FC, Figure 3E). 

Third, the simulated collective dynamics give rise to meta-stability of FC along time, i.e. to a non-trivially 
structured FCD, which alternates between “knots” of transiently slowed-down FC network reconfiguration and 
“leaps” of accelerated reconfigurations. Such non-triviality of FCD can be detected by the inspection of the so-
called FCD matrix (Hansen et al., 2015), representing the similarity between FC matrices computed at different 
time-windows (see Materials and Methods). In this FCD matrix analysis, FCD “knots” are visualized as blocks with 
high inter-FC correlations, while FCD “leaps” give rise to stripes of low inter-FC correlation. The prominence of 
the block structure of the FCD matrix can be measured by the FCD clustering coefficient (see Material and 
Methods), higher when the FCD matrix includes more evident knots. The FCD clustering coefficient is higher in 
the best fit zone, while it drops moving outside it toward G <<< G* or G >>> G* (structured FCD, Figure 3F). 

By scanning the G/τ plane in search of a zone with simultaneous spatial heterogeneity of activations, 
structured FC and structured FCD, the MFM model parameters can be tuned to bring it in a zone invariantly 
resulting in relatively higher fitting quality. Figure 3G shows the analysis of the expected performance of this 
procedure, as benchmarked by applying it on the “SCemp+FCemp” subset. We measured a median Pearson 
correlation between the non-linear virtual FCMFM and the actual empirical FCemp close to ~0.32. 

Table 2 provides a compact pseudo-code for the non-linear SC-to-FC completion procedure (see Materials 
and Methods for all details). Non-linear SC-to-FC completions for the DTI-only subjects in the considered ADNI 
dataset can be downloaded as Supplementary File S2.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Pseudo-code for non-linear SC-to-FC completion 
 
algorithm non-linear SC-to-FC completion is 
  
external input:  empirical SC (SCemp) 
output: non-linear virtual FC (FCMFM) 
fixed parameters: noise level (σ), simulation time (T), range to scan Gstart ≤ G ≤ Gstop, range to scan 

τstart ≤ τ ≤ τstop, other frozen Wong-Wang neural mass parameters  
  
begin 

1. Construct a MFM embedding SCemp and the default frozen Wong-Wang neural mass parameters 
for Gstart ≤ G ≤ Gstop 
 for τstart ≤ τ ≤ τstop 

2.1 Simulate the MFM with current parameter values for a short time 0.2*T (discarding 
an initial transient) 

2.2 Compute surrogate BOLD from MFM time-series via Balloon-Windkessel model 
2.3 Compute Corr(BOLD), i.e. the time-averaged FC matrix 
2.4 Compute stream of time-resolved FC(t) and the associated FCD matrix 
2.5 Compute and store Crit1[G, τ] (Spatial heterogeneity of activations) 
2.6 Compute and store Crit2[G, τ] (Clustering Coefficient of time-averaged FC matrix) 
2.7 Compute and store Crit3[G, τ] (Clustering Coefficient of FCD matrix) 

end 
end 
3. Identify G* and τ* for which Crit1[G, τ], Crit2[G, τ] and Crit3[G, τ] are jointly optimum 
4. Simulate the MFM with parameter values G* and τ* for a time T (discarding an initial transient) 
5. Compute surrogate BOLD from MFM time-series via Balloon-Windkessel model 
6. Compute C = Corr(BOLD), i.e. the time-averaged FC matrix at G* and τ* 
return FCMFM = C  

end 

 
 
Linear FC-to-SC completion 
 

In linear FC-to-SC completion, we use once again the analytic theory derived for the SLM (Saggio et al., 2016) 
to deterministically compute a surrogate SCSLM as a function of the available FCemp or, more precisely, of the 
resting-state BOLDemp time-series used to derive FCemp. In this scheme, the linear virtual SCSLM is indeed taken to 
be directly proportional to the inverse covariance of the BOLD time-series (see Materials and Methods). The 
proportionality constant would depend on the free parameters chosen for the SLM, serving as a link between 
FC and SC. Here we set arbitrarily this constant to the unit value. 

Figure S3 shows the analysis of the expected performance of this procedure, as benchmarked by applying it 
on the “SCemp+FCemp” subset. We measured a median Pearson correlation between the linear virtual SCSLM and 
the actual empirical SCemp close to ~0.22. 

Table 3 provides a pseudo-code for the linear FC-to-SC completion procedure (see Materials and Methods 
for all details). Linear FC-to-SC completions for the BOLD-only subjects in the considered ADNI dataset can be 
downloaded as Supplementary File S3. 

 
Table 3. Pseudo-code for linear FC-to-SC completion 
 
algorithm linear FC-to-SC completion is 
  
external input:  empirical FC (FCemp) 
output: linear virtual SC (SCSLM) 
fixed parameters: noise level (σ), guess for optimal G (G*ref) 
  
begin 

1. Evaluate the inverse matrix C-1 from FCemp 
2. Build a matrix S proportional to C-1 according to SLM theory and drop its diagonal  
return SCSLM = S  

end 
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Non-linear FC-to-SC completion 
 

Non-linear FC-to-SC completion consists in the inference of an SCMFM matrix that, used as input to an MFM, 
produces as output a simulated FC* matrix highly correlated with the available empirical FCemp (Figure 4).  This 
non-linear inverse problem is more sophisticated than linear FC-to-SC completion, because, for the MFM a 
theory providing an explicit formal link between input structural connectome (SC*) and output functional 
connectome (FC*) is not available, unlike for the SLM. Note indeed that MFMs, at the best-fitting dynamic 
working point, give rise not just to a single dynamical mode, but to a multiplicity of them (Deco & Jirsa 2012; 
Hansen et al., 2015; Golos et al., 2015) and that each of them may be associated, in general, to a different state-
specific FC (Battaglia et al., 2012; Hansen et al., 2015; Kirst et al., 2016) so that the final static FC* results from 
averaging over a mixture of different states sampled in stochastic proportions. Therefore, to derive the FC* 
associated with a given input SC*, it is necessary to run explicit MFM simulations.  

Gilson et al. (2016; 2018) have introduced iterative optimization procedures aiming at updating a current 
guess for the input SC* to a model in order to improve the match between the model output FC* and a target 
FCemp. In this “effective connectivity” procedure –named as such by Gilson and coworkers, even if different from 
effective connectivity measures defined more typically in terms of statistical causality metrics (Valdes-Sosa et 
al., 2011)– connectome weights are iteratively and selectively adjusted as a function of the difference occurring 
between the current FC* and the target FCemp. Such optimization leads to infer refined connectomes, that, with 
respect to empirical DTI SC matrix, may display non-symmetric connections (distinguishing thus between 
“feeder” and “receiver” regions as in Gilson et al., 2016) or enhanced inter-hemispheric connections, usually 
under-estimated by DTI (as in Gilson et al., 2018). Here we use a similar algorithm to learn a suitable non-linear 
virtual SCMFM. 

The initial SC*(0) is taken to be a matrix with fully random entries. An MFM embedding such SC*(0) is built and 
simulations are run to generate an output FC*(0) which is compared to the target FCemp of the subject for which 
FC-to-SC completion must be performed. The used SC*(0) is then modified into a different SC*(1) = SC*(0) + l∆FC(0) 

matrix, by performing a small update step in the direction of the gradient defined by the difference 
∆FC(0) = FCemp - FC*(0). A new simulation is then run to produce a new FC(1). The produce is repeated generating 
new SC(i) = SC(i-1) + l∆FC(i-1) until when the difference between FC(i) and the target FCemp becomes smaller than a 
specified tolerance, i.e. |∆FC(i)| < ε. The last generation SC(i) is then taken as non-linear virtual surrogate SCMFM 
(see Materials and Methods for details). 

Figure 4A provides an illustration of the nonlinear FC-to-SC completion when applied to subjects in the 
“SCemp+FCemp” subset. In the first step, the matrix SC*(0) is random and there is no correlation between the output 
FC*(0) and FCemp. Advancing through the iterations, SC*(k) develops gradually more complex internal structures 
and, correspondingly, the correlation between FC*(k) and FCemp increases until when it reaches the desired 
quality threshold, here set to CCtarget = 0.7. This threshold quality is usually reached after ~1500 iterations. In the 
“SCemp+FCemp” subset we can even take advantage of the availability of the actual SCemp to quantify as well the 
convergence of SC*(k) toward SCemp. Figure 4A shows that advancing through the iterations, the correlation 
between SC*(k) and SCemp improves as well. The expected quality of reconstruction, as estimated from results on 
the “SCemp+FCemp” subset is reported in Figure 4B and amounts to an expected correlation between SCMFM and 
SCemp of ~0.31. 

We note that non-linear FC-to-SC completion, as for non-linear SC-to-FC completion, is a non- deterministic 
procedure, meaning that a different SCMFM is generated depending on the starting initial condition SC*(0). 
However, the different non-linear virtual surrogates lie at distances from the common actual ground truth SCemp 
which are tightly concentrated around the median correlation. As revealed by Figure 4C, the reported 
correlations between SCMFM and SCemp were within a narrow interval of ±2.5% of the relative difference from the 
median distance for all the tested random initial conditions (30 per subject, see Materials and Methods), 
showing that the expected performance is poorly affected by the initial conditions. This stochastic aspect of the 
non-linear completion algorithm is going to allow us generating not just one but arbitrarily many completions, 
starting from each available empirical connectivity matrix (see later section). 

Table 4 provides a compact pseudo-code for the non-linear FC-to-SC completion procedure (see Materials 
and Methods for all details). Non-linear FC-to-SC completions for the BOLD-only subjects in the considered ADNI 
dataset can be downloaded as Supplementary File S4. 
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Table 4. Pseudo-code for non-linear FC-to-SC completion 
 
algorithm non-linear FC-to-SC completion is 
  
external input:  empirical FC (FCemp) 
output: non-linear virtual SC (SCMFM) 
fixed parameters: FC* fitting quality (CCtarget), initial guess SC*(0), learning rate λ, noise level (σ), 

simulation time (T), range to scan Gstart ≤ G ≤ Gstop, range to scan τstart ≤ τ ≤ τstop, other frozen 
Wong-Wang neural mass parameters  

  
begin 
 1. FC*(0) = non-linear SC-to-FC completion starting from SC*(0) 
 2. Dist = corr(FC*(0), FCemp) 
 3. iteration = 0 

while (Dist ≤ CCtarget) 
 iteration = iteration + 1 
 SC*(iteration) = SC*(iteration - 1) + λ*(FC*(iteration) - FC*(iteration)) 
 FC*(iteration) = non-linear SC-to-FC completion starting from SC*(iteration) 

  Dist = corr(FC*(iteration), FCemp) 
end 
return SCMFM = SC*(iteration)  

end 

 
 
Data completion is self-consistent: bi-virtual connectivity matrices 
 

SLM and MFM have thus the capacity to bridge from SC to FC or from FC to SC. When using these models for 
data completion, the input matrix is always an empirical matrix (SCemp or FCemp) and the output a surrogate 
virtual matrix (respectively, FCvirt or SCvirt, where the index “virt” refers generally to any completion algorithm, 
i.e. either using the SLM or the MFM models). However, the algorithms presented in Tables 1-4 can still be 
applied even when the input connectivity matrix is already a virtual matrix. In this case, the input could be 
surrogate matrices (SCvirt or FCvirt) from data completion and the output would be bi-virtual (respectively, FCbivirt 
or SCbivirt), i.e. twice virtual, since, to obtain them starting from an empirical input connectome, two different 
model-based procedures have to be chained. The final result of passing an original empirical connectome 
through two chained completion procedures is then a bi-virtual surrogate matrix of the same type (structural or 
functional) of the initially fed connectome. In other words, SCemp is mapped to an SCbivirt (passing through an 
intermediate FCvirt step) and FCemp is mapped to an FCbivirt (passing through an intermediate SCvirt step). 

A first reason to evaluate bi-virtual connectivity matrices is to perform a self-consistency check of the data 
completion procedures. If the completion quality is good, then empirical connectomes and their bi-virtual 
counterparts should be highly related between them. A second reason would be to generate for each subject a 
fully virtual pair of connectomes, e.g. an SCvirt (or an FCvirt) paired with an FCbivirt (or an SCbivirt) that could be shared 
in a public dataset to avoid disclosing the actual private subject-specific empirical data FCemp (or SCemp). 

Figure S4 shows the correspondence between empirical and bi-virtual SC and FC pairs, both when using 
chained linear (SLM-based) and nonlinear (MFM-based) completion procedures. We first evaluated the quality 
of SCbivirt generation over the ADNI-subset of 88 subjects for which an SCemp matrix was available (Figure S4A). 
Considering the linear bi-virtual completion chain SCemp to FCSLM to SCbi-SLM we obtained a median correlation 
between SCemp and SCbi-SLM of ~0.63. Considering then the non-linear bi-virtual completion chain SCemp to FCMFM 
to SCbi-MFM we obtained a smaller median correlation between SCemp and SCbi-MFM of ~0.58. 

We then evaluated the quality of FCbivirt generation over the ADNI-subset of 168 subjects for which an FCemp 

matrix was available (Figure S4B). Considering the linear bi-virtual completion chain FCemp to SCSLM to FCbi-SLM we 
obtained a rather poor median correlation between FCemp and FCbi-SLM of ~0.12. However, considering finally the 
non-linear bi-virtual completion chain FCemp to SCMFM to FCbi-MFM the median correlation between FCemp and FCbi-

MFM rose to ~0.59. 
The empirical-to-bi-virtual correlations were always significant and, in all cases but FCbi-SLM well compatible 

with the empirically observed test-retest variability (Wang et al., 2012; Chen et al., 2015; Termenon et al., 2016). 
This non-trivial performance and, particularly, the fact that empirical-to-bi-virtual correlations in Figure S4 are 
even higher than empirical-to-virtual correlations in Figures 3, 4 or S1, establish the self-consistency of the 
model-based data completion procedures presented in Tables 1-4. 

Note also that the lack of perfect identity between original seed empirical connectomes and their bi-virtual 
counterparts prevents the exact regeneration of the actual subject empirical data (see Discussion for the positive 
implications of this negative result). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Data completion is useful for unsupervised categorization 
 

The compilation of large datasets, including connectivity data from structural and functional neuroimaging 
is considered essential for the development of algorithmic patient stratification and predictive approaches. 
Here, we have described four different types of connectomic data completion and studied their consistency. We 
now show that such completion procedures are useful for the algorithmic extraction of information. 

For the sake of relative benchmarking, we study a proof-of-concept classification problem, separating the 
ADNI subjects into the three subgroups of control, MCI, and AD, based uniquely on empirical and/or virtual 
connectomic data. The target classification labels in these three groups are already provided within the ADNI 
dataset and we assume them to be exact (see Materials and Methods for a summary of the used stratification 
criteria). Possible input features for classification can be the following matrices (for the subject subsets for which 
they are available): empirical SCemp or FCemp; linear virtual SCSLM or FCSLM; nonlinear virtual SCMFM or FCMFM; and, 
finally, linear bi-virtual SCbi-SLM or FCbi-SLM; and nonlinear bi-virtual SCbi-MFM or FCbi-MFM. We chose to perform 
classification using a variant (Seiffert et al., 2010) of the random forest algorithm, which is particularly suitable 
when the number of input features is large with respect to the available data-points in the training set (Breiman, 
2001), as it is in our case (every connectivity matrix has 4560 potentially independent entries, corresponding to 
the number of upper-diagonal matrix entries in our parcellation with Q = 96 regions, see Materials and 
Methods). For illustration, we present here results for the subset of ADNI subjects for which a DTI empirical 
connectome SCemp is available. We thus discuss the relevance for classification of data completions, focusing 
thus on nonlinear SC-to-FC data virtual completion algorithms and their companion bi-virtual SC-to-FC-to-SC 
chains (Figure 5). 

Here (and in the following), the dataset of 88 subjects with available SCemp is randomly split into a training 
set and a testing set (with maintained relative proportions of subjects of the three Control, MCI and AD 
categories). The classifier is then trained on the training set and classification performance benchmarked on the 
testing set, to assess generalization capabilities. Classification performance can vary depending on the specific 
chosen split. Since we are here interested in quantifying lower bounds to the amount of information that the 
different types of features can potentially bear, more than assessing an expected performance, we repeated 
training multiple times to distillate a “purified subset” of high-performance classifiers, performing better than 
average classifiers (see Materials and Methods for details). 

We considered first the baseline classification performance that we could tendentially achieve training 
random forest classifiers on the original SCemp features themselves (Figure 5A, light blue; data completion not 
used at all). We then quantified tendential classification performance based on: the virtually completed FCMFM 
(Figure 5A, dark green; empirical data not used at all); on the pairs made by the actual empirical SCemp and the 
virtually completed FCMFM (Figure 5A, magenta; exploits synergy between SC and FC, mixing empirical and virtual 
features); and, finally, on the pairs made by the virtually completed FCMFM and the bi-virtual SCbi-MFM (Figure 5A, 
violet; exploits synergy between SC and FC features and empirical data are not used at all, replaced by their bi-
virtual counterparts).  

Figure 5B reports Receiver Operator Curve (ROC) analyses of the purified classifier performance for all 
Different ROC curves are derived for different choices of the target class to predict. In plain words, once the 
input features for a subject are fed into the classifier, the classifier returns a probability for this subject to belong 
to the target class. A hard threshold is arbitrarily set, such that a subject is labeled to be of the target type (or 
not) depending on the output probability being respectively larger (or smaller) than the adopted threshold. 
When a very high threshold is taken, only a few subjects will be labeled to belong to target class (there may be 
many “false negatives”) but there will also be little “false positives”. On the contrary, when the threshold is low, 
the number of “false negatives” will decrease but the number of “false positives” will increase. The ROC curve 
precisely describes how the fractions of “true” (TPR) and “false positives” (FPR) evolve by gradually lowering the 
probability threshold to classify a subject as belonging to target class, interpolating between the lower left 
corner (TPR = FPR = 0, maximum threshold, no subjects classified as belonging to target class) and the upper 
right corner (TPR = FPR = 1, minimum threshold, all subjects classified as belonging to target class). A ROC curve 
following the diagonal on the TPR/FPR plane would correspond to a classification performance level expectable 
from random guessing. Performance better than chance level is indicated by ROC curves lifting toward the upper 
left corner (TPR = 1, FPR = 0) or, equivalently, by increased “Area Under Curve” (AUC). 

In Figure 5D, we also report distributions of the tendential classification precision, defined as the fraction of 
correctly classified subjects, at a fixed low recall level of 10%, defined as the fraction of subjects labeled by the 
classifier as belonging to the target class (see Materials and Methods). Once again in plain words, we expect that 
when the threshold is high, only a small fraction of subjects is going to be labeled as belonging to the target class 
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(low recall). However, we expect most of these subjects to be actual true positives since the classification 
threshold is conservative. Correspondingly the precision should be higher than for lower threshold when the 
recall will be higher but the number of false positives as well. 

Figure 5B shows that for all the considered input features choices, above chance-level performances could 
be achieved by random forest classifiers after training and ensemble purification. Remarkably, the ROC curves 
for purified classifiers trained on empirical only features of a single type (SCemp, light blue) or virtual only features 
of a single type (FCMFM, dark green) were very similar, indicating that a comparable amount for classification-
relevant information can be tendentially extracted from the original ADNI SC empirical data and the virtually 
completed FC connectomes. As anticipated, the use of SCemp and FCMFM as combined inputs (magenta) boosted 
tendential classification performance, leading to higher AUC (building on synergy redundancy or a mixture of 
both, see Discussion). Finally, this superior tendential performance of classifiers with combined SC and FC inputs 
was maintained when the original SCemp was replaced by its bi-virtual counterparts SCbi-MFM (violet). Figure 5D 
shows that similar relations hold for the achieved tendential classifier precisions at 10% of recall. Thus, overall, 
we found that classification based on purely virtual features can be tendentially achieved after ADNI dataset 
completion and that tendential classification performance (in terms of both AUC and precision) is not expected 
to be much lower than when actual empirical data are used (see Discussion for the implications of these results).  
 
 
Data augmentation 
 

All data completion algorithms involve a stochastic component (apart from the purely deterministic linear 
FC-to-SC completion of Table 3). Therefore, running various times the algorithms will give rise to different virtual 
and bi-virtual connectomes, associated with the same initial empirical seed connectome. Such a feature allows 
generating out of a given empirical seed SC (or FC) connectome, not just one surrogate virtual FC (or SC) 
connectome but an arbitrarily large ensemble of surrogate virtual connectomes, forming the virtual cohort 
associated to a specific subject (see Materials and Methods). Every virtual cohort maintains a strict relation to 
its seed empirical subjects. In particular, distances between virtual connectomes sampled within two different 
virtual cohorts are always closely correlated to the distance between the respective seed connectomes of the 
two cohorts. Therefore, learning performed on virtual cohorts is expected to generate similar discrimination 
surfaces as learning on the original subjects, with the added benefits that training items in cohorts are way more 
numerous than the original empirical data. The use of wider ensemble of surrogate date with statistical 
distributions of multi-dimensional features equivalent to the original data is a common practice in machine 
learning, known as data augmentation (Yaeger et al., 1997; Taylor & Nitshcke, 2018), and very popular e.g. in 
object recognition (where surrogate training data are produced by clipping or variously transforming copies of 
the original training images). Data augmentation aims to expand the training dataset beyond the initially 
available data to boost the learning by a classifier of the target categories (e.g. object identities). Crucial for 
dataset augmentation applications is that the surrogate data generated are not just identical to the actual data 
with some added noise but are genuinely new and can serve as actual good guesses for alternative (unobserved) 
instances of data-points belonging to the same category. Obviously, new information cannot be created, but the 
extraction of the available information can still be facilitated, leading to a concrete improvement of the 
generalization performance of the classifiers after data augmentation. Given that inter-relations between virtual 
cohorts mirror inter-relations between empirical subjects, surrogate connectomes in virtual cohorts could be 
naturally used to improve connectome-based classification via data augmentation. 

The close relation between the original data and the respective virtual cohorts is visually evident in Figure 
5C, where a distance-respecting non-linear t-SNE projection (Van Der Maaten & Hinton, 2008) has been used to 
represent in two dimensions the virtual cohorts of surrogate virtual FCMFM’s associated to the 88 subjects with 
available SCemp (every dot corresponds here to the two-dimensional projection of a high-dimensional FCMFM; 100 
different virtual FCMFM’s have been generated starting from each one of the 88 SCemp connectomes). The 
connectomes composing the virtual cohorts represented in Figure 5C can be downloaded as Supporting File S5. 

To prove that virtual cohorts can be used to perform data augmentation and boost connectome-based 
subject classification, we performed training of random forest classifiers expanding the training set to include 
not only one pair SCemp / FCMFM per subject but a larger group of pairs selected within the virtual cohort of Figure 
5B. For training, SC was always set to SCemp and the FCMFM were chosen randomly among the 100 that were 
generated for each subject (excluding subjects in the testing set). The AUC curve for SCbi-MFM + FCMFM classification 
augmented by the use of virtual cohorts of FCMFM ‘s rather than just one FCMFM instance in training is shown in 
Figure 5B as a dashed violet line. Comparison with the solid violet line indicates that classification performance 
was further improved by data augmentation. More specifically, we compare in Figure 5D the classification 
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precision (fraction of truly MCI subjects over the total number of subjects labeled as MCI by the classifier) at 
10% recall (threshold selected to guarantee that at least 10% of the actual MCI subjects are classified as MCI 
subjects) or various classifier designs. The median precision at 10% recall that can be achieved classifying 
subjects based on actual SCemp connectomes was of ~60.8%. The precision achievable by classifier trained on an 
equal number of surrogate FCMFM connectomes (one surrogate FCMFM connectome per subject) was slightly but 
significantly smaller, at ~59.5% (here, and in the following, significance assessed via Kruskal-Wallis group-level 
comparison, p < 0.05). However, by performing training on a 100-times larger cohort of virtual FCMFM ‘s, the 
median performance level achievable with empirical data was not only restored but even significantly 
outperformed, reaching ~62.5%. This improvement is not a mere consequence of overfitting since we consider 
genuine generalization performance. In particular, performance is assessed via a cohort-adapted cross-
validation approach, i.e. training data are selected from only an equilibrated subset of cohorts, and performance 
monitored on validation data from the complementary subset of cohorts. Last but not least, to a larger number 
of items used for training correspond also a larger number of validation items to classify (cohorts are used both 
in training and validation, see Materials and Methods). Therefore, the slight but significant precision 
improvement can be explained only by an enhancement of learning, due to the artificial boost of training dataset 
size provided by data augmentation. 

The tendential precision of classification was further improved by the use of combined SC and FC features as 
input, even when fully virtual pairs (here, SCbi-MFM + FCMFM) are used. In this case (and analogously, when mixed 
empirical/virtual pairs SCemp + FCMFM are used) the median precision rose indeed significantly to over ~64%. 
However, in this case, data augmentation by using cohorts rather than a single FCMFM instance per subject did 
not yield further significant improvements of tendential performance.  

 
Discussion 

 
We have here demonstrated the feasibility of connectomic dataset completion (and even augmentation) 

using algorithms based on mean-field computational modeling. In particular, we have completed an ADNI gold 
standard connectomic dataset. We have then shown that the use of virtual connectomic data improves 
automated subject classification. Furthermore, classification based uniquely on surrogate data can approach the 
same performance levels as of empirical data. The capacity to extract more clinically-relevant information from 
empirical data is central for making progress in predictive and personalized neurology. Neurodegenerative 
diseases are a dramatic burden, linked to massive economic costs for healthcare growing in an aging society, 
outrun only by the quality of life decrease and intimate feeling of “mind fading away” experienced by patients 
and their friends and family. This is true in particular for Alzheimer’s disease (AD), which is one of the most 
common types of dementia and one of the most widely studied progressive neurodegenerative disorders. Small 
and incomplete datasets for clinical research are certainly among the factors contributing to slow progress in 
the development of new diagnostic and therapeutic tools. Our methodological proposal aims precisely at 
relieving these two problems. 

Data completion procedures allowed us to infer Functional Connectivity when only Structural Connectivity 
was available or Structural Connectivity (SC) when only Functional Connectivity (FC) were available. Such 
procedures for data completion could easily be implemented within popular neuroinformatic platforms as The 
Virtual Brain (TVB). TVB provides practical graphical interfaces or fully scriptable code-line environments for 
“plug-and-play” large-scale brain network modeling, signal emulation, and dataset management, including 
simulating SC and FC with adjustable complexity MFMs or SLMs (Sanz-Leon et al., 2013). In this way, capitalizing 
on the software built-in capabilities, even the more elaborated non-linear completion algorithms could become 
accessible to non-expert users with only a little training.  

The possibility of having access to both types of connectomic information brought up by model-based data 
completion is vital because structural and functional connectivity convey complementary information. It has 
been shown for instance, that analyses of SC-to-FC inter-relations can yield better characterizations and group 
discriminations than analyses of SC or FC alone in a variety of pathologies or conditions (Zhang et al., 2011; Davis 
et al., 2012; Zimmermann et al., 2016; Straathof et al., 2019).  

Indeed, FC networks in the resting-state do not merely mirror SC but are believed to be the by-product of 
complex dynamics of multi-scale brain circuits (Honey et al., 2007; Deco et al., 2011). As such, they are 
constrained but not entirely determined by the underlying anatomy (encoded in the SC matrix) and FC also 
carries valuable information about the dynamic regime giving rise to the observed resting-state activity 
fluctuations (Hansen et al., 2015). In particular, brain networks are thought to operate at a regime close to 
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criticality. For a fixed SC, the resulting FC would be different depending on how close to a critical working point 
dynamics is tuned (Deco et al., 2013; Hansen et al., 2015). This information that brain networks are supposed to 
operate close to a critical boundary is used to generate the surrogate virtual FCMFM, when performing non-linear 
SC-to-FC completion. Thus, FCMFM carries indirectly extra information about a (putative) dynamic regime that 
was not conveyed by the original empirical SC (nor by virtual completions with linear SLM-based pipelines). This 
may be one of the reasons why the classification performance using combined empirical SC and virtual FC is 
superior to the one based on empirical SC alone, even if the virtual FCMFM’s have been derived from the empirical 
SC. The data completion procedure has “injected” useful information in FCMFM, in particular, information about 
the dynamical regime, in which the brain is expected to be in. This generation of supplementary information is 
possible due to the mechanistic nature of the virtual brain models, taking advantage of the synergy of dynamic 
modeling constrained by subject-specific structural data. The performance improvement observed in 
classification suggests that the closeness-to-criticality hypothesis informing non-linear data completion is a 
reasonable dynamic network mechanism for the resting state. It also provides further support for the predictive 
capacity of connectome-based personalized brain network models.  

When both empirical SC and FC were available, we could measure the quality of reconstruction achieved by 
our models. The correlation reached between empirical and reconstructed connectivity matrices is only 
moderate, however. There are multiple reasons for this limited performance. One evident reason is the 
simplicity of the neural mass model adopted in our proof-of-concept illustration. The Wong-Wang neural mass 
model is able only to express two states of lower or higher local activation (Wong & Wang, 2006). Instead, 
neuronal populations can display a much more extensive repertoire of possible dynamics, including e.g., 
coherent oscillations at multiple frequencies, bursting, or chaotic trajectories (Stefanescu & Jirsa, 2008; Spiegler 
et al., 2011). Synchronization in a network depends on various factors, including frequency, network topology, 
and time delays via signal propagation, all of which have been ignored here and in large parts of the literature 
(Deco et al., 2009; Petkoski & Jirsa, 2019). It is acknowledged that delay-less approaches serve as a useful 
approximation (Deco et al. 2015). Nevertheless, we are aware that our choice to restrict our analyses on the 
subset of activation-based mechanisms introduces critical limitations.  Indeed, our models, ignoring delay-
mediated synchronization, are incapable of capturing a range of dynamic oscillatory behaviors, such as 
multifrequency coupling or multiphase coupling. More sophisticated mean-field virtual brain models than the 
very simple one here explored could thus reach superior performance (see e.g. Stefanovski et al., 2019). Yet, 
even such a simple model, achieving such a limited reconstruction performance proved to be consistent and 
useful. First, when concatenating data completion pipelines to give rise to bi-virtual data, we found a robust self-
consistency, i.e. remarkable matching between e.g. the original SC and the bi-virtual SCbi-MFM, generated via 
the intermediated FCMFM step. Second, classification performance can be improved by using our virtual data 
(or maintained, by using our virtual instead of empirical data). Another reason for the only moderate quality of 
reconstruction is our choice of second-order moments, which is covariance and FC, as data feature for 
performance evaluation. The associated generative model giving rise to a stationary Gaussian probability 
distribution is a linear network model (Jaynes, 1957; Haken, 1983). Only a linear model evaluated against a 
stationary time-series generated by a linear process would provide optimal performance values. As we here 
discussed several times, resting-state dynamics do not satisfy these properties, and thus, inferior performance 
is expected. 

Together, these findings show that even if the reconstruction quality of our model-based completion 
procedures is modest, a meaningful relationship with the original seed data is still maintained, even after two 
steps of virtual completion. The use of simple models has the additional advantage of being less computationally 
expensive to simulate. This is particularly true for SLMs in which no attempt to emulate the non-linearity of 
neural population dynamics are made but for which the availability of analytical formulas for completion even 
removes the need for direct simulation. On the other hand, nonlinear MFM simulations can take very long times, 
which can become an obstacle, especially for nonlinear FC-to-SC completion, where multiple simulations must 
be run. However, SLM-based procedures cannot be used for data augmentation, because they cannot generate 
a multiplicity of different surrogate connectomes starting from a shared seed empirical one. 

We have shown that data augmentation can boost classification performance. Indeed, the redundancy 
present in stochastic ensembles of virtual connectivity matrices, generated via swarms of MFM simulations with 
different random initial conditions and noise realizations, can help training. We stress once again that we should 
not interpret data augmentation as a way to increase the information contained in the dataset: we cannot create 
information! Such is a consequence of the information theoretic concept of data processing inequality (Cover & 
Thomas, 2006). But it is also known that redundant information can improve the performance of decoding and 
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classification (Guyon & Elisseeff, 2003), which is the key point that we exploit here in model-based connectomic 
data completion. Computational models such as MFM do not provide mappings between input and output 
connectomes, but rather between statistical ensembles of connectomes, with both mean and correlated 
dispersion realistically shaped by trustworthy non-linear dynamics. In other words, differences between 
alternative connectomes in a generated surrogate virtual cohort are not mere “noise”, but reflect realistic data-
compliant possibilities of variation. The different connectome realizations sample indeed the specific landscapes 
of possible FCs that may be compatible with a given SCs, degenerate because the allowed dynamics to unfold 
along with low-dimensional manifolds, rather than being frozen in strict vicinity of a trivial fixed point 
(Mehrkanoon et al., 2014; Pillai & Jirsa, 2017).  

Data augmentation constitutes thus a possible way to generate more massive training sets for machine 
learning applications, as far as the seed empirical dataset is well representative of the expected population 
variability. However, by capitalizing exclusively on redundancy, augmentation cannot replace the gathering of 
more empirical data (Carrillo et al., 2012; Toga et al., 2016). Unfortunately, federation (or even mining) of data 
is often impeded by unavoidable juridical concerns linked to strict and diverse regulations (Dulong de Rosnay, 
2017; Thorogood et al., 2018) The use of virtual cohorts may relieve this burden. Virtual cohorts maintain their 
statistical relation to the original data, in a way sufficiently good to be exploitable for classification, but do not 
precisely match the original data. They maintain an inherent variability, indeed, due to the nature of the SC-to-
FC link mediated by complex dynamics. Virtual data carry information operationally equivalent to the one carried 
by empirical data but not the same information. As such, it is not possible to reconstruct the original subject 
data from virtualized connectomes, and privacy concerns are considerably reduced if not entirely removed. We 
thus anticipate a near future in which virtual cohorts, providing vast numbers of virtual and bi-virtual 
connectivity information, would play an increasing role in massive data-driven explorations of factors predictive 
of neurodegenerative disease progression. 

 

 

Materials and Methods 
 
Data Sample 
 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, 
led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).  

Raw neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) GO/2 studies (Wyman 
et al., 2013; Beckett et al., 2015) were downloaded for 244 subjects. These included T1w images for all subjects, 
as well as DWI and rsfMRI images for separate cohorts of subjects. An additional 12 subjects for which both DWI 
and rsfMRI were acquired in the same session were identified and their data also downloaded. 

A volumetric 96-ROI parcellation was defined on the MNI template and consisted of 82 cortical ROIs from 
the Regional Map parcellation (Kötter & Wanke, 2005) and an additional 14 subcortical ROIs spanning the 
thalamus and basal ganglia. Details on the construction of the 96-ROI parcellation can be found in Bezgin et al 
(2017). 

Among the 244 subjects we downloaded, 74 were control subjects, while the others were patients at 
different stages of the pathology progression. In this study, we performed a rough coarse-graining of the original 
ADNI labels indicating the stage or type of pathology. We thus overall labeled 119 patients as “MCI” (grouping 
together the labels 4 patients as “MCI”, 64 as “EMCI” and 41 as “LMCI”) and 51 patients as “AD”. 

Overall, T1 and DTI were jointly available for 88 subjects (allowing to reconstruct structural connectivity (SC) 
matrix), and T1 and fMRI for 178 (allowing to reconstruct functional connectivity (FC)). However, among the 244 
subjects we downloaded, only 12 subjects (referred to as the “SCemp+FCemp” subset) had a complete set of 
structural and functional images (T1, DTI, fMRI), hinting at how urgently needed are data completion and 
augmentation. 

 
Data Preprocessing 
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Neuroimaging data preprocessing was done using a custom Nipype pipeline implementation (Gorgolewski 

et al., 2011). First, raw neuroimaging data were reconstructed into NIFTI format using the dcm2nii software 
package (https://www.nitrc.org/projects/dcm2nii/). Skull stripping was performed using the Brain Extraction 
Tool (BET) from the FMRIB Software Library package (FSL v5) for all image modalities prior to all other 
preprocessing steps. Brain extraction of T1w images using BET was generally suboptimal and was supplemented 
by optiBET (Lutkenhoff et al., 2014), an iterative routine that improved brain extractions substantially by 
applying transformations and back-projections between the native brain mask and MNI template space. 
Segmentation of the T1w images was performed using FSL’s FAT tool with bias field correction to obtain into 
three distinct tissue classes. 

To improve the registration of the ROI parcellation to native space, the parcellation was first nonlinearly 
registered to a publicly-available older adult template (aged 70-74 years, Fillmore et al., 2015) using the 
Advanced Normalization Tools (ANTS, Avants et al., 2011) software package before subsequent registrations.  

Diffusion-weighted images were preprocessed using FSL’s eddy and bedpostx tools. The ROI parcellation was 
first nonlinearly registered to each subject’s T1w structural image and then linearly registered to the DWI image 
using ANTS. 

rsfMRI data were preprocessed using FSL’s FEAT toolbox. Preprocessing included motion correction, high-
pass filtering, registration, normalization and spatial smoothing (FWHM: 5 mm). Subjects with excessive motion 
were excluded from our sample. Global white matter and cerebrospinal fluid signals (but not global mean signal) 
were linearly regressed from the rsfMRI data. 

All images were visually inspected following brain extraction and registrations to ensure correctness. 
 

SC Construction 
 

Details of tractography methods for reconstructing each subject’s structural connectome can be found in 
Shen et al (2019 a, b). Briefly, FSL’s probtrackx2 was used to perform tractography between all ROIs. The set of 
white matter voxels adjacent to a grey matter ROI was defined as the seed mask for that particular ROI. Grey 
matter voxels adjacent to each seed mask were used to define an exclusion mask. For intrahemispheric tracking, 
an additional exclusion mask of the opposite hemisphere was additionally defined. Tractography parameters 
were set to a curvature threshold of 0.2, 5000 seeds per voxel, a maximum of 2000 steps and a 0.5 mm step 
length. The connection weight between each pair of ROIs was computed as the number of streamlines detected 
between the ROIs, divided by the total number of streamlines sent from the seed mask. This connectivity 
information was compiled for every subject in a matrix of empirical structural connectivity SCemp. 

 
rsfMRI Timeseries and FC Construction 

 
Empirical rsfMRI time-series for each ROI were computed using a weighted average approach that favored 

voxels nearer the center of each ROI (Shen et al., 2012). Each subject’s matrix of empirical functional connectivity 
FCemp was determined by Pearson correlation of these recorded rsfMRI time-series. 

 
SLM models  
 
The SLM model used in this study is a linear stochastic system of coupled Ornstein-Uhlenbeck processes which 
is deeply investigated in (Saggio et al., 2016). For each brain region, neural activity 𝑥#(𝑡) is modeled as a linear 
stochastic model, coupled to the fluctuations of other regions: 
 

�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝜎𝜉(𝑡)     (1) 
 
where A is the coupling matrix, 𝜉 is a normal Gaussian white noise and 𝜎 the standard deviation of the local 
drive noise. The coupling matrix A can be written as: 
 
     𝑨 =	−𝑰 + 𝐺.𝑾      (2) 
 
where I is the identity matrix, G is the global coupling parameter and W is a weight matrix set to match SCemp. 
The negative identity matrix guarantees that the nodes have a stable equilibrium point. If all the eigenvalues of 
A are negative, which happens for all positive values of G < Gcritic = 1 𝑚𝑎𝑥(𝜆#)⁄  (where 𝜆# are the eigenvalues of 
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W), the system will be in an equilibrium state. After some mathematical steps (Saggio et al., 2016), the 
covariance matrix between regional fluctuations can be analytically expressed at this critical point Gcritic as: 
 

     𝑪 = :;<

=
𝑨:>      (3) 

 
whose normalized entries provide the strength of functional connectivity between different regions. The noise 
strength can be arbitrarily set at the critical point since it provides only a scaling constant to be reabsorbed into 
the Pearson correlation normalization. However, the only parameter that needs to be explored is 𝐺, whose 
range goes from Gmin = 0, i.e. uncoupled nodes, to slightly before Gcritic = 1 𝑚𝑎𝑥(𝜆#)⁄ , or Gmax = Gcritic -	𝜖. In Figure 
S1A, running explicit simulations of SLM models for different values of coupling G and evaluating on the “FCemp 
+ SCemp” subset of subjects the match between the simulated and empirical activity correlation matrices, we 
confirm (cf. e.g. Hansen et al., 2015) that the best match (max of Pearson correlation between the upper-
triangular parts of the empirical and virtual FCs) is obtained at a slightly subcritical point	for G* = Gcritic -	𝜖. 
 

 
Linear SC-to-FC and FC-to-SC completion 

 
Every subject in the “FCemp + SCemp” subset has a different value of G*. To infer FCSLM from SCemp for the 

subjects with missing functional data, we chose to always use a common value G*ref = 0.83, which is the median 
of G* for all 12 “FCemp + SCemp” subjects (the error made in doing this approximation is estimated to be less than 
1% in Fig. S1C). When the connectome FCemp is not known, equations (2) and (3) can directly be used to evaluate 
the covariance matrix C (setting σ = 1 and G = G*ref). We then estimate the regional fluctuation covariance from 
these inferences and normalize it into a Pearson correlation matrix to infer FCSLM (See pseudo-code in Table 1, 
line 1). Linear FCSLM completions for our ADNI dataset can be downloaded as Supporting File S1. 

To infer SCSLM from FCemp, we invert the analytical expressions of eqs. (2) and (3) and always set σ = 1 and G 
= G*ref leading to: 
 
     𝑾∗ = −𝑪:>/𝐺BCD∗      (4) 
 
where C is the covariance matrix estimated from empirical BOLD time-series. The linearly completed SCSLM is 
then set to be identical to W* setting its diagonal to zero to avoid offsets, which would be meaningless given 
the conventional choice of noise σ which we have made (see Table 3, line 3). Note that all the free parameters 
of the SLM model appear uniquely as scaling factors and do not affect the (normalized) correlation of the 
inferred SCSLM with the SCemp. However, the absolute strengths of inferred structural connections remain 
arbitrary, with only the relative strengths between different connections being reliable (since unaffected by 
arbitrary choices of scaling parameters; see pseudo-code in Table 3). Linear SCSLM completions for our ADNI 
dataset can be downloaded as Supporting File S3. 
 
 
MFM models 
 
For non-linear completion algorithms, we performed simulations of whole-brain mean-field models analogous 
to Deco et al. (2013) or Hansen et al. (2015). We used a modified version of the mean-field model designed by 
Wong and Wang (2006), to describe the mean neural activity for each brain region, following the reduction 
performed in (Deco et al., 2013). The resulting neural mass equations are given by: 
 
     EFG

EH
= :FG

IJ
+ (1 − 𝑆#)𝛾𝑅# + 𝜎𝜂#(𝑡)      (5) 

 
     𝑅# =

OPG:Q
>:CPR	[:E(OPG:Q)]

     (6) 

 
     𝑥# = 𝜔𝐽W𝑆# + 𝐽W𝐺 ∑ 𝐶#Z𝑆Z + 𝐼\Z     (7) 
 
where 𝑆# represents NMDA synaptic input currents and 𝜏F the NMDA decay time constant; 𝑅# is collective firing 
rates; 𝛾 = 0.641 is a kinetic parameter; 𝑎 = 270(𝑉. 𝑛𝐶):>, 𝑏 = 108𝐻𝑧, 𝑑 = 0.154𝑠 are parameters values for 
the input-output function; 𝑥#are the total synaptic inputs to a regions; 𝐽W = 0.2609𝑛𝐴 is an intensity scale for 
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synaptic currents; 𝜔 is the relative strength of recurrent connections within the region; 𝐶#Z are the entries of the 
SCemp matrix reweighted by global scale of long-range connectivity strength G as a control parameter; 𝜎 is the 
noise amplitude, and 𝜂# is a stochastic Gaussian variable with a zero mean and unit variance. Finally, 𝐼\ 
represents the external input and sets the level of regional excitability. Different sets of parameters yield 
different neural network dynamics and, therefore, patterns of FCMFM non-stationarity.   

To emulate BOLD fMRI signals, we then transformed the raw model output activity 𝑥#	through a standard 
Balloon-Windkessel hemodynamic model. All details of the hemodynamic model are set according to Friston et 
al. (2003).  
 
Non-linear SC-to-FC completion 
 

In general, our simple MFM model has three free parameters at the level of the local neural mass dynamics 
(τ, 𝜔,	and I0) and one free global parameter G. Since changing the values of 𝜔 and I0 had lesser effects on the 
collective dynamics of the system (see Figure S2), we set their values to ω = 0.9 and I0 = 0.32 respectively and 
remain then just two free parameters which we allow to vary in the ranges G ∈ [1 3] and τ ∈ [1 100] ms when 
seeking for an optimal working point of the model. As revealed by the analyses of Figure 3, the zone in this 
restricted parameter space associated with the best FC-rendering performance can be identified through the 
joint inspection of three scores, varying as a function of both G and τ. The first criterion is the spatial 
heterogeneity of activation (see Table 2, line 2.5) computed by taking the coefficient of variation of BOLDMFM 
time-series. 

 
By computing the Pearson correlation coefficient of upper-triangular between FCMFM and FCemp for every 

subject from “SCemp + FCemp” subset (see Table 2, line 2.3), we obtained a best-fitting zone in a narrow concave 
stripe (see Figure 3A for one subject); (G*, τ*) parameter set, bring the system to this best-fitting zone and values 
lower than this is (𝐺:, 𝜏:) set and higher values are (𝐺p, 𝜏p). This non-monotonic behavior of yellow zone in 
G/τ plane occurs where three criteria are jointly met; the second criterion is the clustering coefficient of time-
average FCMFM matrices (see Table 2, line 2.6) and finally, the third criterion is the clustering coefficient of FCDMFM 
matrices (see Table 2, line 2.6), where the FCD matrices were computed for an arbitrary window. By knowing 
the optimal working point of the system where all three criteria are jointly optimum (see Table 2, line 2), we 
freeze the algorithm and run the non-linear SC-to-FC data completion for 76 subjects (see Table 2, lines 3 to 5). 
Non-linear FCMFM completions for our ADNI dataset can be downloaded as Supporting File S2. 
 
Non-linear FC-to-SC completion 
 
We implemented a heuristic approach to infer the most likely connectivity matrix (i.e. Effective Connectivity) 
that maximizes the similarity between empirical and simulated functional connectivity. As an initial point, we 
considered a random symmetric matrix and removed diagonal as SC*(0) (see Table 4, line 1) and run the algorithm 
in Table 2 in order to simulate the FC*(0). Then iteratively we adjusted the SC as a function of the difference 
between the current FC and empirical FC (see Table 4, line 2), in other words SC*(1) = SC*(0) + l∆FC(0) where 
∆FC(0) = FCemp - FC*(0) and l is the learning rate (see Table 4, line 3). The iteration will stop when the correlation 
between FCemp and FC*(k) reaches to the threshold CCtarget = 0.7, and giving the SC*(k) as SCMFM. All the parameter 
used in this section is identical to the non-linear SC-to-FC completion procedure. Nonlinear SCMFM completions 
for our ADNI dataset can be downloaded as Supporting File S4. 
 
Bi-virtual data completion 
 
The pipelines for data completion described above can be concatenated, by performing e.g. FC-to-SC completion 
on a virtually FC or SC-to-FC completion on a virtual SC (rather than actual FCemp or SCemp, respectively). In this 
way, one can create bi-virtual counterparts SCbi-MFM (FCbi-MFM) or SCbi-SLM (FC bi-SLM) for any of the available 
empirical SCemp (FCemp) by applying in sequence non-linear MFM-based or linear SLM-based procedures for SC-
to-FC and then FC-to-SC completion (or, conversely, FC-to SC followed by SC-to-FC completions). Linear bi-virtual 
completions for our ADNI dataset can be downloaded as Supporting File S6 (for SCbi-SLM and FCbi-SLM) and non-
linear completions as Supporting File S7 (for SCbi-MFM and FCbi-MFM). 
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Supervised subject classification 
 
As previously mentioned, we separated subjects in our ADNI-derived dataset in three subgroups: “controls”, 
“MCI” and “AD”. We focus here on the “one vs all” task of classifying “MCI” subjects against “controls” or “AD”, 
given that early diagnosis is one of the aims for which our data completion and augmentation approaches could 
use in perspective. Subjects (the actual ones or their associated virtual counterparts) are thus labeled as 
“positive” when belonging to the MCI subgroup or “negative” otherwise. We construct classifiers based on 
different types of input features. For classification based on empirical data only, we used as input features a 
vector of the independent entries (upper-triangular part) of the SCemp matrix (light blue color in Figure 5). For 
classification based on single-type virtual data only, we used as input features a vector of the independent 
entries of the non-linearly completed FCMFM matrix (green color in Figure 5). We then performed classification 
based on combined (empirical) SC and (virtual) FC, by providing as input features the concatenated vectors of 
the upper triangular parts of SCemp and FCMFM (magenta color in Figure 5). Finally, we performed classification 
based on combined (bi-virtual) SC and (virtual) FC, by providing as input features the concatenated vectors of 
the upper triangular parts of SCbi-MFM and FCMFM (violet color in Figure 5). The same training and performance 
assessment schemes were used for all types of input features (and could be generalized to other combinations 
of input features or target positive labels as well). 
 
We chose as classifier a boosted ensemble of 50 shallow decision trees, training it using the RUSBoost algorithm 
(Seiffert et al., 2010), particularly adapted to data in which “positive” and “negative” labels are unbalanced. We 
adopted a 5-fold cross-validation approach and quantified fractions of true and false positives (numbers of true 
or false positives over total number of actual positives) as well as precision (number of true positives over 
numbers of items classified as positives, i.e. fraction of the positives correctly classified as such) during 
generalization (i.e. prediction performed on the folds of data not actually used for training). True positive 
fraction (or recall), false negative fraction and precision depend all on an arbitrary threshold to be applied to the 
classifier ensemble output to decide for positivity of not of the input data. In Figure 5B, receiver operator curves 
(ROC) generated by smoothly growing this threshold between a minimum and a maximum value and plotting 
how the True and False positive fractions vary for the different threshold values. In Figure 5D, precision was 
evaluated at the threshold providing the recall value closest to 10%. The entire cross-validated training and 
performance estimation value was repeated 5000 times. Since, in this context, we are interested in quantifying 
how far can be pushed lower bounds to the amounts of extractable information from the different type of 
features (rather than in building actual classifiers for specific applications), out of the 5000 classifier training 
experiments, we discarded the runs leading to weaker performance and retained only the 500 ones leading to 
cross-validated performances in the top decile. We thus plot in Figure 5B, the median ROCs over the 500 retained 
forest training experiments, for every chosen combination of inputs. Analogously, in Figure 5D, we plot 
distributions of achieved precision at 10%-recall over training runs in this top-decile. Our purified training 
procedure estimates thus how high is the performance that could be achieved tendentially by classifiers trained 
in different input feature combinations. We must keep in mind, however, to avoid confusion, that tendential 
performance estimates in Figures 5B and 5D are by construction superior to the expected medians, whenever 
pre-selection of top-performing classifiers was not applied. Once again, this is not a problem when being 
interested, as in the context of this study, in estimating lower bounds to tendentially achievable performances. 
 
 
Virtual cohorts and data augmentation  
 
In data augmentation, the size of the original dataset (limited by the total number of subjects with available 
empirical connectomic information of either SC or FC type) is artificially boosted by generating a much larger 
number of virtual subjects with multiple alternative (but all equally valuable) completions of the missing 
connectomic data. Concretely, to generate the virtual cohort dataset, we took the 88 subjects in the SCemp only 
dataset (including 21 AD subjects, 35 MCI, and 32 Control subjects) and run for each of them the non-linear SC-
to-FC completion algorithm 100 times, using each time a different random seed. The net result was a group of 
100 alternative FCMFM instances for each of the subjects, yielding in total a virtual cohort of 8800 FCMFM matrices 
to be potentially used for classifier training. Such a cohort can be downloaded as Supporting File S5. To generate 
Figure 5C, showing a dimensionally reduced representation of the relative distances between these 8800 virtual 
matrices, we used an exact t-SNE projection (Van Der Maaten and Hinton, 2008) of the vectors of upper-
triangular parts of the different FCMFM ‘s toward a two-dimensional space, using a default perplexity value of 30 
and no-exaggeration.  
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We then performed data augmentation during classifier training based on this virtual cohort. For classification 
based on single-type virtual features only (i.e. only FCMFM), we used the entire cohorts of 8800 FCMFM matrices 
to select from training and testing sub-folds during cross-validation. This means that both the size of training 
and validation sub-datasets were enlarged. Importantly, however, when sampling sub-folds for 5-fold cross-
validated training, we still excluded from the training set all matrices deriving from a randomly selected fifth of 
the subjects. In this way the validation subset included not only different matrices than the one used for training 
but, beyond that, different matrices generated from subjects that did not contribute any matrix to the training 
set. In this way, we can be sure that improved cross-validated performance estimations do not reflect over-
fitting but actually improved learning. To perform classification based on combined SCemp and FCMFM , we 
constructed an augmented dataset by including for each of the subjects 100 virtual pairs of connectomes, 
combining the same SCemp with each of the possible 100 FCMFM ‘s. Finally, when combining bi-virtual SC and 
virtual FCs, we analogously always combined the same  SCbi-MFM instance with each of the 100 FCMFM ‘s available 
for each subject. In principle, it would have been possible to generate as well a multiplicity of alternatives same  
SCbi-MFM counterparts, leading to an even more varied augmented dataset, but we were limited by the 
computational resources needed to build a multiplicity of alternative SCbi-MFM ‘s for each of the subjects in our 
ADNI-derived dataset (nonlinear FC-to-SC completion is way harder computationally than SC-to-FC completion). 
Finally, tendential true and false positive fractions and precisions were evaluated in the same way as for the 
non-augmented datasets (multiple training runs, followed by purification), i.e. via retaining only the top decile 
of 5000 independent cross-validated training runs over the augmented datasets.  
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Figure 1. Connectomic information extracted from the ADNI dataset has gaps. A) The different dataset 

releases by the ADNI consortium include a variety of information relative to different biomarkers and imaging 
modalities. Here, we focus on structural and functional MRI features and, chiefly:  T1, DTI (allowing to extract 
empirical structural connectomes); and resting-state fMRI BOLD time-series (allowing to extract empirical 
functional connectomes). B) Matrices SCemp and FCemp summarizing connectomic information about, respectively 
structural connectivity (SC) and functional connectivity (FC) are obtained via elaborated multi-step processing 
pipelines, using various software including FreeSurfer, FSL, ANTS, and MRtrix3. C) The total number of ADNI-
derived subjects investigated in this study is 244, in which 74 subjects were control, while 119 subjects labeled 
as MCI, and 51 subjects as AD. Out of these 244, FCemp could be extracted for 168 subjects, and SCemp for 88. 
However, SCemp and FCemp were both simultaneously available for just a minority of 12 subjects (referred to as 
the “SCemp+FCemp subset”). The available data is shown in blue and the missing data in grey, the SCemp+FCemp 
subset is shown in pink.  
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Figure 2. From mean-field modeling to connectomic data completion. A) We present here a graphical 

summary of the various computational simulation and inference strategies used in this study to bridge between 
different types of connectivity matrices. Mean-field simulation and the associated analytic theory can be used 
to generate virtual FC, through simulations of resting-state whole-brain models embedding a given input SC 
connectome (ascending arrows). Algorithmic procedures, that may still include computational simulation steps, 
can be used to perform the inverse inference of a virtual SC that is compatible with a given input FC (descending 
arrows). Both simulation and inference can be performed using simpler linear (green arrows) or non-linear (blue 
arrows) approaches. When the input SC (or FC) connectomes used as input for FC simulation (or SC inverse 
inference) correspond to empirical connectomes SCemp (or FCemp), derived from ADNI T1 and DTI (fMRI) images, 
then model simulation (inversion) can be used to complete gaps in the dataset, whenever FCemp (or SCemp) is 
missing. We refer then to these operations as: B) SC-to-FC completion; and, C) FC-to-SC completion. Both exist 
in linear and non-linear versions. D) The Virtual Brain neuroinformatic platform (whose logo is shown here) 
provides a simulation environment particularly suitable to perform operations of connectomic-dataset 
completion. 

 

Lin
ea

r S
C 

in f
er

en
ce

Lin ear FC simu latio n

No n
lin

ea
r F

C 
sim

u la
tio

n

No n lin ear SC in feren ce

      Wo rkin g  p o in t

    W

o rkin g  p o in t

Empirical FC
    FCemp

Empirical SC
    SCemp

Linear virtual FC
    FCSLM

Nonlinear virtual FC
    FCMFM

Linear virtual SC
    SCSLM

Nonlinear virtual SC
    SCMFM

A

Lin ear SC to  FC

co mp letio n

No n
lin

ea
r S

C 
to  

FC
co

mp le
tio

n

B

Lin
ea

r F
C 

to  
SC

co
mp

let
io n

No n lin ear FC to  SC

co mp letio n

C

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2020. ; https://doi.org/10.1101/2020.01.18.911248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 3. Non-linear SC-to-FC data completion. Simulations of a non-linear model embedding a given input 

SCemp matrix can be used to generate surrogate FCMFM matrices. A) Systematic exploration (here shown for a 
representative subject) of the dependency of the correlation between FCemp

 and FCMFM on the MFM parameters 
G (inter-regional coupling strength) and τ (synaptic time-constant of within-region excitation) indicates that the 
best fitting performances are obtained when parameters are concentrated in a narrow concave stripe across 
the G/τ plane. B) Enlarged zoom of panel A over the range G ∈ [1 3] and τ ∈ [10 30]. C) For a value of τ = 25, 
representatively chosen here for illustration, we identify a value G* for which the Pearson correlation between 
FCemp

 and FCMFM reaches a clear local maximum. Panels A-C thus indicate that it makes sense speaking of a best-
fit zone and that reliable nonlinear SC-to-FC completion should be performed using MFM parameters within this 
zone. Three criteria help us identifying parameter combinations in this best fitting zone when the actual FCemp

 is 
unknown.  D) First criterion: we define the spatial coefficient of variation of the time-series of simulated BOLD 
activity TSMFM as the ratio between the variance and the mean across regions of the time-averaged activation of 
different regions. The best fit zone is associated with a peaking of this spatial coefficient of variation, associated 
with a maximally heterogeneous mix or low and high activation levels for different regions (see time-series 
cartoons for three working points below the CV surface). E) Second criterion: in the best fitting zone, the 
resulting FCMFM is neither randomly organized nor excessively regular (synchronized) but presents a complex 
clustering structure (see lower cartoons), which can be tracked by a peak in the clustering coefficient of the 
FCMFM, seen as weighed adjacency matrix. F) Third criterion: in the best fitting zone, resting-state FCMFM display 
a relatively richer dynamics than in other sectors of the parameter space. This gives rise to an “FCD matrix” 
(correlation between time-resolved FC observed at different times) which is neither random nor too regular but 
displays a certain degree of clustering (see lower cartoons). The emergence of complex dynamics of FC can be 
tracked by an increase in the clustering coefficient of the FCD matrix extracted from simulated resting-state 
dynamics. G) The boxplot shows the distribution of correlations between the actual FCemp and FCMFM estimated 
within the best fitting zone for all subjects from the “SCemp + FCemp” subset.  
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Figure 4. Non-linear FC-to-SC data completion. An iterative procedure can be used to perform resting-state 

simulations of an MFM model starting from a randomly guessed structural connectome SC* and progressively 
modify this SC* to make it compatible with a known target FCemp.  A) Starting from an initial random SC*(0) matrix, 
there is no correlation between the target FCemp and the generated FC*(0) matrix. However, by adjusting the 
weights of the used SC* through the algorithm of Table 4, SC* gradually develops a richer organization, leading 
to an increase of the correlation between FC* and FCemp (violet dashed line) and, in parallel, of the correlation 
between SC* and SCemp (violet solid line), as shown here for a representative subject within the “SCemp+FCemp” 
subset. The algorithm stops when the correlation between FC* and the input target FCemp reaches a desired 
quality threshold (here 0.7 after 2000 iterations) and the SC* at the last iteration is used as virtual surrogate 
SCMFM. B) The boxplot shows the distribution of correlation between SCemp and SCMFM for all subjects in the “SCemp 
+ FCemp” subset. C) The correlation between SCemp and SCMFM can vary using different random initial connectomes 
SC*(0). Here we show a boxplot of the percent dispersions of the correlation values obtained for different initial 
conditions around the median correlation value. The fact that these dispersions lie within a narrow interval of 
±2.5% indicates that the expected performance is robust against changes of the initial conditions. 
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Figure 5. Machine-learning classification of MCI patients based on empirical and virtual connectomes. A) We 
quantified lower bounds to the best performance that machine-learning classifiers can reach in classifying 
subjects as being affected by early-stage dementia or not (“MCI vs all”, i.e. neither labeled “AD” nor “Control”, 
but “MCI”), based purely on connectome matrices of different types or type combinations: actual empirical 
connectomes (here, SCemp, light blue color); their virtual counterparts (here, FCMFM, non-linearly completed from 
SCemp, green color); a combination of empirical and virtually-completed connectomes of different types (here,   
SCemp combined with FCMFM, magenta color); and, a combination of virtual and bi-virtual connectomes of 
different types (here SCbi-MFM combined with FCMFM, violet color). B) We trained random forest classifiers based 
on these different combinations of input features, isolated a subset of the top-10% best random-ensemble 
classifiers we could train and assessed their average MCI detection performance (tendential classification 
performance, i.e. a lower bound to the best performance we could achieve). We show here median Receiver 
Operator Curves (ROCs) for MCI detection for different combinations of empirical and input features 
(generalization performance, via 5-fold cross-validation). High-performance classifiers trained on virtual and bi-
virtual features can reach areas under curves indistinguishable from high-performance classifiers trained on 
empirical features. Non-linear data completion (here, complementing SCemp combined with FCMFM) leads to 
superior performance, especially when combined with data augmentation (dashed ROC curve). C) We generated 
virtual cohorts of surrogate FC data for data augmentation purpose (i.e. facilitating training, by increasing 
training dataset size with appropriate surrogates). We generated 100 different FCMFM matrices for each of the 
88 subjects with an available SCemp. Shown here is a low-dimensional t-SNE projection of the resulting 8800 
virtual  FCMFM ‘s. D) Classifier trained on augmented datasets (i.e. datasets where the training and validation 
datasets have an artificially enlarged size, by the use of the many alternative variants of virtual FCMFM available 
for each of the SCemp or SCbi-MFM), achieve superior performance than classifiers trained without FM-based data 
augmentation. Shown here are boxplots of the precision (at 10% recall) achieved by high-performance 
classifiers, trained with different input datasets. Median precision for classifiers trained on FCMFM matrices (light 
green) is smaller than when training on SCemp matrices (light blue), however, the use of data augmentation 
restores and even improve precision (dark green). Combining SCemp with FCMFM matrices yields a further boost 
in performance (magenta), but, in this case, data augmentation is not helpful (black).  A star denotes significantly 
different median precisions (Kruskal-Wallis, p < 0.05, Bonferroni corrected).  
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Figure S1. Linear SC-to-FC data completion. The functional data completion can also be done using the linear 

model starting from SCemp matrices. A) the systematic exploration (for a representative subject) of the 
dependency of correlation between FCemp and FCSLM on the SLM parameter G (global scale of long-range 
connectivity strength) shown by the violet line indicates that the best fitting value G* (dashed line) can be 
obtained slightly before the critical point of the system Gcritic =  1 𝑚𝑎𝑥(𝜆#)⁄  which since the SCemp matrices are 
normalized to one 1 𝑚𝑎𝑥(𝜆#)⁄  = 1 and Gcritic = 1. The green lines display 5 and 95 percentiles of bootstrap 
resampling. The inset boxplot gives the distribution of G* over all the subjects in the “SCemp + FCemp” subset; for 
the SLM SC-to-FC completion, we used a common value G*ref = 0.83, equal to the median of the boxplot. B) The 
boxplot reports the distribution of Pearson correlation between FCemp and FCSLM for all subjects from the “SCemp 
+ FCemp” subset with a median equal to 0.243. C) In case of using the common value G*ref for all subjects instead 
of the actual personalized optimum G* for each subject in the “SCemp + FCemp” subset, the value of quality loss 
for each subject is shown in the boxplot with median equal to 0.5%.  
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Figure S2. The dependency of best MFM fit zone on additional regional dynamics parameters. In the non-

linear data completion, the global parameters of the MFM model are G (inter-regional coupling strength), τ 
(synaptic time-constant of within-region excitation), 𝜔 (relative strength of recurrent within-region connections) 
and I (external input) which parameters G and τ were investigated in this paper (see Figure 3). Here we showed 
for different values of 𝜔 and I, the narrow concave stripe of Figure 3.A as the representative of the best fitting 
zone is slightly shifted in the G/τ plane, suggesting G and τ are more sensitive parameters and need to be 
explored rather than 𝜔 and I. 

 
 
 
 
 
 

 
 
 

 
 
Figure S3. Linear FC-to-SC data completion. Using the linear model, it is equivalently possible to infer the 

structural SCSLM matrices from FCemp. Since in this approach the free parameters of SLM model appear as scaling 
factor, they don’t affect the correlation of the inferred SCSLM with the SCemp so there is no need for parameter 
exploration here. The distribution of the correlation values for all the subjects from the “SCemp + FCemp” subset 
is shown in the boxplot with median equal to 0.21.  
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Figure S4. Bi-virtual connectomes. This figure shows the correspondence between empirical and bi-virtual SC 
and FC pairs, both when using chained linear (SLM-based) and nonlinear (MFM-based) completion procedures. 
A) For 88 subjects from the ADNI-subset with only SCemp available, considering the linear bi-virtual completion 
chain SCemp to FCSLM to SCbi-SLM, we obtained a median correlation between SCemp and SCbi-SLM equal to 0.636 
(green boxplot); simultaneously, considering the non-linear bi-virtual completion chain SCemp to FCMFM to SCbi-

MFM, we obtained a median correlation between SCemp and SCbi-MFM equal to 0.583 (blue boxplot). B) For 168 
subjects from the ADNI-subset with only FCemp available, considering the linear bi-virtual completion chain FCemp 
to SCSLM to FCbi-SLM, we obtained a median correlation between FCemp and FCbi-SLM equal to 0.122 (green boxplot); 
simultaneously, considering the non-linear bi-virtual completion chain FCemp to SCMFM to FCbi-MFM, we obtained a 
median correlation between FCemp and FCbi-MFM equal to 0.597 (blue boxplot). 
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